Trillim

company

AI & ML interests

Running AI on consumer hardware

Recent Activity

DarkSca  updated a model 4 days ago
Trillim/Llama3-TRNQ
DarkSca  updated a model 4 days ago
Trillim/BitNet-3B-TRNQ
DarkSca  updated a model 4 days ago
Trillim/BitNet-Large-TRNQ
View all activity

Trillim

We're building local AI that runs on the hardware you already have.

Trillim builds infrastructure for running models on consumer CPUs and edge devices — no GPU required. We train and fine-tune ternary ({-1, 0, 1}) models designed to run efficiently on commodity hardware, and build the tooling to deploy them.

What we believe

GPUs are powerful but expensive, power-hungry, and scarce. Ternary quantization changes the equation: models with {-1, 0, 1} weights don't need floating-point multipliers at all. The right software can make CPUs fast enough for real-time inference. AI should run anywhere — laptops, Raspberry Pis, edge devices — not just in datacenters.

What we're building

  • DarkNet — our proprietary high-performance CPU inference engine purpose-built for ternary models, with hand-tuned SIMD kernels for x86 (AVX2) and ARM (NEON) - more supported architectures coming soon
  • Tooling — an OpenAI-compatible API server, CLI chat interface, LoRA adapter hot-swap, and an integrated voice pipeline (STT + TTS)
  • Models — ternary models fine-tuned and pre-quantized for efficient CPU inference, hosted here on HuggingFace. Look for the -TRNQ suffix.

Supported model architectures

BitNet, Llama, Qwen2, Mistral

Links

datasets 0

None public yet