🧠 Model1-v1-Rival β€” Deepfake Image Classifier

This model is a fine-tuned Vision Transformer (ViT) for detecting whether a face image is REAL or FAKE (Deepfake).

It was trained using a mixed deepfake dataset with augmentations to ensure robustness across manipulation methods and compression artifacts.


πŸ“Œ Model Details

Field Value
Base Model google/vit-base-patch16-224-in21k
Task Image Classification (Binary)
Labels {0: Fake, 1: Real}
File Format safetensors
Optimizer AdamW
Epochs 2
Learning Rate 1e-6
Batch Size 32

🏷️ Labels

The model predicts:

Label Meaning
fake manipulated / deepfake image
real authentic human face

πŸš€ Usage

πŸ”§ With transformers

from transformers import AutoModelForImageClassification, AutoImageProcessor
from PIL import Image
import torch

model_name = "alrivalda/Model1-v1-Rival"

processor = AutoImageProcessor.from_pretrained(model_name)
model = AutoModelForImageClassification.from_pretrained(model_name)

img = Image.open("your_image.jpg")

inputs = processor(img, return_tensors="pt")
outputs = model(**inputs).logits
probabilities = torch.softmax(outputs, dim=1)

pred_id = torch.argmax(probabilities).item()
label = model.config.id2label[pred_id]

print("Prediction:", label)
print("Confidence:", float(probabilities[0][pred_id]))
Downloads last month
40
Safetensors
Model size
92.9M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support