Robust Preference Optimization via Dynamic Target Margins
Paper
•
2506.03690
•
Published
•
2
We fine-tuned google/gemma-2-9b-it on princeton-nlp/gemma2-ultrafeedback-armorm with the gamma-SimPO objective.
Developed by: Jie Sun, Junkang Wu, Jiancan Wu, Zhibo Zhu, Xingyu Lu, Jun Zhou, Lintao Ma, Xiang Wang
Model type: Causal Language Model
License: gemma
Finetuned from model: google/gemma-2-9b-it
Repository: https://github.com/sunjie279/gammaPO
import torch
from transformers import pipeline
model_id = "Sunshine279/gammaPO-gemma-2-9b-it"
generator = pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device="cuda",
)
outputs = generator([{"role": "user", "content": "What's the difference between llamas and alpacas?"}],
do_sample=False,
eos_token_id=[generator.tokenizer.convert_tokens_to_ids("<end_of_turn>"), generator.tokenizer.eos_token_id],
max_new_tokens=200)
print(outputs[0]['generated_text'])
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2.5863 | 0.8594 | 400 | 2.5622 | -18.1350 | -23.0307 | 0.7828 | 4.8958 | -2.3031 | -1.8135 | -15.8316 | -15.8114 |