File size: 25,281 Bytes
d417eb0 0071250 d417eb0 d67cbb1 d417eb0 d67cbb1 d417eb0 0071250 d417eb0 d67cbb1 d417eb0 e4d3549 d417eb0 0071250 d417eb0 33f52d4 d417eb0 33f52d4 d417eb0 0071250 d417eb0 0071250 d417eb0 0071250 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
---
license: apache-2.0
base_model:
- stepfun-ai/step-3.5-flash
---
# Step 3.5 Flash
<div align="center">
<div align="center" style="display: flex; justify-content: center; align-items: center;">
<img src="stepfun.svg" width="25" style="margin-right: 10px;"/>
<h1 style="margin: 0; border-bottom: none;">Step-3.5-Flash</h1>
</div>
[](https://huggingface.co/stepfun-ai/Step-3.5-Flash-FP8)
[](https://huggingface.co/stepfun-ai/step3p5_preview/tree/main)
[](https://huggingface.co/stepfun-ai/Step-3.5-Flash-FP8)
[]()
</div>
## 1. Introduction
**Step 3.5 Flash** is our most capable open-source foundation model, engineered to deliver frontier reasoning and agentic capabilities with exceptional efficiency. Built on a sparse Mixture of Experts (MoE) architecture, it selectively activates only 11B of its 196B parameters per token. This "intelligence density" allows it to rival the reasoning depth of top-tier proprietary models, while maintaining the agility required for real-time interaction.
## 2. Key Capabilities
- **Deep Reasoning at Speed**: While chatbots are built for reading, agents must reason fast. Powered by 3-way Multi-Token Prediction (MTP-3), Step 3.5 Flash achieves a generation throughput of **100–300 tok/s** in typical usage (peaking at **350 tok/s** for single-stream coding tasks). This allows for complex, multi-step reasoning chains with immediate responsiveness.
- **A Robust Engine for Coding & Agents**: Step 3.5 Flash is purpose-built for agentic tasks, integrating a scalable RL framework that drives consistent self-improvement. It achieves **74.4% on SWE-bench Verified** and **51.0% on Terminal-Bench 2.0**, proving its ability to handle sophisticated, long-horizon tasks with unwavering stability.
- **Efficient Long Context**: The model supports a cost-efficient **256K context window** by employing a 3:1 Sliding Window Attention (SWA) ratio—integrating three SWA layers for every full-attention layer. This hybrid approach ensures consistent performance across massive datasets or long codebases while significantly reducing the computational overhead typical of standard long-context models.
- **Accessible Local Deployment**: Optimized for accessibility, Step 3.5 Flash brings elite-level intelligence to local environments. It runs securely on high-end consumer hardware (e.g., Mac Studio M4 Max, NVIDIA DGX Spark), ensuring data privacy without sacrificing performance.
## 3. Performance
Step 3.5 Flash delivers performance parity with leading closed-source systems while remaining open and efficient.

Performance of Step 3.5 Flash measured across **Reasoning**, **Coding**, and **Agency**. Open-source models (left) are sorted by their total parameter count, while top-tier proprietary models are shown on the right. xbench-DeepSearch scores are sourced from [official publications](https://xbench.org/agi/aisearch) for consistency. The shadowed bars represent the enhanced performance of Step 3.5 Flash using [Parallel Thinking](https://arxiv.org/pdf/2601.05593).
### Detailed Benchmarks
| Benchmark | Step 3.5 Flash | DeepSeek V3.2 | Kimi K2 Thinking / K2.5 | GLM-4.7 | MiniMax M2.1 | MiMo-V2 Flash |
|---|---|---|---|---|---|---|
| # Activated Params | 11B | 37B | 32B | 32B | 10B | 15B |
| # Total Params (MoE) | 196B | 671B | 1T | 355B | 230B | 309B |
| Est. decoding cost (@ 128K context, Hopper GPU**) | **1.0x** (100 tok/s, MTP-3, EP8) | 6.0x (33 tok/s, MTP-1, EP32) | 18.9x (33 tok/s, no MTP, EP32) | 18.9x (100 tok/s, MTP-3, EP8) | 3.9x (100 tok/s, MTP-3, EP8) | 1.2x (100 tok/s, MTP-3, EP8) |
| **Agency** | | | | | | |
| τ²-Bench | **88.2** | 80.3 | 74.3* / — | 87.4 | 80.2* | 80.3 |
| BrowseComp | 51.6 | 51.4 | 41.5* / **60.6** | 52.0 | 47.4 | 45.4 |
| BrowseComp (w/ Context Manager) | 69.0 | 67.6 | 60.2 / **74.9** | 67.5 | 62.0 | 58.3 |
| BrowseComp-ZH | **66.9** | 65.0 | 62.3 / 62.3* | 66.6 | 47.8* | 51.2* |
| BrowseComp-ZH (w/ Context Manager) | **73.7** | — | — / — | — | — | — |
| GAIA (no file) | **84.5** | 75.1* | 75.6* / 75.9* | 61.9* | 64.3* | 78.2* |
| xbench-DeepSearch (2025.05) | **83.7** | 78.0* | 76.0* / 76.7* | 72.0* | 68.7* | 69.3* |
| xbench-DeepSearch (2025.10) | **56.3** | 55.7* | — / 40+ | 52.3* | 43.0* | 44.0* |
| ResearchRubrics | **65.3** | 55.8* | 56.2* / 59.5* | 62.0* | 60.2* | 54.3* |
| **Reasoning** | | | | | | |
| AIME 2025 | **97.3** | 93.1 | 94.5 / 96.1 | 95.7 | 83.0 | 94.1 (95.1*) |
| HMMT 2025 (Feb.) | **98.4** | 92.5 | 89.4 / 95.4 | 97.1 | 71.0* | 84.4 (95.4*) |
| HMMT 2025 (Nov.) | **94.0** | 90.2 | 89.2* / — | 93.5 | 74.3* | 91.0* |
| IMOAnswerBench | **85.4** | 78.3 | 78.6 / 81.8 | 82.0 | 60.4* | 80.9* |
| **Coding** | | | | | | |
| LiveCodeBench-V6 | **86.4** | 83.3 | 83.1 / 85.0 | 84.9 | — | 80.6 (81.6*) |
| SWE-bench Verified | 74.4 | 73.1 | 71.3 / **76.8** | 73.8 | 74.0 | 73.4 |
| Terminal-Bench 2.0 | **51.0** | 46.4 | 35.7* / 50.8 | 41.0 | 47.9 | 38.5 |
**Notes**:
1. "—" indicates the score is not publicly available or not tested.
2. "*" indicates the original score was inaccessible or lower than our reproduced, so we report the evaluation under the same test conditions as Step 3.5 Flash to ensure fair comparability.
3. **BrowseComp (with Context Manager)**: When the effective context length exceeds a predefined threshold, the agent resets the context and restarts the agent loop. By contrast, Kimi K2.5 and DeepSeek-V3.2 used a "discard-all" strategy.
4. **Decoding Cost**: Estimates are based on a methodology similar to, but more accurate than, the approach described arxiv.org/abs/2507.19427
## 4. Architecture Details
Step 3.5 Flash is built on a **Sparse Mixture-of-Experts (MoE)** transformer architecture, optimized for high throughput and low VRAM usage during inference.
### 4.1 Technical Specifications
| Component | Specification |
| :--- | :--- |
| **Backbone** | 45-layer Transformer (4,096 hidden dim) |
| **Context Window** | 256K |
| **Vocabulary** | 128,896 tokens |
| **Total Parameters** | **196.81B** (196B Backbone + 0.81B Head) |
| **Active Parameters** | **~11B** (per token generation) |
### 4.2 Mixture of Experts (MoE) Routing
Unlike traditional dense models, Step 3.5 Flash uses a fine-grained routing strategy to maximize efficiency:
- **Fine-Grained Experts**: 288 routed experts per layer + 1 shared expert (always active).
- **Sparse Activation**: Only the Top-8 experts are selected per token.
- **Result**: The model retains the "memory" of a 196B parameter model but executes with the speed of an 11B model.
### 4.3 Multi-Token Prediction (MTP)
To improve inference speed, we utilize a specialized MTP Head consisting of a sliding-window attention mechanism and a dense Feed-Forward Network (FFN). This module predicts 4 tokens simultaneously in a single forward pass, significantly accelerating inference without degrading quality.
## 5. Quick Start
You can get started with Step 3.5 Flash in minutes using Cloud API via our supported providers.
### 5.1 Get Your API Key
Choose a provider and obtain your credentials. OpenRouter now offers free trial for Step 3.5 Flash.
| Provider | API Key Link | Base URL |
| :--- | :--- | :--- |
| OpenRouter | https://openrouter.ai/keys | https://openrouter.ai/api/v1 |
| StepFun | https://platform.stepfun.ai/interface-key | https://api.stepfun.ai/v1 |
### 5.2 Setup
Install the standard OpenAI SDK (compatible with both platforms).
```bash
pip install --upgrade "openai>=1.0"
```
Note: OpenRouter supports multiple SDKs. Learn more [here](https://openrouter.ai/docs/quickstart).
### 5.3 Implementation Example
This example shows starting a chat with Step 3.5 Flash.
```python
from openai import OpenAI
client = OpenAI(
api_key="YOUR_API_KEY",
base_url="https://api.stepfun.ai/v1", # or "https://openrouter.ai/api/v1"
# Optional: OpenRouter headers for app rankings
default_headers={
"HTTP-Referer": "<YOUR_SITE_URL>",
"X-Title": "<YOUR_SITE_NAME>",
}
)
completion = client.chat.completions.create(
model="step-3.5-flash", # Use "stepfun/step-3.5-flash" for OpenRouter
messages=[
{
"role": "system",
"content": "You are an AI chat assistant provided by StepFun. You are good at Chinese, English, and many other languages.",
},
{
"role": "user",
"content": "Introduce StepFun's artificial intelligence capabilities."
},
],
)
print(completion.choices[0].message.content)
```
## 6. Local Deployment
Step 3.5 Flash is optimized for local inference and supports industry-standard backends including vLLM, SGLang, Hugging Face Transformers and llama.cpp.
### 6.1 vLLM
We recommend using the latest nightly build of vLLM.
1. Install vLLM.
```bash
# via Docker
docker pull vllm/vllm-openai:nightly
# or via pip (nightly wheels)
pip install -U vllm --pre \
--index-url https://pypi.org/simple \
--extra-index-url https://wheels.vllm.ai/nightly
```
2. Launch the server.
**Note**: Full MTP3 support is not yet available in vLLM. We are actively working on a Pull Request to integrate this feature, which is expected to significantly enhance decoding performance.
- For fp8 model
```bash
vllm serve <MODEL_PATH_OR_HF_ID> \
--served-model-name step3p5-flash \
--tensor-parallel-size 8 \
--enable-expert-parallel \
--disable-cascade-attn \
--reasoning-parser step3p5 \
--enable-auto-tool-choice \
--tool-call-parser step3p5 \
--hf-overrides '{"num_nextn_predict_layers": 1}' \
--speculative_config '{"method": "step3p5_mtp", "num_speculative_tokens": 1}' \
--trust-remote-code \
--quantization fp8
```
- For bf16 model
```bash
vllm serve <MODEL_PATH_OR_HF_ID> \
--served-model-name step3p5-flash \
--tensor-parallel-size 8 \
--enable-expert-parallel \
--disable-cascade-attn \
--reasoning-parser step3p5 \
--enable-auto-tool-choice \
--tool-call-parser step3p5 \
--hf-overrides '{"num_nextn_predict_layers": 1}' \
--speculative_config '{"method": "step3p5_mtp", "num_speculative_tokens": 1}' \
--trust-remote-code
```
You can also refer to the [Step-3.5-Flash](https://github.com/vllm-project/recipes/blob/main/StepFun/Step-3.5-Flash.md) recipe.
### 6.2 SGLang
1. Install SGLang.
```bash
# via Docker
docker pull lmsysorg/sglang:latest
# or from source (pip)
pip install "sglang[all] @ git+https://github.com/sgl-project/sglang.git"
```
2. Launch the server.
```bash
- For bf16 model
SGLANG_ENABLE_SPEC_V2=1
python3 -m sglang.launch_server \
--model-path <MODEL_PATH_OR_HF_ID> \
--served-model-name step3p5-flash \
--tp-size 8 \
--tool-call-parser step3p5 \
--reasoning-parser step3p5 \
--speculative-algorithm EAGLE \
--speculative-num-steps 3 \
--speculative-eagle-topk 1 \
--speculative-num-draft-tokens 4 \
--enable-multi-layer-eagle \
--host 0.0.0.0 \
--port 8000
```
- For fp8 model
```bash
SGLANG_ENABLE_SPEC_V2=1
python3 -m sglang.launch_server \
--model-path <MODEL_PATH_OR_HF_ID> \
--served-model-name step3p5-flash \
--tp-size 8 \
--ep-size 8 \
--tool-call-parser step3p5 \
--reasoning-parser step3p5 \
--speculative-algorithm EAGLE \
--speculative-num-steps 3 \
--speculative-eagle-topk 1 \
--speculative-num-draft-tokens 4 \
--enable-multi-layer-eagle \
--host 0.0.0.0 \
--port 8000
```
### 6.3 Transformers (Debug / Verification)
Use this snippet for quick functional verification. For high-throughput serving, use vLLM or SGLang.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_PATH = "<MODEL_PATH_OR_HF_ID>"
# 1. Setup
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
trust_remote_code=True,
torch_dtype="auto",
device_map="auto",
)
# 2. Prepare Input
messages = [{"role": "user", "content": "Explain the significance of the number 42."}]
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
).to(model.device)
# 3. Generate
generated_ids = model.generate(**inputs, max_new_tokens=128, do_sample=False)
output_text = tokenizer.decode(generated_ids[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(output_text)
```
### 6.4 llama.cpp
#### System Requirements
- GGUF Model Weights(int4): 111.5 GB
- Runtime Overhead: ~7 GB
- Minimum VRAM: 120 GB (e.g., Mac studio, DGX-Spark, AMD Ryzen AI Max+ 395)
- Recommended: 128GB unified memory
#### Steps
1. Use llama.cpp:
```bash
git clone git@github.com:stepfun-ai/Step-3.5-Flash.git
cd Step-3.5-Flash/llama.cpp
```
2. Build llama.cpp on Mac:
```bash
cmake -S . -B build-macos \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_METAL=ON \
-DGGML_ACCELERATE=ON \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_COMMON=ON \
-DGGML_LTO=ON
cmake --build build-macos -j8
```
3. Build llama.cpp on DGX-Spark:
```bash
cmake -S . -B build-cuda \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_CUDA=ON \
-DGGML_CUDA_GRAPHS=ON \
-DLLAMA_CURL=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_COMMON=ON
cmake --build build-cuda -j8
```
4. Build llama.cpp on AMD Windows:
```bash
cmake -S . -B build-vulkan \
-DCMAKE_BUILD_TYPE=Release \
-DLLAMA_CURL=OFF \
-DGGML_OPENMP=ON \
-DGGML_VULKAN=ON
cmake --build build-vulkan -j8
```
5. Run with llama-cli
```bash
./llama-cli -m step3.5_flash_Q4_K_S.gguf -c 16384 -b 2048 -ub 2048 -fa on --temp 1.0 -p "What's your name?"
```
6. Test performance with llama-batched-bench:
```bash
./llama-batched-bench -m step3.5_flash_Q4_K_S.gguf -c 32768 -b 2048 -ub 2048 -npp 0,2048,8192,16384,32768 -ntg 128 -npl 1
```
## 7. Using Step 3.5 Flash on Agent Platforms
### 7.1 Claude Code & Codex
It's straightforward to add Step 3.5 Flash to the list of models in most coding environments. See below for the instructions for configuring Claude Code and Codex to use Step 3.5 Flash.
#### 7.1.1 Prerequisites
Sign up at StepFun.ai or OpenRouter and grab an API key, as mentioned in the Quick Start.
#### 7.1.2 Environment setup
Claude Code and Codex rely on Node.js. We recommend installing Node.js version > v20. You can install Node via nvm.
**Mac/Linux**:
```bash
# Install nvm on Mac/Linux via curl:
# Step 1
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.0/install.sh | bash
# Copy the full command
export NVM_DIR="$HOME/.nvm"
[ -s "$NVM_DIR/nvm.sh" ] && \. "$NVM_DIR/nvm.sh" # This loads nvm
[ -s "$NVM_DIR/bash_completion" ] && \. "$NVM_DIR/bash_completion"
# Users in China can set up npm mirror
config set registry https://registry.npmmirror.com
# Step 2
nvm install v22
# Make sure Node.js is installed
node --version
npm --version
```
**Windows**:
You can download the installation file (`nvm-setup.exe`) from [https://github.com/coreybutler/nvm-windows/releases](https://github.com/coreybutler/nvm-windows/releases). Follow the instructions to install nvm. Run nvm commands to make sure it is installed.
#### 7.1.3 Use Step 3.5 Flash on Claude Code
1. Install Claude Code.
```bash
# install claude code via npm
npm install -g @anthropic-ai/claude-code
# test if the installation is successful
claude --version
```
2. Configure Claude Code.
We support the OpenAI and Anthropic API style for integration into Claude Code.
Note: OpenAI API style here refers to the `chat/completions/` format.
We recommend using `claude-code-router`. For details, see [https://github.com/musistudio/claude-code-router](https://github.com/musistudio/claude-code-router).
After Claude Code is installed, install `claude-code-router` :
```bash
# install ccr via npm
npm install -g @musistudio/claude-code-router
# validate it is installed
ccr -v
```
Add the following configurations to `~/.claude-code-router/config.json`.
```json
{
"PORT": 3456,
"Providers": [
{
"name": "stepfun-api",
"api_base_url": "https://api.stepfun.com/v1/chat/completions",
"api_key": "StepFun_API_KEY",
"models": ["step-3.5-flash"],
"transformer":{
"step-3.5-flash": { "use": ["OpenAI"]}
}
}
],
"Router": {
"default": "stepfun-api,step-3.5-flash",
"background": "stepfun-api,step-3.5-flash",
"think": "stepfun-api,step-3.5-flash",
"longContext": "stepfun-api,step-3.5-flash",
"webSearch": "stepfun-api,step-3.5-flash"
}
}
```
You can now start Claude Code:
```bash
# Start Claude
ccr code
# restart ccr if configs are changed
ccr restart
```
#### 7.1.4 Use Step 3.5 Flash on Codex
1. Install Codex
```bash
# Install codex via npm
npm install -g @openai/codex
# Test if it is installed
codex --version
```
2. Configure Codex
Add the following settings to `~/.codex/config.toml`, keeping the rest of the settings as they are.
```json
model="step-3.5-flash"
model_provider = "stepfun-chat"
preferred_auth_method = "apikey"
# configure the provider
[model_providers.stepfun-chat]
name = "OpenAI using response"
base_url = "https://api.stepfun.com/v1"
env_key = "OPENAI_API_KEY"
wire_api = "chat"
query_params = {}
```
For Codex, `wire_api` only supports `chat` . If you use the `responses` mode, you'll need to change to `chat`. Please also switch `model_provider` to the newly configured `stepfun-chat`.
When finishing the configuration, run codex in a new Terminal window to start Codex. Run `/status` to check the configuration.
```bash
/status
📂 Workspace
• Path: /Users/step-test/
• Approval Mode: on-request
• Sandbox: workspace-write
• AGENTS files: (none)
🧠 Model
• Name: step-3.5-flash
• Provider: Stepfun-chat
💻 Client
• CLI Version: 0.40.0
```
#### 7.1.5 Use Step 3.5 Flash on Step-DeepResearch (DeepResearch)
1. Use the reference environment setup below and configure `MODEL_NAME` to `Step-3.5-Flash`. [https://github.com/stepfun-ai/StepDeepResearch?tab=readme-ov-file#1-environment-setup](https://github.com/stepfun-ai/StepDeepResearch?tab=readme-ov-file#1-environment-setup)
## 8. Limitations, Known Issues and Future Directions
1. **Token Efficiency**. Step 3.5 Flash achieves frontier-level agentic intelligence but currently relies on longer generation trajectories than Gemini 3.0 Pro to reach comparable quality.
2. **Efficient Universal Mastery**. We aim to unify generalist versatility with deep domain expertise. To achieve this efficiently, we are advancing variants of on-policy distillation, allowing the model to internalize expert behaviors with higher sample efficiency.
3. **RL for More Agentic Tasks**. While Step 3.5 Flash demonstrates competitive performance on academic agentic benchmarks, the next frontier of agentic AI necessitates the application of RL to intricate, expert-level tasks found in professional work, engineering, and research.
4. **Operational Scope and Constraints**. Step 3.5 Flash is tailored for coding and work-centric tasks, but may experience reduced stability during distribution shifts. This typically occurs in highly specialized domains or long-horizon, multi-turn dialogues, where the model may exhibit repetitive reasoning, mixed-language outputs, or inconsistencies in time and identity awareness.
## 9. Co-Developing the Future
We view our roadmap as a living document, evolving continuously based on real-world usage and developer feedback.
As we work to shape the future of AGI by expanding broad model capabilities, we want to ensure we are solving the right problems. We invite you to be part of this continuous feedback loop—your insights directly influence our priorities.
- **Join the Conversation**: Our Discord community is the primary hub for brainstorming future architectures, proposing capabilities, and getting early access updates 🚀
- **Report Friction**: Encountering limitations? You can open an issue on GitHub or flag it directly in our Discord support channels.
## License
This project is open-sourced under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0).
## 1. Introduction
**Step3.5** is our most capable open-source reasoning model, purpose-built for agentic workflows.
It bridges the gap between massive scale and high performance by combining 196B parameters of knowledge with the inference latency of an 11B model.
We prioritized developer needs to balance speed, cost, and accessibility. This enables the creation of production-grade agents that are fast, stable, and cost-effective.
## 2. Key Capabilities
- Frontier intelligence at 200 tokens/s: Step3.5 matches GPT-5 and Gemini 3.0 Pro in reasoning but runs 4x faster. By leveraging Multi-Token Prediction (MTP-3), Step3.5 predicts three tokens simultaneously, achieving 200 tokens/s for real-time responsiveness.
- Easy local deployment: Despite its massive 196B total parameter count, Step3.5's sparse MoE architecture allows it to run locally on high-end consumer hardware (e.g. Mac Studio M2/M3 Ultra). This enables secure, offline deployment of elite-level intelligence.
- Agentic & coding mastery: Step3.5 is fine-tuned for reliability. It achieves 85.5% on LiveCodeBench and 72.1% on SWE-bench Verified, making it a robust engine for autonomous software engineering and multi-step planning.
- Cost-effective long context: Optimized with a 3:1 sliding window attention strategy (512 window), Step3.5 handles extended contexts with minimal memory overhead, perfect for RAG applications and analyzing large codebases.
## 3. Benchmarks
## Architecture
### Key Features:
- Hybrid Attention Schedules and Compensation for SWA
- Mixture-of-Experts Routing And Load balancing
### Architecture Details
- Backbone: 45-layer Transformer
- Vocabulary: 128,896 tokens
- Hidden Dim: 4,096
- MoE Blocks:
- 288 routed experts + 1 shared expert per block
- Top-8 expert selection per token
- Parameters: Total:
196.81B (Backbone: 196B + MTP Head: 0.81B)
- Activated per token:
11B (excludes embedding/output projections)
- Special Components:
Multi-token Prediction (MTP) head with sliding-window attention and dense FFN
## 5. Getting started
## Deployment Resource Specifications
- Model Weights: 20 GB
- Runtime Overhead: ~4 GB
- Minimum VRAM Required: 24 GB (e.g., RTX 4090 or A100)
## Deploy Step3.5 Locally
For local deployment, Step3.5-preview supports inference frameworks including vLLM and SGLang. Comprehensive deployment instructions are available in the official [Github](#) repository.
vLLM and SGLang only support Step3.5-preview on their main branches. you can use their official docker images for inference.
### vLLM
Using Docker as:
```shell
docker pull vllm/vllm-openai:nightly
```
or using pip (must use pypi.org as the index url):
```shell
pip install -U vllm --pre --index-url https://pypi.org/simple --extra-index-url https://wheels.vllm.ai/nightly
```
### SGLang
Using Docker as:
```shell
docker pull lmsysorg/sglang:dev
```
or using pip install sglang from source.
### transformers
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_PATH = "xxxxxx"
messages = [{"role": "user", "content": "hello"}]
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
)
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path=MODEL_PATH,
torch_dtype=torch.bfloat16,
device_map="auto",
)
inputs = inputs.to(model.device)
generated_ids = model.generate(**inputs, max_new_tokens=128, do_sample=False)
output_text = tokenizer.decode(generated_ids[0][inputs.input_ids.shape[1] :])
print(output_text)
```
### vLLM
```shell
vllm serve {xxx} \
--tensor-parallel-size 4 \
--speculative-config.method mtp \
--speculative-config.num_speculative_tokens 1 \
--tool-call-parser {xxx} \
--reasoning-parser {xxx} \
--enable-auto-tool-choice \
--served-model-name {xxx}
```
### SGLang
```shell
python3 -m sglang.launch_server \
--model-path {xxx} \
--tp-size 8 \
--tool-call-parser {xxx} \
--reasoning-parser {xxx} \
--speculative-algorithm EAGLE \
--speculative-num-steps 3 \
--speculative-eagle-topk 1 \
--speculative-num-draft-tokens 4 \
--mem-fraction-static 0.8 \
--served-model-name {xxx} \
--host 0.0.0.0 \
--port 8000
```
### Parameter Instructions
- When using `vLLM` and `SGLang`, thinking mode is enabled by default when sending requests.
- Both support tool calling. Please use OpenAI-style tool description format for calls.
<!-- ## Citation
If you find our work useful in your research, please consider citing the following paper:
```bibtex
@misc{xxxx,
title={Step3.5-preview},
author={StepFun Team},
year={2026},
eprint={xxxx},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/xxxxx},
}
``` -->
## 📄 License
This project is open-sourced under the [Apache 2.0 License](https://www.google.com/search?q=LICENSE). |