fix init_weights
Browse files- modeling_glm2.py +18 -2
modeling_glm2.py
CHANGED
|
@@ -352,7 +352,7 @@ class gLM2PreTrainedModel(PreTrainedModel):
|
|
| 352 |
supports_gradient_checkpointing = False
|
| 353 |
|
| 354 |
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
|
| 355 |
-
def _init_weights(module, initializer_range=0.02):
|
| 356 |
if isinstance(module, nn.Linear):
|
| 357 |
nn.init.normal_(module.weight, std=initializer_range)
|
| 358 |
if module.bias is not None:
|
|
@@ -361,6 +361,22 @@ class gLM2PreTrainedModel(PreTrainedModel):
|
|
| 361 |
nn.init.normal_(module.weight, std=initializer_range)
|
| 362 |
if module.padding_idx is not None:
|
| 363 |
nn.init.zeros_(module.weight[module.padding_idx])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
|
| 365 |
|
| 366 |
class gLM2Model(gLM2PreTrainedModel):
|
|
@@ -412,7 +428,7 @@ class gLM2ForMaskedLM(gLM2PreTrainedModel):
|
|
| 412 |
|
| 413 |
self.glm2 = gLM2Model(config)
|
| 414 |
self.lm_head = gLM2LMHead(config)
|
| 415 |
-
self.
|
| 416 |
|
| 417 |
def forward(
|
| 418 |
self,
|
|
|
|
| 352 |
supports_gradient_checkpointing = False
|
| 353 |
|
| 354 |
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
|
| 355 |
+
def _init_weights(self, module, initializer_range=0.02):
|
| 356 |
if isinstance(module, nn.Linear):
|
| 357 |
nn.init.normal_(module.weight, std=initializer_range)
|
| 358 |
if module.bias is not None:
|
|
|
|
| 361 |
nn.init.normal_(module.weight, std=initializer_range)
|
| 362 |
if module.padding_idx is not None:
|
| 363 |
nn.init.zeros_(module.weight[module.padding_idx])
|
| 364 |
+
elif isinstance(module, RotaryEmbedding):
|
| 365 |
+
# Re-calculate the frequencies using the module's stored attributes
|
| 366 |
+
inv_freq = 1.0 / (
|
| 367 |
+
module.base
|
| 368 |
+
** (
|
| 369 |
+
torch.arange(0, module.dim, 2, device=module.inv_freq.device, dtype=torch.float32)
|
| 370 |
+
/ module.dim
|
| 371 |
+
)
|
| 372 |
+
)
|
| 373 |
+
# Force the buffer to update
|
| 374 |
+
with torch.no_grad():
|
| 375 |
+
module.inv_freq.copy_(inv_freq)
|
| 376 |
+
elif isinstance(module, RMSNorm):
|
| 377 |
+
if hasattr(module, "variance_epsilon"):
|
| 378 |
+
with torch.no_grad():
|
| 379 |
+
module.variance_epsilon.fill_(self.config.norm_eps)
|
| 380 |
|
| 381 |
|
| 382 |
class gLM2Model(gLM2PreTrainedModel):
|
|
|
|
| 428 |
|
| 429 |
self.glm2 = gLM2Model(config)
|
| 430 |
self.lm_head = gLM2LMHead(config)
|
| 431 |
+
self.post_init()
|
| 432 |
|
| 433 |
def forward(
|
| 434 |
self,
|