| # Model Card for CodeFuse-CodeLlama-34B | |
| <p align="left"> | |
| <img src="./LOGO.png" width="100%" /> | |
| </p> | |
| [[中文]](#chinese) [[English]](#english) | |
| <a id="english"></a> | |
| ## Model Description | |
| CodeFuse-CodeLlama-34B is a 34B Code-LLM finetuned by QLoRA of multiple code tasks(600k instrunctions/answers) on the base model CodeLlama-34b-Python. | |
| The context length of finetuning is 4K while it is able to be finetuned by 16k context if necessary. | |
| <br> | |
| ## News and Updates | |
| 🔥🔥🔥 CodeFuse-CodeLlama34B-MFT has achived 74.4% of pass@1 on HumanEval, which is SOTA at present. | |
| <br> | |
| ## Performance | |
| | Model | HumanEval(pass@1) | | |
| | :---------------------------- | :---------------: | | |
| | CodeLlama-34b | 48.8%(greedy decoding) | | |
| | CodeLlama-34b-Python | 53.7%(greedy decoding) | | |
| | **CodeFuse-CodeLlama-34B** | **74.4%**(greedy decoding) | | |
| <br> | |
| ## Requirements | |
| * python>=3.8 | |
| * pytorch>=2.0.0 | |
| * transformers==4.32.0 | |
| * Sentencepiece | |
| * CUDA 11.4 | |
| <br> | |
| ## Inference String Format | |
| The inference string is a concatenated string formed by combining conversation data(system, human and bot contents) in the training data format. It is used as input during the inference process. | |
| Here is an example format of the concatenated string: | |
| ```python | |
| """ | |
| <|role_start|>system<|role_end|>System instruction | |
| <|role_start|>human<|role_end|>Human 1st round input | |
| <|role_start|>bot<|role_end|>Bot 1st round output</s> | |
| <|role_start|>human<|role_end|>Human 2nd round input | |
| <|role_start|>bot<|role_end|>Bot 2nd round output</s> | |
| ... | |
| ... | |
| ... | |
| <|role_start|>human<|role_end|>Human nth round input | |
| <|role_start|>bot<|role_end|>{Bot output to be genreated}</s> | |
| """ | |
| ``` | |
| When applying inference, you always make your input string end with "<|role_start|>bot<|role_end|>" to ask the model generating answers. | |
| ## Quickstart | |
| ```bash | |
| pip install -r requirements.txt | |
| ``` | |
| ```python | |
| from transformers import ( | |
| AutoTokenizer, | |
| AutoModelForCausalLM, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, trust_remote_code=True, use_fast=False, legacy=False) | |
| tokenizer.padding_side = "left" | |
| tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("<unk>") | |
| tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("</s>") | |
| model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, trust_remote_code=True) | |
| HUMAN_ROLE_START_TAG = "<|role_start|>human<|role_end|>" | |
| BOT_ROLE_START_TAG = "<|role_start|>bot<|role_end|>" | |
| text = f"{HUMAN_ROLE_START_TAG}write a python function of quick sort.{BOT_ROLE_START_TAG}" | |
| inputs = tokenizer(text, return_tensors='pt', padding=True, add_special_tokens=False).to("cuda") | |
| outputs = model.generate( | |
| inputs=inputs["input_ids"], | |
| attention_mask=inputs["attention_mask"], | |
| max_new_tokens=512, | |
| top_p=0.95, | |
| temperature=0.1, | |
| do_sample=True, | |
| eos_token_id=tokenizer.eos_token_id, | |
| pad_token_id=tokenizer.pad_token_id | |
| ) | |
| gen_text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True) | |
| print(gen_text) | |
| ``` | |
| <a id="chinese"></a> | |
| ## 模型简介 | |
| CodeFuse-CodeLlama34B-MFT 是一个通过QLoRA对基座模型CodeLlama-34b-Python进行多代码任务微调的代码大模型。模型微调采用了4k上下文。如果有必要,可以扩展到16k。 | |
| <br> | |
| ## 新闻 | |
| 🔥🔥🔥 CodeFuse-CodeLlama34B-MFT模型在HumanEval pass@1上可以达到74.4%, 为当前开源SOTA。 | |
| <br> | |
| ## 评测表现(代码) | |
| | 模型 | HumanEval(pass@1) | | |
| | :---------------------------- | :---------------: | | |
| | CodeLlama-34b | 48.8%(greedy decoding) | | |
| | CodeLlama-34b-Python | 53.7%(greedy decoding) | | |
| | **CodeFuse-CodeLlama-34B** | **74.4%**(greedy decoding) | | |
| <br> | |
| ## Requirements | |
| * python>=3.8 | |
| * pytorch>=2.0.0 | |
| * transformers==4.32.0 | |
| * CUDA 11.4 | |
| <br> | |
| ## 推理数据格式 | |
| 推理数据为模型在训练数据格式下拼接的字符串形式,它也是推理时输入prompt拼接的方式: | |
| ```python | |
| """ | |
| <|role_start|>system<|role_end|>这是System指令 | |
| <|role_start|>human<|role_end|>这是第1轮用户输入的问题 | |
| <|role_start|>bot<|role_end|>这是第1轮模型生成的内容</s> | |
| <|role_start|>human<|role_end|>这是第2轮用户输入的问题 | |
| <|role_start|>bot<|role_end|>这是第2轮模型生成的内容</s> | |
| ... | |
| ... | |
| ... | |
| <|role_start|>human<|role_end|>这是第n轮用户输入的问题 | |
| <|role_start|>bot<|role_end|>{模型现在要生成的内容}</s> | |
| """ | |
| ``` | |
| 推理时,请确保拼接的prompt字符串以"<|role_start|>bot<|role_end|>"结尾,引导模型生成回答。 | |
| ## 快速使用 | |
| ```python | |
| from transformers import ( | |
| AutoTokenizer, | |
| AutoModelForCausalLM, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, trust_remote_code=True, use_fast=False, legacy=False) | |
| tokenizer.padding_side = "left" | |
| tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("<unk>") | |
| tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids("</s>") | |
| model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, trust_remote_code=True) | |
| HUMAN_ROLE_START_TAG = "<|role_start|>human<|role_end|>" | |
| BOT_ROLE_START_TAG = "<|role_start|>bot<|role_end|>" | |
| text = f"{HUMAN_ROLE_START_TAG}write a python function of quick sort.{BOT_ROLE_START_TAG}" | |
| inputs = tokenizer(text, return_tensors='pt', padding=True, add_special_tokens=False).to("cuda") | |
| outputs = model.generate( | |
| inputs=inputs["input_ids"], | |
| attention_mask=inputs["attention_mask"], | |
| max_new_tokens=512, | |
| top_p=0.95, | |
| temperature=0.1, | |
| do_sample=True, | |
| eos_token_id=tokenizer.eos_token_id, | |
| pad_token_id=tokenizer.pad_token_id | |
| ) | |
| gen_text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True) | |
| print(gen_text) | |
| ``` | |