--- library_name: transformers base_model: - zai-org/GLM-5 --- This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [zai-org/GLM-5](https://huggingface.co/zai-org/GLM-5). | File path | Size | |------|------| | model.safetensors | 9.0MB | ### Example usage: - vLLM ```bash # Multi-token prediction is supported model_id=yujiepan/glm-5-tiny-random vllm serve $model_id \ --tensor-parallel-size 2 \ --speculative-config.method mtp \ --speculative-config.num_speculative_tokens 1 \ --tool-call-parser glm47 \ --reasoning-parser glm45 \ --enable-auto-tool-choice ``` - SGLang ```bash # Multi-token prediction is supported model_id=yujiepan/glm-5-tiny-random python3 -m sglang.launch_server --model-path $model_id --tp-size 2 \ --tool-call-parser glm47 \ --reasoning-parser glm45 \ --speculative-algorithm EAGLE \ --speculative-num-steps 3 \ --speculative-eagle-topk 1 \ --speculative-num-draft-tokens 4 ``` - Transformers ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "yujiepan/glm-5-tiny-random" tokenizer = AutoTokenizer.from_pretrained(model_id) input_ids = torch.randint(1000, 2000, size=(1, 2333), dtype=torch.long).cuda() # trigger DSA # messages = [{"role": "user", "content": "hello"}] # input_ids = tokenizer(messages, return_tensors="pt").input_ids.cuda() model = AutoModelForCausalLM.from_pretrained( model_id, dtype=torch.bfloat16, device_map="cuda", ) generated_ids = model.generate(input_ids, max_new_tokens=32) output_text = tokenizer.decode(generated_ids[0][input_ids.shape[1]:]) print(output_text) ``` ### Codes to create this repo:
Click to expand ```python import json from copy import deepcopy from pathlib import Path import accelerate import torch import torch.nn as nn from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, GenerationConfig, set_seed, ) source_model_id = "zai-org/GLM-5" save_folder = "/tmp/yujiepan/glm-5-tiny-random" processor = AutoProcessor.from_pretrained( source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json: dict = json.load(f) head_dim = 64 kv_lora_rank = 512 qk_nope_head_dim = 192 config_json.update({ "first_k_dense_replace": 1, "mlp_layer_types": ['dense'] + ['sparse'], "head_dim": head_dim, "hidden_size": 8, "index_head_dim": 32, "index_n_heads": 4, "intermediate_size": 32, "moe_intermediate_size": 32, "num_hidden_layers": 2, 'kv_lora_rank': kv_lora_rank, "num_attention_heads": 4, 'num_key_value_heads': 4, 'q_lora_rank': 32, "qk_head_dim": qk_nope_head_dim + head_dim, 'qk_nope_head_dim': qk_nope_head_dim, 'qk_rope_head_dim': head_dim, 'v_head_dim': qk_nope_head_dim + head_dim, "tie_word_embeddings": True, }) with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) model.generation_config.do_sample = True print(model.generation_config) model = model.cpu() set_seed(42) n_params = sum(p.numel() for p in model.parameters()) with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape, p.numel() / n_params * 100, '%') # MTP set_seed(42) model.model.layers.append(nn.ModuleDict(dict( shared_head=nn.ModuleDict(dict( norm=nn.RMSNorm(config.hidden_size), # head=deepcopy(model.model.embed_tokens), )), # embed_tokens=deepcopy(model.model.embed_tokens), eh_proj=nn.Linear(config.hidden_size * 2, config.hidden_size, bias=False), enorm=nn.RMSNorm(config.hidden_size), hnorm=nn.RMSNorm(config.hidden_size), input_layernorm=nn.RMSNorm(config.hidden_size), post_attention_layernorm=nn.RMSNorm(config.hidden_size), self_attn=deepcopy(model.model.layers[1].self_attn), mlp=deepcopy(model.model.layers[1].mlp), ))) for i in range(1, len(model.model.layers)): model.model.layers[i].mlp.gate.e_score_correction_bias = torch.rand_like( model.model.layers[i].mlp.gate.e_score_correction_bias).float() model.save_pretrained(save_folder) print(model) ```
### Printing the model:
Click to expand ```text GlmMoeDsaForCausalLM( (model): GlmMoeDsaModel( (embed_tokens): Embedding(154880, 8, padding_idx=154820) (layers): ModuleList( (0): GlmMoeDsaDecoderLayer( (self_attn): GlmMoeDsaAttention( (q_a_proj): Linear(in_features=8, out_features=32, bias=False) (q_a_layernorm): GlmMoeDsaRMSNorm((32,), eps=1e-06) (q_b_proj): Linear(in_features=32, out_features=1024, bias=False) (kv_a_proj_with_mqa): Linear(in_features=8, out_features=576, bias=False) (kv_a_layernorm): GlmMoeDsaRMSNorm((512,), eps=1e-06) (kv_b_proj): Linear(in_features=512, out_features=1792, bias=False) (o_proj): Linear(in_features=1024, out_features=8, bias=False) (wq_b): Linear(in_features=32, out_features=1024, bias=False) (wk): Linear(in_features=8, out_features=256, bias=False) (k_norm): GlmMoeDsaRMSNorm((256,), eps=1e-06) (weights_proj): Linear(in_features=8, out_features=4, bias=False) ) (mlp): GlmMoeDsaMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLUActivation() ) (input_layernorm): GlmMoeDsaRMSNorm((8,), eps=1e-05) (post_attention_layernorm): GlmMoeDsaRMSNorm((8,), eps=1e-05) ) (1): GlmMoeDsaDecoderLayer( (self_attn): GlmMoeDsaAttention( (q_a_proj): Linear(in_features=8, out_features=32, bias=False) (q_a_layernorm): GlmMoeDsaRMSNorm((32,), eps=1e-06) (q_b_proj): Linear(in_features=32, out_features=1024, bias=False) (kv_a_proj_with_mqa): Linear(in_features=8, out_features=576, bias=False) (kv_a_layernorm): GlmMoeDsaRMSNorm((512,), eps=1e-06) (kv_b_proj): Linear(in_features=512, out_features=1792, bias=False) (o_proj): Linear(in_features=1024, out_features=8, bias=False) (wq_b): Linear(in_features=32, out_features=1024, bias=False) (wk): Linear(in_features=8, out_features=256, bias=False) (k_norm): GlmMoeDsaRMSNorm((256,), eps=1e-06) (weights_proj): Linear(in_features=8, out_features=4, bias=False) ) (mlp): GlmMoeDsaMoE( (experts): GlmMoeDsaNaiveMoe( (act_fn): SiLUActivation() ) (gate): GlmMoeDsaTopkRouter() (shared_experts): GlmMoeDsaMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLUActivation() ) ) (input_layernorm): GlmMoeDsaRMSNorm((8,), eps=1e-05) (post_attention_layernorm): GlmMoeDsaRMSNorm((8,), eps=1e-05) ) (2): ModuleDict( (shared_head): ModuleDict( (norm): RMSNorm((8,), eps=None, elementwise_affine=True) ) (eh_proj): Linear(in_features=16, out_features=8, bias=False) (enorm): RMSNorm((8,), eps=None, elementwise_affine=True) (hnorm): RMSNorm((8,), eps=None, elementwise_affine=True) (input_layernorm): RMSNorm((8,), eps=None, elementwise_affine=True) (post_attention_layernorm): RMSNorm((8,), eps=None, elementwise_affine=True) (self_attn): GlmMoeDsaAttention( (q_a_proj): Linear(in_features=8, out_features=32, bias=False) (q_a_layernorm): GlmMoeDsaRMSNorm((32,), eps=1e-06) (q_b_proj): Linear(in_features=32, out_features=1024, bias=False) (kv_a_proj_with_mqa): Linear(in_features=8, out_features=576, bias=False) (kv_a_layernorm): GlmMoeDsaRMSNorm((512,), eps=1e-06) (kv_b_proj): Linear(in_features=512, out_features=1792, bias=False) (o_proj): Linear(in_features=1024, out_features=8, bias=False) (wq_b): Linear(in_features=32, out_features=1024, bias=False) (wk): Linear(in_features=8, out_features=256, bias=False) (k_norm): GlmMoeDsaRMSNorm((256,), eps=1e-06) (weights_proj): Linear(in_features=8, out_features=4, bias=False) ) (mlp): GlmMoeDsaMoE( (experts): GlmMoeDsaNaiveMoe( (act_fn): SiLUActivation() ) (gate): GlmMoeDsaTopkRouter() (shared_experts): GlmMoeDsaMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLUActivation() ) ) ) ) (norm): GlmMoeDsaRMSNorm((8,), eps=1e-05) (rotary_emb): GlmMoeDsaRotaryEmbedding() ) (lm_head): Linear(in_features=8, out_features=154880, bias=False) ) ```