Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model:
|
| 4 |
+
- black-forest-labs/FLUX.1-dev
|
| 5 |
+
- Qwen/Qwen-Image
|
| 6 |
+
---
|
| 7 |
+
# ArcFlow
|
| 8 |
+
ArcFlow: Unleashing 2-Step Text-to-Image Generation via High-Precision Non-Linear Flow Distillation
|
| 9 |
+
<br/>
|
| 10 |
+
Zihan Yang<sup>1</sup>,
|
| 11 |
+
[Shuyuan Tu](https://github.com/Francis-Rings)<sup>1</sup>,
|
| 12 |
+
Licheng Zhang<sup>1</sup>,
|
| 13 |
+
[Qi Dai](https://scholar.google.com/citations?hl=en&user=NSJY12IAAAAJ)<sup>2</sup>,
|
| 14 |
+
[Yu-Gang Jiang](https://scholar.google.com/citations?hl=en&user=f3_FP8AAAAAJ)<sup>1</sup>,
|
| 15 |
+
[Zuxuan Wu](https://zxwu.azurewebsites.net/)<sup>1</sup>
|
| 16 |
+
<br/>
|
| 17 |
+
[<sup>1</sup>Fudan University; <sup>2</sup>Microsoft Research Asia]
|
| 18 |
+
## Usage
|
| 19 |
+
|
| 20 |
+
Please first install the [official code repository](https://github.com/pnotp/ArcFlow).
|
| 21 |
+
|
| 22 |
+
We provide diffusers pipelines for easy inference. The following code demonstrates how to sample images from the distilled FLUX.2 models.
|
| 23 |
+
|
| 24 |
+
### 4-NFE/2-NFE Arc-Qwen (Distilled from Qwen-Image-20B)
|
| 25 |
+
|
| 26 |
+
```python
|
| 27 |
+
import torch
|
| 28 |
+
from diffusers import FlowMatchEulerDiscreteScheduler
|
| 29 |
+
from lakonlab.pipelines.arcqwen_pipeline import ArcQwenImagePipeline
|
| 30 |
+
|
| 31 |
+
pipe = ArcQwenImagePipeline.from_pretrained(
|
| 32 |
+
'Qwen/Qwen-Image',
|
| 33 |
+
torch_dtype=torch.bfloat16)
|
| 34 |
+
adapter_name = pipe.load_arcflow_adapter(
|
| 35 |
+
'ymyy307/ArcFlow',
|
| 36 |
+
subfolder='arcflow-qwen-2steps',
|
| 37 |
+
target_module_name='transformer')
|
| 38 |
+
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config( # use fixed shift=3.2
|
| 39 |
+
pipe.scheduler.config, shift=3.2, shift_terminal=None, use_dynamic_shifting=False)
|
| 40 |
+
pipe = pipe.to('cuda')
|
| 41 |
+
|
| 42 |
+
nfe = 4
|
| 43 |
+
# nfe = 2
|
| 44 |
+
out = pipe(
|
| 45 |
+
prompt = 'A semi-realistic fantasy illustration featuring a split composition of two young men in profile, facing away from each other. On the left, a pale man with sharp features and slicked-back black hair wears a dark coat. On the right, a tan man with messy wavy hair wears a blue tunic. The ornate, 3D metallic gold title "Sultan\'s Game" overlays the bottom center. The background is divided into distinct sections: vibrant red abstract shapes in the upper half and deep teal textures in the lower half, creating a sharp color contrast. Painterly brushstrokes.',
|
| 46 |
+
num_images_per_prompt=1,
|
| 47 |
+
width=1024,
|
| 48 |
+
height=1024,
|
| 49 |
+
num_inference_steps=nfe,
|
| 50 |
+
generator=torch.Generator(device="cuda").manual_seed(42),
|
| 51 |
+
timestep_ratio=1.0,
|
| 52 |
+
).images[0]
|
| 53 |
+
out.save(f'arcqwen_{nfe}nfe.png')
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
### 4-NFE/2-NFE Arc-FLUX (Distilled from FLUX.1-dev)
|
| 57 |
+
|
| 58 |
+
```python
|
| 59 |
+
import torch
|
| 60 |
+
from diffusers import FlowMatchEulerDiscreteScheduler
|
| 61 |
+
from lakonlab.pipelines.arcflux_pipeline import ArcFluxPipeline
|
| 62 |
+
|
| 63 |
+
pipe = ArcFluxPipeline.from_pretrained(
|
| 64 |
+
'black-forest-labs/FLUX.1-dev',
|
| 65 |
+
torch_dtype=torch.bfloat16)
|
| 66 |
+
adapter_name = pipe.load_arcflow_adapter( # you may later call `pipe.set_adapters([adapter_name, ...])` to combine other adapters (e.g., style LoRAs)
|
| 67 |
+
'ymyy307/ArcFlow',
|
| 68 |
+
subfolder='arcflow-flux-2steps',
|
| 69 |
+
target_module_name='transformer')
|
| 70 |
+
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config( # use fixed shift=3.2
|
| 71 |
+
pipe.scheduler.config, shift=3.2, shift_terminal=None, use_dynamic_shifting=False)
|
| 72 |
+
pipe = pipe.to('cuda')
|
| 73 |
+
|
| 74 |
+
nfe = 4
|
| 75 |
+
# nfe = 2
|
| 76 |
+
out = pipe(
|
| 77 |
+
prompt = 'A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the Sydney Opera House holding a sign on the chest that says "Welcome Friends"',
|
| 78 |
+
num_images_per_prompt=1,
|
| 79 |
+
width=1024,
|
| 80 |
+
height=1024,
|
| 81 |
+
num_inference_steps=nfe,
|
| 82 |
+
generator=torch.Generator(device="cuda").manual_seed(42),
|
| 83 |
+
timestep_ratio=1.0,
|
| 84 |
+
).images[0]
|
| 85 |
+
out.save(f'arcflux_{nfe}nfe.png')
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
## Citation
|
| 89 |
+
```
|
| 90 |
+
@misc{yang2026arcflowunleashing2steptexttoimage,
|
| 91 |
+
title={ArcFlow: Unleashing 2-Step Text-to-Image Generation via High-Precision Non-Linear Flow Distillation},
|
| 92 |
+
author={Zihan Yang and Shuyuan Tu and Licheng Zhang and Qi Dai and Yu-Gang Jiang and Zuxuan Wu},
|
| 93 |
+
year={2026},
|
| 94 |
+
eprint={2602.09014},
|
| 95 |
+
archivePrefix={arXiv},
|
| 96 |
+
primaryClass={cs.CV},
|
| 97 |
+
url={https://arxiv.org/abs/2602.09014},
|
| 98 |
+
}
|
| 99 |
+
```
|