Commit
·
024f5b3
1
Parent(s):
25bd72d
jp2 as input type
Browse files- config.pbtxt +16 -7
- model.py +88 -15
config.pbtxt
CHANGED
|
@@ -1,16 +1,25 @@
|
|
| 1 |
backend: "python"
|
| 2 |
-
max_batch_size: 0 #
|
|
|
|
| 3 |
input [
|
| 4 |
{
|
| 5 |
-
name: "
|
| 6 |
-
data_type:
|
| 7 |
-
dims: [3
|
| 8 |
}
|
| 9 |
]
|
|
|
|
| 10 |
output [
|
| 11 |
{
|
| 12 |
name: "output_mask"
|
| 13 |
-
data_type: TYPE_UINT8
|
| 14 |
-
dims: [-1, -1] #
|
| 15 |
}
|
| 16 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
backend: "python"
|
| 2 |
+
max_batch_size: 0 # Keep batching disabled as per original config
|
| 3 |
+
|
| 4 |
input [
|
| 5 |
{
|
| 6 |
+
name: "input_jp2_bytes" # New input name for JP2 bytes
|
| 7 |
+
data_type: TYPE_STRING # Use TYPE_STRING for bytes
|
| 8 |
+
dims: [ 3 ] # Expecting 3 elements: Red, Green, NIR bytes
|
| 9 |
}
|
| 10 |
]
|
| 11 |
+
|
| 12 |
output [
|
| 13 |
{
|
| 14 |
name: "output_mask"
|
| 15 |
+
data_type: TYPE_UINT8
|
| 16 |
+
dims: [-1, -1] # Variable height, width
|
| 17 |
}
|
| 18 |
+
]
|
| 19 |
+
|
| 20 |
+
# Optional: Specify instance_group if running on GPU
|
| 21 |
+
# instance_group [
|
| 22 |
+
# {
|
| 23 |
+
# kind: KIND_GPU
|
| 24 |
+
# }
|
| 25 |
+
# ]
|
model.py
CHANGED
|
@@ -1,28 +1,101 @@
|
|
| 1 |
import numpy as np
|
| 2 |
import triton_python_backend_utils as pb_utils
|
| 3 |
from omnicloudmask import predict_from_array
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
class TritonPythonModel:
|
| 6 |
def initialize(self, args):
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
def execute(self, requests):
|
|
|
|
|
|
|
|
|
|
| 10 |
responses = []
|
|
|
|
| 11 |
for request in requests:
|
| 12 |
-
# Get input tensor
|
| 13 |
-
input_tensor = pb_utils.get_input_tensor_by_name(request, "
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
return responses
|
| 26 |
|
| 27 |
def finalize(self):
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import triton_python_backend_utils as pb_utils
|
| 3 |
from omnicloudmask import predict_from_array
|
| 4 |
+
import rasterio
|
| 5 |
+
from rasterio.io import MemoryFile
|
| 6 |
+
from rasterio.enums import Resampling
|
| 7 |
|
| 8 |
class TritonPythonModel:
|
| 9 |
def initialize(self, args):
|
| 10 |
+
"""
|
| 11 |
+
Initialize the model. This function is called once when the model is loaded.
|
| 12 |
+
"""
|
| 13 |
+
# You can load models or initialize resources here if needed.
|
| 14 |
+
# Ensure rasterio is installed in the Python backend environment.
|
| 15 |
+
print('Initialized Cloud Detection model with JP2 input')
|
| 16 |
|
| 17 |
def execute(self, requests):
|
| 18 |
+
"""
|
| 19 |
+
Process inference requests.
|
| 20 |
+
"""
|
| 21 |
responses = []
|
| 22 |
+
# Every request must contain three JP2 byte strings (Red, Green, NIR).
|
| 23 |
for request in requests:
|
| 24 |
+
# Get the input tensor containing the byte arrays
|
| 25 |
+
input_tensor = pb_utils.get_input_tensor_by_name(request, "input_jp2_bytes")
|
| 26 |
+
# as_numpy() for TYPE_STRING gives an ndarray of Python bytes objects
|
| 27 |
+
jp2_bytes_list = input_tensor.as_numpy()
|
| 28 |
+
|
| 29 |
+
if len(jp2_bytes_list) != 3:
|
| 30 |
+
# Send an error response if the input shape is incorrect
|
| 31 |
+
error = pb_utils.TritonError(f"Expected 3 JP2 byte strings, received {len(jp2_bytes_list)}")
|
| 32 |
+
response = pb_utils.InferenceResponse(output_tensors=[], error=error)
|
| 33 |
+
responses.append(response)
|
| 34 |
+
continue # Skip to the next request
|
| 35 |
+
|
| 36 |
+
# Assume order: Red, Green, NIR based on client logic
|
| 37 |
+
red_bytes = jp2_bytes_list[0]
|
| 38 |
+
green_bytes = jp2_bytes_list[1]
|
| 39 |
+
nir_bytes = jp2_bytes_list[2]
|
| 40 |
+
|
| 41 |
+
try:
|
| 42 |
+
# Process JP2 bytes using rasterio in memory
|
| 43 |
+
with MemoryFile(red_bytes) as memfile_red:
|
| 44 |
+
with memfile_red.open() as src_red:
|
| 45 |
+
red_data = src_red.read(1).astype(np.float32)
|
| 46 |
+
target_height = src_red.height
|
| 47 |
+
target_width = src_red.width
|
| 48 |
+
|
| 49 |
+
with MemoryFile(green_bytes) as memfile_green:
|
| 50 |
+
with memfile_green.open() as src_green:
|
| 51 |
+
# Ensure green band matches red band dimensions (should if B03)
|
| 52 |
+
if src_green.height != target_height or src_green.width != target_width:
|
| 53 |
+
# Optional: Resample green if necessary, though B03 usually matches B04
|
| 54 |
+
green_data = src_green.read(
|
| 55 |
+
1,
|
| 56 |
+
out_shape=(1, target_height, target_width),
|
| 57 |
+
resampling=Resampling.bilinear
|
| 58 |
+
).astype(np.float32)
|
| 59 |
+
else:
|
| 60 |
+
green_data = src_green.read(1).astype(np.float32)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
with MemoryFile(nir_bytes) as memfile_nir:
|
| 64 |
+
with memfile_nir.open() as src_nir:
|
| 65 |
+
# Resample NIR (B8A) to match Red/Green (B04/B03) resolution
|
| 66 |
+
nir_data = src_nir.read(
|
| 67 |
+
1, # Read the first band
|
| 68 |
+
out_shape=(1, target_height, target_width),
|
| 69 |
+
resampling=Resampling.bilinear
|
| 70 |
+
).astype(np.float32)
|
| 71 |
+
|
| 72 |
+
# Stack bands in CHW format (Red, Green, NIR) for the model
|
| 73 |
+
# Match the channel order expected by predict_from_array
|
| 74 |
+
input_array = np.stack([red_data, green_data, nir_data], axis=0)
|
| 75 |
+
|
| 76 |
+
# Perform inference using the original function
|
| 77 |
+
pred_mask = predict_from_array(input_array)
|
| 78 |
+
|
| 79 |
+
# Create output tensor
|
| 80 |
+
output_tensor = pb_utils.Tensor(
|
| 81 |
+
"output_mask",
|
| 82 |
+
pred_mask.astype(np.uint8)
|
| 83 |
+
)
|
| 84 |
+
response = pb_utils.InferenceResponse([output_tensor])
|
| 85 |
+
|
| 86 |
+
except Exception as e:
|
| 87 |
+
# Handle errors during processing (e.g., invalid JP2 data)
|
| 88 |
+
error = pb_utils.TritonError(f"Error processing JP2 data: {str(e)}")
|
| 89 |
+
response = pb_utils.InferenceResponse(output_tensors=[], error=error)
|
| 90 |
+
|
| 91 |
+
responses.append(response)
|
| 92 |
+
|
| 93 |
+
# Return a list of responses
|
| 94 |
return responses
|
| 95 |
|
| 96 |
def finalize(self):
|
| 97 |
+
"""
|
| 98 |
+
Called when the model is unloaded. Perform any necessary cleanup.
|
| 99 |
+
"""
|
| 100 |
+
print('Finalizing Cloud Detection model')
|
| 101 |
+
|