Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: pytorch
|
| 3 |
+
tags:
|
| 4 |
+
- waste-classification
|
| 5 |
+
- mae
|
| 6 |
+
- vision-transformer
|
| 7 |
+
- environmental
|
| 8 |
+
- recycling
|
| 9 |
+
license: mit
|
| 10 |
+
datasets:
|
| 11 |
+
- RealWaste
|
| 12 |
+
metrics:
|
| 13 |
+
- accuracy
|
| 14 |
+
model-index:
|
| 15 |
+
- name: MAE Waste Classifier
|
| 16 |
+
results:
|
| 17 |
+
- task:
|
| 18 |
+
type: image-classification
|
| 19 |
+
name: Waste Classification
|
| 20 |
+
dataset:
|
| 21 |
+
type: RealWaste
|
| 22 |
+
name: RealWaste Dataset
|
| 23 |
+
metrics:
|
| 24 |
+
- type: accuracy
|
| 25 |
+
value: 0.9327
|
| 26 |
+
name: Validation Accuracy
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
# MAE Waste Classifier
|
| 30 |
+
|
| 31 |
+
A finetuned MAE (Masked Autoencoder) ViT-Base model for waste classification achieving **93.27% validation accuracy** on 9 waste categories.
|
| 32 |
+
|
| 33 |
+
## Model Details
|
| 34 |
+
|
| 35 |
+
- **Architecture**: Vision Transformer (ViT-Base) with MAE pretraining
|
| 36 |
+
- **Parameters**: ~86M
|
| 37 |
+
- **Input Size**: 224x224 RGB images
|
| 38 |
+
- **Classes**: 9 waste categories
|
| 39 |
+
- **Validation Accuracy**: 93.27%
|
| 40 |
+
|
| 41 |
+
## Categories
|
| 42 |
+
|
| 43 |
+
1. **Cardboard** - Flatten and place in recycling bin. Remove any tape or staples.
|
| 44 |
+
2. **Food Organics** - Compost in organic waste bin or home composter.
|
| 45 |
+
3. **Glass** - Rinse and place in glass recycling. Remove lids and caps.
|
| 46 |
+
4. **Metal** - Rinse aluminum/steel cans and place in recycling bin.
|
| 47 |
+
5. **Miscellaneous Trash** - Dispose in general waste bin. Cannot be recycled.
|
| 48 |
+
6. **Paper** - Place clean paper in recycling. Remove plastic windows from envelopes.
|
| 49 |
+
7. **Plastic** - Check recycling number. Rinse containers before recycling.
|
| 50 |
+
8. **Textile Trash** - Donate if reusable, otherwise dispose in textile recycling.
|
| 51 |
+
9. **Vegetation** - Compost in organic waste or use for mulch in garden.
|
| 52 |
+
|
| 53 |
+
## Usage
|
| 54 |
+
|
| 55 |
+
```python
|
| 56 |
+
import torch
|
| 57 |
+
import timm
|
| 58 |
+
from PIL import Image
|
| 59 |
+
from torchvision import transforms
|
| 60 |
+
|
| 61 |
+
# Load model
|
| 62 |
+
model = timm.create_model('vit_base_patch16_224', pretrained=False, num_classes=9)
|
| 63 |
+
checkpoint = torch.load('best_model.pth', map_location='cpu')
|
| 64 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 65 |
+
model.eval()
|
| 66 |
+
|
| 67 |
+
# Preprocessing
|
| 68 |
+
transform = transforms.Compose([
|
| 69 |
+
transforms.Resize((224, 224)),
|
| 70 |
+
transforms.ToTensor(),
|
| 71 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 72 |
+
])
|
| 73 |
+
|
| 74 |
+
# Inference
|
| 75 |
+
image = Image.open('waste_item.jpg').convert('RGB')
|
| 76 |
+
input_tensor = transform(image).unsqueeze(0)
|
| 77 |
+
|
| 78 |
+
with torch.no_grad():
|
| 79 |
+
outputs = model(input_tensor)
|
| 80 |
+
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
| 81 |
+
predicted_class = torch.argmax(probabilities, dim=1).item()
|
| 82 |
+
|
| 83 |
+
categories = ['Cardboard', 'Food Organics', 'Glass', 'Metal', 'Miscellaneous Trash', 'Paper', 'Plastic', 'Textile Trash', 'Vegetation']
|
| 84 |
+
print(f"Predicted: {categories[predicted_class]}")
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
## Training Details
|
| 88 |
+
|
| 89 |
+
- **Dataset**: RealWaste (4,752 images)
|
| 90 |
+
- **Pretraining**: MAE on ImageNet
|
| 91 |
+
- **Finetuning**: 15 epochs on RealWaste
|
| 92 |
+
- **Optimizer**: AdamW
|
| 93 |
+
- **Hardware**: NVIDIA RTX 3080 Ti
|
| 94 |
+
|
| 95 |
+
## Performance
|
| 96 |
+
|
| 97 |
+
- **Validation Accuracy**: 93.27%
|
| 98 |
+
- **Training Accuracy**: 99.89%
|
| 99 |
+
- **Model Size**: ~350MB
|
| 100 |
+
- **Inference Speed**: ~50ms per image (GPU)
|
| 101 |
+
|
| 102 |
+
## Environmental Impact
|
| 103 |
+
|
| 104 |
+
This model helps improve recycling efficiency by providing accurate waste classification and proper disposal instructions.
|