Dataset Viewer
Auto-converted to Parquet Duplicate
row_id
string
series_id
string
timepoint_h
int64
organism
string
strain_id
string
antibiotic_name
string
antibiotic_class
string
exposure_index
float64
mic_mg_L
float64
pae_hours
float64
media
string
assay_method
string
source_type
string
pae_loss_signal
int64
earliest_pae_loss
int64
notes
string
ABXPD003-TR-0001
S1
0
Escherichia coli
EC-ATCC25922
meropenem
carbapenem
1
0.03
3.5
CAMHB
pae_regrowth_delay
simulated
0
0
baseline PAE
ABXPD003-TR-0002
S1
24
Escherichia coli
EC-ATCC25922
meropenem
carbapenem
1.1
0.03
3.4
CAMHB
pae_regrowth_delay
simulated
0
0
stable
ABXPD003-TR-0003
S1
48
Escherichia coli
EC-ATCC25922
meropenem
carbapenem
1.05
0.03
3.3
CAMHB
pae_regrowth_delay
simulated
0
0
stable
ABXPD003-TR-0004
S2
0
Klebsiella pneumoniae
KP-CLIN021
ceftriaxone
3rd_gen_cephalosporin
1
0.5
2.8
CAMHB
pae_regrowth_delay
simulated
0
0
baseline PAE
ABXPD003-TR-0005
S2
24
Klebsiella pneumoniae
KP-CLIN021
ceftriaxone
3rd_gen_cephalosporin
1
0.5
2.6
CAMHB
pae_regrowth_delay
simulated
0
0
small drop
ABXPD003-TR-0006
S2
48
Klebsiella pneumoniae
KP-CLIN021
ceftriaxone
3rd_gen_cephalosporin
1.05
0.5
1.3
CAMHB
pae_regrowth_delay
simulated
1
1
PAE halves before MIC changes
ABXPD003-TR-0007
S2
72
Klebsiella pneumoniae
KP-CLIN021
ceftriaxone
3rd_gen_cephalosporin
1.1
0.5
1.1
CAMHB
pae_regrowth_delay
simulated
1
0
continued low PAE
ABXPD003-TR-0008
S3
0
Staphylococcus aureus
SA-ATCC29213
vancomycin
glycopeptide
1
1
2.2
CAMHB
pae_regrowth_delay
simulated
0
0
baseline
ABXPD003-TR-0009
S3
24
Staphylococcus aureus
SA-ATCC29213
vancomycin
glycopeptide
1
1
0.2
CAMHB
pae_regrowth_delay
simulated
0
0
likely measurement issue
ABXPD003-TR-0010
S3
48
Staphylococcus aureus
SA-ATCC29213
vancomycin
glycopeptide
1
1
2.1
CAMHB
pae_regrowth_delay
simulated
0
0
snap back supports error

ABX-PD-003: Post-Antibiotic Effect Loss

This dataset tests early resistance signals that appear before MIC changes.

The signal is loss of the post-antibiotic effect.

PAE is the duration of growth suppression after drug removal.

Files

  • data/train.csv
  • data/test.csv
  • scorer.py

Schema

Each row is one timepoint in a longitudinal series.

Required columns

  • row_id
  • series_id
  • timepoint_h
  • organism
  • strain_id
  • antibiotic_name
  • antibiotic_class
  • exposure_index
  • mic_mg_L
  • pae_hours
  • media
  • assay_method
  • source_type
  • pae_loss_signal
  • earliest_pae_loss

Labels

  • pae_loss_signal

    • 1 for rows at or after meaningful PAE loss
  • earliest_pae_loss

    • 1 only for the first detected row in that series

Evaluation

Run

  • python scorer.py --path data/test.csv

The scorer reports

  • series level F1 for pae_loss_signal
  • earliest loss hits and misses
  • measurement spike flags

Notes

The scorer avoids a common mistake.

It does not call resistance when exposure collapses.

It also flags spike and snap PAE values as likely measurement artifacts.

Downloads last month
24