Dataset Viewer
Auto-converted to Parquet Duplicate
row_id
string
series_id
string
timepoint_h
int64
organism
string
strain_id
string
antibiotic_name
string
antibiotic_class
string
drug_conc_mg_L
float64
cfu_log10
float64
media
string
assay_method
string
source_type
string
shape_distortion_signal
int64
earliest_distortion
int64
notes
string
ABXPD005-TR-0001
S1
0
Escherichia coli
EC-ATCC25922
meropenem
carbapenem
2
7.2
CAMHB
time_kill
simulated
0
0
baseline
ABXPD005-TR-0002
S1
2
Escherichia coli
EC-ATCC25922
meropenem
carbapenem
2
6.3
CAMHB
time_kill
simulated
0
0
log linear kill
ABXPD005-TR-0003
S1
4
Escherichia coli
EC-ATCC25922
meropenem
carbapenem
2
5.4
CAMHB
time_kill
simulated
0
0
log linear kill
ABXPD005-TR-0004
S1
6
Escherichia coli
EC-ATCC25922
meropenem
carbapenem
2
4.5
CAMHB
time_kill
simulated
0
0
log linear kill
ABXPD005-TR-0005
S1
24
Escherichia coli
EC-ATCC25922
meropenem
carbapenem
2
2.7
CAMHB
time_kill
simulated
0
0
log linear kill
ABXPD005-TR-0006
S2
0
Klebsiella pneumoniae
KP-CLIN061
ceftriaxone
3rd_gen_cephalosporin
16
7.1
CAMHB
time_kill
simulated
0
0
baseline
ABXPD005-TR-0007
S2
2
Klebsiella pneumoniae
KP-CLIN061
ceftriaxone
3rd_gen_cephalosporin
16
5.8
CAMHB
time_kill
simulated
0
0
fast early kill
ABXPD005-TR-0008
S2
4
Klebsiella pneumoniae
KP-CLIN061
ceftriaxone
3rd_gen_cephalosporin
16
5.75
CAMHB
time_kill
simulated
1
1
plateau begins
ABXPD005-TR-0009
S2
6
Klebsiella pneumoniae
KP-CLIN061
ceftriaxone
3rd_gen_cephalosporin
16
5.7
CAMHB
time_kill
simulated
1
0
plateau persists
ABXPD005-TR-0010
S2
24
Klebsiella pneumoniae
KP-CLIN061
ceftriaxone
3rd_gen_cephalosporin
16
6.2
CAMHB
time_kill
simulated
1
0
regrowth late

ABX-PD-005: Time-Kill Curve Shape Distortion

This dataset tests whether you can detect loss of log linear kill coherence.

The curve stops behaving like a clean log linear decline.

It becomes plateaued or multiphasic.

Time grid

v1 uses

  • 0, 2, 4, 6, 24 hours

Files

  • data/train.csv
  • data/test.csv
  • scorer.py

Schema

Each row is one timepoint in a time kill series.

Required columns

  • row_id
  • series_id
  • timepoint_h
  • organism
  • strain_id
  • antibiotic_name
  • antibiotic_class
  • drug_conc_mg_L
  • cfu_log10
  • media
  • assay_method
  • source_type
  • shape_distortion_signal
  • earliest_distortion

Labels

  • shape_distortion_signal

    • 1 for rows at or after distortion
  • earliest_distortion

    • 1 only for the first detected row in that series

Evaluation

Run

  • python scorer.py --path data/test.csv

The scorer detects distortion using

  • plateau segments
  • multiphasic sign changes in slopes
  • poor linear fit

The scorer avoids a common mistake.

It does not call distortion when drug concentration changes too much.

Downloads last month
21