Datasets:
Create scorer.py
Browse files
scorer.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import json
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from typing import Dict, List, Optional
|
| 6 |
+
|
| 7 |
+
import pandas as pd
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
REQUIRED_COLS = [
|
| 11 |
+
"row_id",
|
| 12 |
+
"series_id",
|
| 13 |
+
"timepoint_h",
|
| 14 |
+
"host_model",
|
| 15 |
+
"abx_drug",
|
| 16 |
+
"abx_dose_mg",
|
| 17 |
+
"abx_conc_ng_mL",
|
| 18 |
+
"expected_abx_conc_ng_mL",
|
| 19 |
+
"abx_conc_deviation",
|
| 20 |
+
"concomitant_drug",
|
| 21 |
+
"concomitant_exposure_index",
|
| 22 |
+
"expected_interaction_shift",
|
| 23 |
+
"interaction_shift_deviation",
|
| 24 |
+
"ddi_coherence_index",
|
| 25 |
+
"host_stress_index",
|
| 26 |
+
"later_adverse_ddi_flag",
|
| 27 |
+
"assay_method",
|
| 28 |
+
"source_type",
|
| 29 |
+
"ddi_emergence_signal",
|
| 30 |
+
"earliest_ddi_emergence",
|
| 31 |
+
]
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
@dataclass
|
| 35 |
+
class Thresholds:
|
| 36 |
+
min_points: int = 3
|
| 37 |
+
|
| 38 |
+
stress_min: float = 0.80
|
| 39 |
+
concom_min: float = 0.80
|
| 40 |
+
|
| 41 |
+
coherence_max: float = 0.40
|
| 42 |
+
shift_dev_min: float = 40.0
|
| 43 |
+
require_two_consecutive: bool = True
|
| 44 |
+
|
| 45 |
+
spike_shift_dev_min: float = 80.0
|
| 46 |
+
snapback_shift_dev_max: float = 3.0
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def _validate(df: pd.DataFrame) -> List[str]:
|
| 50 |
+
errs: List[str] = []
|
| 51 |
+
missing = [c for c in REQUIRED_COLS if c not in df.columns]
|
| 52 |
+
if missing:
|
| 53 |
+
errs.append(f"missing_columns: {missing}")
|
| 54 |
+
|
| 55 |
+
for c in ["concomitant_exposure_index", "ddi_coherence_index", "host_stress_index"]:
|
| 56 |
+
if c in df.columns:
|
| 57 |
+
bad = ((df[c] < 0) | (df[c] > 1)).sum()
|
| 58 |
+
if bad:
|
| 59 |
+
errs.append(f"{c}_out_of_range count={int(bad)}")
|
| 60 |
+
|
| 61 |
+
for c in ["abx_dose_mg", "abx_conc_ng_mL", "expected_abx_conc_ng_mL"]:
|
| 62 |
+
if c in df.columns:
|
| 63 |
+
bad = (df[c] <= 0).sum()
|
| 64 |
+
if bad:
|
| 65 |
+
errs.append(f"non_positive_values_in: {c} count={int(bad)}")
|
| 66 |
+
|
| 67 |
+
for c in ["later_adverse_ddi_flag", "ddi_emergence_signal", "earliest_ddi_emergence"]:
|
| 68 |
+
if c in df.columns:
|
| 69 |
+
bad = (~df[c].isin([0, 1])).sum()
|
| 70 |
+
if bad:
|
| 71 |
+
errs.append(f"non_binary_values_in: {c} count={int(bad)}")
|
| 72 |
+
|
| 73 |
+
counts = df.groupby("series_id")["earliest_ddi_emergence"].sum()
|
| 74 |
+
bad_series = counts[counts > 1].index.tolist()
|
| 75 |
+
if bad_series:
|
| 76 |
+
errs.append(f"multiple_earliest_ddi_emergence_in_series: {bad_series}")
|
| 77 |
+
|
| 78 |
+
return errs
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def _flag_spike_snap(g: pd.DataFrame, t: Thresholds) -> pd.Series:
|
| 82 |
+
flag = pd.Series([0] * len(g), index=g.index)
|
| 83 |
+
if len(g) < 3:
|
| 84 |
+
return flag
|
| 85 |
+
|
| 86 |
+
g = g.sort_values("timepoint_h").copy()
|
| 87 |
+
for i in range(1, len(g) - 1):
|
| 88 |
+
idx = g.index[i]
|
| 89 |
+
next_idx = g.index[i + 1]
|
| 90 |
+
v = float(g.loc[idx, "interaction_shift_deviation"])
|
| 91 |
+
next_v = float(g.loc[next_idx, "interaction_shift_deviation"])
|
| 92 |
+
if v >= t.spike_shift_dev_min and abs(next_v) <= t.snapback_shift_dev_max:
|
| 93 |
+
flag.loc[idx] = 1
|
| 94 |
+
return flag
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def _f1(tp: int, fp: int, fn: int) -> float:
|
| 98 |
+
denom = 2 * tp + fp + fn
|
| 99 |
+
return 0.0 if denom == 0 else (2 * tp) / denom
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def score(path: str) -> Dict[str, object]:
|
| 103 |
+
df = pd.read_csv(path)
|
| 104 |
+
errors = _validate(df)
|
| 105 |
+
if errors:
|
| 106 |
+
return {"ok": False, "errors": errors}
|
| 107 |
+
|
| 108 |
+
t = Thresholds()
|
| 109 |
+
|
| 110 |
+
df = df.sort_values(["series_id", "timepoint_h"]).reset_index(drop=True)
|
| 111 |
+
df["pred_earliest_ddi_emergence"] = 0
|
| 112 |
+
df["pred_ddi_emergence_signal"] = 0
|
| 113 |
+
df["flag_shift_spike"] = 0
|
| 114 |
+
|
| 115 |
+
series_rows: List[Dict[str, object]] = []
|
| 116 |
+
|
| 117 |
+
for sid, g in df.groupby("series_id"):
|
| 118 |
+
g = g.sort_values("timepoint_h").copy()
|
| 119 |
+
df.loc[g.index, "flag_shift_spike"] = _flag_spike_snap(g, t).astype(int)
|
| 120 |
+
|
| 121 |
+
if len(g) < t.min_points:
|
| 122 |
+
series_rows.append(
|
| 123 |
+
{
|
| 124 |
+
"series_id": sid,
|
| 125 |
+
"y_ddi": int(g["ddi_emergence_signal"].max()),
|
| 126 |
+
"p_ddi": 0,
|
| 127 |
+
"true_transition_row_id": (str(g[g["earliest_ddi_emergence"] == 1].iloc[0]["row_id"]) if (g["earliest_ddi_emergence"] == 1).any() else None),
|
| 128 |
+
"pred_transition_row_id": None,
|
| 129 |
+
"flags": ["too_few_points"],
|
| 130 |
+
}
|
| 131 |
+
)
|
| 132 |
+
continue
|
| 133 |
+
|
| 134 |
+
has_concom = bool((g["concomitant_exposure_index"] > 0).any()) and bool((g["concomitant_drug"].astype(str).str.lower() != "none").any())
|
| 135 |
+
if not has_concom:
|
| 136 |
+
series_rows.append(
|
| 137 |
+
{
|
| 138 |
+
"series_id": sid,
|
| 139 |
+
"y_ddi": int(g["ddi_emergence_signal"].max()),
|
| 140 |
+
"p_ddi": 0,
|
| 141 |
+
"true_transition_row_id": (str(g[g["earliest_ddi_emergence"] == 1].iloc[0]["row_id"]) if (g["earliest_ddi_emergence"] == 1).any() else None),
|
| 142 |
+
"pred_transition_row_id": None,
|
| 143 |
+
"flags": ["no_concomitant"],
|
| 144 |
+
}
|
| 145 |
+
)
|
| 146 |
+
continue
|
| 147 |
+
|
| 148 |
+
hit: Optional[int] = None
|
| 149 |
+
for i in range(1, len(g)):
|
| 150 |
+
idx = g.index[i]
|
| 151 |
+
if int(df.loc[idx, "flag_shift_spike"]) == 1:
|
| 152 |
+
continue
|
| 153 |
+
|
| 154 |
+
if float(df.loc[idx, "host_stress_index"]) < t.stress_min:
|
| 155 |
+
continue
|
| 156 |
+
if float(df.loc[idx, "concomitant_exposure_index"]) < t.concom_min:
|
| 157 |
+
continue
|
| 158 |
+
|
| 159 |
+
coh = float(df.loc[idx, "ddi_coherence_index"])
|
| 160 |
+
sdev = float(df.loc[idx, "interaction_shift_deviation"])
|
| 161 |
+
|
| 162 |
+
if coh > t.coherence_max:
|
| 163 |
+
continue
|
| 164 |
+
if abs(sdev) < t.shift_dev_min:
|
| 165 |
+
continue
|
| 166 |
+
|
| 167 |
+
if t.require_two_consecutive:
|
| 168 |
+
if i + 1 >= len(g):
|
| 169 |
+
continue
|
| 170 |
+
idx2 = g.index[i + 1]
|
| 171 |
+
if int(df.loc[idx2, "flag_shift_spike"]) == 1:
|
| 172 |
+
continue
|
| 173 |
+
if float(df.loc[idx2, "host_stress_index"]) < t.stress_min:
|
| 174 |
+
continue
|
| 175 |
+
if float(df.loc[idx2, "concomitant_exposure_index"]) < t.concom_min:
|
| 176 |
+
continue
|
| 177 |
+
coh2 = float(df.loc[idx2, "ddi_coherence_index"])
|
| 178 |
+
sdev2 = float(df.loc[idx2, "interaction_shift_deviation"])
|
| 179 |
+
if coh2 > t.coherence_max or abs(sdev2) < t.shift_dev_min:
|
| 180 |
+
continue
|
| 181 |
+
|
| 182 |
+
hit = idx
|
| 183 |
+
break
|
| 184 |
+
|
| 185 |
+
confirm = False
|
| 186 |
+
if hit is not None:
|
| 187 |
+
later = g[g.index > hit]
|
| 188 |
+
confirm = bool((later["later_adverse_ddi_flag"] == 1).any())
|
| 189 |
+
|
| 190 |
+
if hit is not None and confirm:
|
| 191 |
+
df.loc[hit, "pred_earliest_ddi_emergence"] = 1
|
| 192 |
+
df.loc[g[g.index >= hit].index, "pred_ddi_emergence_signal"] = 1
|
| 193 |
+
|
| 194 |
+
y = int(g["ddi_emergence_signal"].max())
|
| 195 |
+
p = int(df.loc[g.index, "pred_ddi_emergence_signal"].max())
|
| 196 |
+
|
| 197 |
+
true_tr = g[g["earliest_ddi_emergence"] == 1]
|
| 198 |
+
true_id: Optional[str] = None
|
| 199 |
+
if len(true_tr) == 1:
|
| 200 |
+
true_id = str(true_tr.iloc[0]["row_id"])
|
| 201 |
+
|
| 202 |
+
pred_tr_rows = df.loc[g.index][df.loc[g.index, "pred_earliest_ddi_emergence"] == 1]
|
| 203 |
+
pred_id = str(pred_tr_rows.iloc[0]["row_id"]) if len(pred_tr_rows) == 1 else None
|
| 204 |
+
|
| 205 |
+
series_rows.append(
|
| 206 |
+
{
|
| 207 |
+
"series_id": sid,
|
| 208 |
+
"y_ddi": y,
|
| 209 |
+
"p_ddi": p,
|
| 210 |
+
"true_transition_row_id": true_id,
|
| 211 |
+
"pred_transition_row_id": pred_id,
|
| 212 |
+
"shift_spike_flags": int(df.loc[g.index, "flag_shift_spike"].sum()),
|
| 213 |
+
}
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
sr = pd.DataFrame(series_rows)
|
| 217 |
+
|
| 218 |
+
tp = int(((sr["y_ddi"] == 1) & (sr["p_ddi"] == 1)).sum())
|
| 219 |
+
fp = int(((sr["y_ddi"] == 0) & (sr["p_ddi"] == 1)).sum())
|
| 220 |
+
fn = int(((sr["y_ddi"] == 1) & (sr["p_ddi"] == 0)).sum())
|
| 221 |
+
tn = int(((sr["y_ddi"] == 0) & (sr["p_ddi"] == 0)).sum())
|
| 222 |
+
|
| 223 |
+
transition_hit = int(
|
| 224 |
+
(sr["true_transition_row_id"].notna() & (sr["true_transition_row_id"] == sr["pred_transition_row_id"])).sum()
|
| 225 |
+
)
|
| 226 |
+
transition_miss = int(
|
| 227 |
+
(sr["true_transition_row_id"].notna() & (sr["true_transition_row_id"] != sr["pred_transition_row_id"])).sum()
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
return {
|
| 231 |
+
"ok": True,
|
| 232 |
+
"path": path,
|
| 233 |
+
"counts": {"tp": tp, "fp": fp, "fn": fn, "tn": tn},
|
| 234 |
+
"metrics": {
|
| 235 |
+
"f1_series": _f1(tp, fp, fn),
|
| 236 |
+
"transition_hit": transition_hit,
|
| 237 |
+
"transition_miss": transition_miss,
|
| 238 |
+
"n_series": int(len(sr)),
|
| 239 |
+
},
|
| 240 |
+
"series_table": series_rows,
|
| 241 |
+
}
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
if __name__ == "__main__":
|
| 245 |
+
import argparse
|
| 246 |
+
|
| 247 |
+
ap = argparse.ArgumentParser()
|
| 248 |
+
ap.add_argument("--path", required=True)
|
| 249 |
+
args = ap.parse_args()
|
| 250 |
+
|
| 251 |
+
result = score(args.path)
|
| 252 |
+
print(json.dumps(result, indent=2))
|