Upload German PII detection model OpenMed-PII-German-ClinicalLongformer-Base-149M-v1
7f4248d
verified
| language: | |
| - de | |
| license: apache-2.0 | |
| base_model: yikuan8/Clinical-Longformer | |
| tags: | |
| - token-classification | |
| - ner | |
| - pii | |
| - pii-detection | |
| - de-identification | |
| - privacy | |
| - healthcare | |
| - medical | |
| - clinical | |
| - phi | |
| - german | |
| - pytorch | |
| - transformers | |
| - openmed | |
| pipeline_tag: token-classification | |
| library_name: transformers | |
| metrics: | |
| - f1 | |
| - precision | |
| - recall | |
| model-index: | |
| - name: OpenMed-PII-German-ClinicalLongformer-149M-v1 | |
| results: | |
| - task: | |
| type: token-classification | |
| name: Named Entity Recognition | |
| dataset: | |
| name: AI4Privacy (German subset) | |
| type: ai4privacy/pii-masking-400k | |
| split: test | |
| metrics: | |
| - type: f1 | |
| value: 0.9485 | |
| name: F1 (micro) | |
| - type: precision | |
| value: 0.9456 | |
| name: Precision | |
| - type: recall | |
| value: 0.9513 | |
| name: Recall | |
| widget: | |
| - text: "Dr. Hans Müller (Sozialversicherungsnummer: 12 150385 M 123) ist erreichbar unter hans.mueller@krankenhaus.de oder 0171 234 5678. Er wohnt in der Hauptstraße 42, 10115 Berlin." | |
| example_title: Clinical Note with PII (German) | |
| # OpenMed-PII-German-ClinicalLongformer-149M-v1 | |
| **German PII Detection Model** | 149M Parameters | Open Source | |
| []() []() []() | |
| ## Model Description | |
| **OpenMed-PII-German-ClinicalLongformer-149M-v1** is a transformer-based token classification model fine-tuned for **Personally Identifiable Information (PII) detection in German text**. This model identifies and classifies **54 types of sensitive information** including names, addresses, social security numbers, medical record numbers, and more. | |
| ### Key Features | |
| - **German-Optimized**: Specifically trained on German text for optimal performance | |
| - **High Accuracy**: Achieves strong F1 scores across diverse PII categories | |
| - **Comprehensive Coverage**: Detects 55+ entity types spanning personal, financial, medical, and contact information | |
| - **Privacy-Focused**: Designed for de-identification and compliance with GDPR and other privacy regulations | |
| - **Production-Ready**: Optimized for real-world text processing pipelines | |
| ## Performance | |
| Evaluated on the German subset of AI4Privacy dataset: | |
| | Metric | Score | | |
| |:---|:---:| | |
| | **Micro F1** | **0.9485** | | |
| | Precision | 0.9456 | | |
| | Recall | 0.9513 | | |
| | Macro F1 | 0.9291 | | |
| | Weighted F1 | 0.9448 | | |
| | Accuracy | 0.9918 | | |
| ### Top 10 German PII Models | |
| | Rank | Model | F1 | Precision | Recall | | |
| |:---:|:---|:---:|:---:|:---:| | |
| | 1 | [OpenMed-PII-German-SuperClinical-Large-434M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-SuperClinical-Large-434M-v1) | 0.9761 | 0.9744 | 0.9778 | | |
| | 2 | [OpenMed-PII-German-SnowflakeMed-Large-568M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-SnowflakeMed-Large-568M-v1) | 0.9724 | 0.9705 | 0.9743 | | |
| | 3 | [OpenMed-PII-German-ClinicalBGE-568M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-ClinicalBGE-568M-v1) | 0.9724 | 0.9702 | 0.9745 | | |
| | 4 | [OpenMed-PII-German-BigMed-Large-560M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-BigMed-Large-560M-v1) | 0.9714 | 0.9696 | 0.9732 | | |
| | 5 | [OpenMed-PII-German-NomicMed-Large-395M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-NomicMed-Large-395M-v1) | 0.9713 | 0.9690 | 0.9735 | | |
| | 6 | [OpenMed-PII-German-SuperMedical-Large-355M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-SuperMedical-Large-355M-v1) | 0.9701 | 0.9684 | 0.9719 | | |
| | 7 | [OpenMed-PII-German-EuroMed-210M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-EuroMed-210M-v1) | 0.9683 | 0.9667 | 0.9699 | | |
| | 8 | [OpenMed-PII-German-ClinicalBGE-Large-335M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-ClinicalBGE-Large-335M-v1) | 0.9652 | 0.9624 | 0.9680 | | |
| | 9 | [OpenMed-PII-German-ClinicalE5-Large-335M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-ClinicalE5-Large-335M-v1) | 0.9646 | 0.9620 | 0.9672 | | |
| | 10 | [OpenMed-PII-German-BiomedELECTRA-Large-335M-v1](https://huggingface.co/OpenMed/OpenMed-PII-German-BiomedELECTRA-Large-335M-v1) | 0.9638 | 0.9598 | 0.9677 | | |
| ## Supported Entity Types | |
| This model detects **54 PII entity types** organized into categories: | |
| <details> | |
| <summary><strong>Identifiers</strong> (22 types)</summary> | |
| | Entity | Description | | |
| |:---|:---| | |
| | `ACCOUNTNAME` | Accountname | | |
| | `BANKACCOUNT` | Bankaccount | | |
| | `BIC` | Bic | | |
| | `BITCOINADDRESS` | Bitcoinaddress | | |
| | `CREDITCARD` | Creditcard | | |
| | `CREDITCARDISSUER` | Creditcardissuer | | |
| | `CVV` | Cvv | | |
| | `ETHEREUMADDRESS` | Ethereumaddress | | |
| | `IBAN` | Iban | | |
| | `IMEI` | Imei | | |
| | ... | *and 12 more* | | |
| </details> | |
| <details> | |
| <summary><strong>Personal Info</strong> (11 types)</summary> | |
| | Entity | Description | | |
| |:---|:---| | |
| | `AGE` | Age | | |
| | `DATEOFBIRTH` | Dateofbirth | | |
| | `EYECOLOR` | Eyecolor | | |
| | `FIRSTNAME` | Firstname | | |
| | `GENDER` | Gender | | |
| | `HEIGHT` | Height | | |
| | `LASTNAME` | Lastname | | |
| | `MIDDLENAME` | Middlename | | |
| | `OCCUPATION` | Occupation | | |
| | `PREFIX` | Prefix | | |
| | ... | *and 1 more* | | |
| </details> | |
| <details> | |
| <summary><strong>Contact Info</strong> (2 types)</summary> | |
| | Entity | Description | | |
| |:---|:---| | |
| | `EMAIL` | Email | | |
| | `PHONE` | Phone | | |
| </details> | |
| <details> | |
| <summary><strong>Location</strong> (9 types)</summary> | |
| | Entity | Description | | |
| |:---|:---| | |
| | `BUILDINGNUMBER` | Buildingnumber | | |
| | `CITY` | City | | |
| | `COUNTY` | County | | |
| | `GPSCOORDINATES` | Gpscoordinates | | |
| | `ORDINALDIRECTION` | Ordinaldirection | | |
| | `SECONDARYADDRESS` | Secondaryaddress | | |
| | `STATE` | State | | |
| | `STREET` | Street | | |
| | `ZIPCODE` | Zipcode | | |
| </details> | |
| <details> | |
| <summary><strong>Organization</strong> (3 types)</summary> | |
| | Entity | Description | | |
| |:---|:---| | |
| | `JOBDEPARTMENT` | Jobdepartment | | |
| | `JOBTITLE` | Jobtitle | | |
| | `ORGANIZATION` | Organization | | |
| </details> | |
| <details> | |
| <summary><strong>Financial</strong> (5 types)</summary> | |
| | Entity | Description | | |
| |:---|:---| | |
| | `AMOUNT` | Amount | | |
| | `CURRENCY` | Currency | | |
| | `CURRENCYCODE` | Currencycode | | |
| | `CURRENCYNAME` | Currencyname | | |
| | `CURRENCYSYMBOL` | Currencysymbol | | |
| </details> | |
| <details> | |
| <summary><strong>Temporal</strong> (2 types)</summary> | |
| | Entity | Description | | |
| |:---|:---| | |
| | `DATE` | Date | | |
| | `TIME` | Time | | |
| </details> | |
| ## Usage | |
| ### Quick Start | |
| ```python | |
| from transformers import pipeline | |
| # Load the PII detection pipeline | |
| ner = pipeline("ner", model="OpenMed/OpenMed-PII-German-ClinicalLongformer-149M-v1", aggregation_strategy="simple") | |
| text = """ | |
| Patient Hans Schmidt (geboren am 15.03.1985, SVN: 12 150385 M 234) wurde heute untersucht. | |
| Kontakt: hans.schmidt@email.de, Telefon: 0171 234 5678. | |
| Adresse: Mozartstraße 15, 80336 München. | |
| """ | |
| entities = ner(text) | |
| for entity in entities: | |
| print(f"{entity['entity_group']}: {entity['word']} (score: {entity['score']:.3f})") | |
| ``` | |
| ### De-identification Example | |
| ```python | |
| def redact_pii(text, entities, placeholder='[REDACTED]'): | |
| """Replace detected PII with placeholders.""" | |
| # Sort entities by start position (descending) to preserve offsets | |
| sorted_entities = sorted(entities, key=lambda x: x['start'], reverse=True) | |
| redacted = text | |
| for ent in sorted_entities: | |
| redacted = redacted[:ent['start']] + f"[{ent['entity_group']}]" + redacted[ent['end']:] | |
| return redacted | |
| # Apply de-identification | |
| redacted_text = redact_pii(text, entities) | |
| print(redacted_text) | |
| ``` | |
| ### Batch Processing | |
| ```python | |
| from transformers import AutoModelForTokenClassification, AutoTokenizer | |
| import torch | |
| model_name = "OpenMed/OpenMed-PII-German-ClinicalLongformer-149M-v1" | |
| model = AutoModelForTokenClassification.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| texts = [ | |
| "Patient Hans Schmidt (geboren am 15.03.1985, SVN: 12 150385 M 234) wurde heute untersucht.", | |
| "Kontakt: hans.schmidt@email.de, Telefon: 0171 234 5678.", | |
| ] | |
| inputs = tokenizer(texts, return_tensors='pt', padding=True, truncation=True) | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| predictions = torch.argmax(outputs.logits, dim=-1) | |
| ``` | |
| ## Training Details | |
| ### Dataset | |
| - **Source**: [AI4Privacy PII Masking 400k](https://huggingface.co/datasets/ai4privacy/pii-masking-400k) (German subset) | |
| - **Format**: BIO-tagged token classification | |
| - **Labels**: 109 total (54 entity types × 2 BIO tags + O) | |
| ### Training Configuration | |
| - **Max Sequence Length**: 512 tokens | |
| - **Epochs**: 3 | |
| - **Framework**: Hugging Face Transformers + Trainer API | |
| ## Intended Use & Limitations | |
| ### Intended Use | |
| - **De-identification**: Automated redaction of PII in German clinical notes, medical records, and documents | |
| - **Compliance**: Supporting GDPR, and other privacy regulation compliance | |
| - **Data Preprocessing**: Preparing datasets for research by removing sensitive information | |
| - **Audit Support**: Identifying PII in document collections | |
| ### Limitations | |
| **Important**: This model is intended as an **assistive tool**, not a replacement for human review. | |
| - **False Negatives**: Some PII may not be detected; always verify critical applications | |
| - **Context Sensitivity**: Performance may vary with domain-specific terminology | |
| - **Language**: Optimized for German text; may not perform well on other languages | |
| ## Citation | |
| ```bibtex | |
| @misc{openmed-pii-2026, | |
| title = {OpenMed-PII-German-ClinicalLongformer-149M-v1: German PII Detection Model}, | |
| author = {OpenMed Science}, | |
| year = {2026}, | |
| publisher = {Hugging Face}, | |
| url = {https://huggingface.co/OpenMed/OpenMed-PII-German-ClinicalLongformer-149M-v1} | |
| } | |
| ``` | |
| ## Links | |
| - **Organization**: [OpenMed](https://huggingface.co/OpenMed) | |