Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 1 new columns ({'__index_level_0__'})

This happened while the csv dataset builder was generating data using

hf://datasets/ClarusC64/ffr-subgroup-failure-surface-routing-v0.1/data/test.csv (at revision 9b4517132fb531a9e4b96f29cbd5a66f461427ef), [/tmp/hf-datasets-cache/medium/datasets/58105004692090-config-parquet-and-info-ClarusC64-ffr-subgroup-fa-7db82c19/hub/datasets--ClarusC64--ffr-subgroup-failure-surface-routing-v0.1/snapshots/9b4517132fb531a9e4b96f29cbd5a66f461427ef/data/test.csv (origin=hf://datasets/ClarusC64/ffr-subgroup-failure-surface-routing-v0.1@9b4517132fb531a9e4b96f29cbd5a66f461427ef/data/test.csv)]

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1887, in _prepare_split_single
                  writer.write_table(table)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 675, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              id: string
              case_context: double
              vessel_tortuosity: double
              calcification_burden: int64
              lesion_length_mm: double
              segmentation_confidence: double
              image_artifact_score: double
              ai_ffr_prediction: double
              ai_ffr_run_variance: double
              model_disagreement: double
              invasive_ffr_ground_truth: double
              abs_error: int64
              discordance_flag: string
              discordance_type: string
              subgroup_risk_label: double
              reliability_drop_score: double
              failure_subgroup: double
              predicted_error_range: double
              intervention_route: double
              fallback_protocol: double
              route_priority: double
              confidence_score: double
              notes: string
              constraints: string
              gold_checklist: string
              __index_level_0__: string
              -- schema metadata --
              pandas: '{"index_columns": ["__index_level_0__"], "column_indexes": [{"na' + 3649
              to
              {'id': Value('string'), 'case_context': Value('string'), 'vessel_tortuosity': Value('float64'), 'calcification_burden': Value('float64'), 'lesion_length_mm': Value('int64'), 'segmentation_confidence': Value('float64'), 'image_artifact_score': Value('float64'), 'ai_ffr_prediction': Value('float64'), 'ai_ffr_run_variance': Value('float64'), 'model_disagreement': Value('float64'), 'invasive_ffr_ground_truth': Value('float64'), 'abs_error': Value('float64'), 'discordance_flag': Value('int64'), 'discordance_type': Value('string'), 'subgroup_risk_label': Value('string'), 'reliability_drop_score': Value('float64'), 'failure_subgroup': Value('string'), 'predicted_error_range': Value('string'), 'intervention_route': Value('string'), 'fallback_protocol': Value('string'), 'route_priority': Value('string'), 'confidence_score': Value('float64'), 'notes': Value('string'), 'constraints': Value('string'), 'gold_checklist': Value('string')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1347, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 980, in convert_to_parquet
                  builder.download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 884, in download_and_prepare
                  self._download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 947, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1736, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1889, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1 new columns ({'__index_level_0__'})
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/ClarusC64/ffr-subgroup-failure-surface-routing-v0.1/data/test.csv (at revision 9b4517132fb531a9e4b96f29cbd5a66f461427ef), [/tmp/hf-datasets-cache/medium/datasets/58105004692090-config-parquet-and-info-ClarusC64-ffr-subgroup-fa-7db82c19/hub/datasets--ClarusC64--ffr-subgroup-failure-surface-routing-v0.1/snapshots/9b4517132fb531a9e4b96f29cbd5a66f461427ef/data/test.csv (origin=hf://datasets/ClarusC64/ffr-subgroup-failure-surface-routing-v0.1@9b4517132fb531a9e4b96f29cbd5a66f461427ef/data/test.csv)]
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

id
string
case_context
string
vessel_tortuosity
float64
calcification_burden
float64
lesion_length_mm
int64
segmentation_confidence
float64
image_artifact_score
float64
ai_ffr_prediction
float64
ai_ffr_run_variance
float64
model_disagreement
float64
invasive_ffr_ground_truth
float64
abs_error
float64
discordance_flag
int64
discordance_type
string
subgroup_risk_label
string
reliability_drop_score
float64
failure_subgroup
string
predicted_error_range
string
intervention_route
string
fallback_protocol
string
route_priority
string
confidence_score
float64
notes
string
constraints
string
gold_checklist
string
SFR-001
clean vessel
0.2
0.1
12
0.95
0.06
0.84
0.01
0.02
0.83
0.01
0
none
none
0.08
none
±0.03
continue
none
none
0.9
safe
<=320 words
subgroup+range+route+fallback+confidence
SFR-002
heavily calcified silent drift
0.4
0.8
26
0.78
0.14
0.76
0.03
0.06
0.67
0.09
1
calcification-driven overestimate
heavily-calcified
0.62
calcification failure surface
±0.10
defer-ai-ffr
invasive FFR recommended
high
0.84
route to invasive
<=320 words
subgroup+range+route+fallback+confidence
SFR-003
high tortuosity instability
0.72
0.25
22
0.72
0.12
0.74
0.05
0.1
0.66
0.08
1
tortuosity-driven instability
high-tortuosity
0.58
tortuosity failure surface
±0.08
segmentation-repair-then-rerun
manual edit + rerun; if discordant invasive
medium
0.82
repair path
<=320 words
subgroup+range+route+fallback+confidence
SFR-004
artifact-amplified discordance
0.55
0.65
28
0.68
0.26
0.75
0.06
0.14
0.63
0.12
1
artifact-amplified discordance
calcified+artifact
0.74
artifact-driven failure surface
±0.12
rescan-protocol
repeat scan with motion control
critical
0.8
block unreliable scan
<=320 words
subgroup+range+route+fallback+confidence
SFR-005
long lesion low confidence
0.5
0.4
40
0.62
0.18
0.73
0.06
0.12
0.64
0.09
1
low-confidence under-call risk
long-lesion+low-conf
0.66
low-confidence failure surface
±0.09
second-model-arbitration
run secondary model; manual review if split
high
0.81
arbitration route
<=320 words
subgroup+range+route+fallback+confidence
SFR-006
moderate calcification stable
0.38
0.45
20
0.86
0.1
0.78
0.02
0.05
0.75
0.03
0
calcification-tolerant
moderate-calcified
0.22
tolerant subgroup
±0.05
tighten-qa-thresholds
raise artifact gate; monitor variance
low
0.86
keep but monitor
<=320 words
subgroup+range+route+fallback+confidence

Goal

Given a discordance event
route the correct clinical action.

This dataset treats failure
as a subgroup surface.

Not a single bad prediction.

Inputs

  • anatomy complexity metrics
  • image artifact signals
  • AI prediction stability signals
  • invasive FFR ground truth (for labeling)

Required outputs

  • failure_subgroup
  • predicted_error_range
  • intervention_route
  • fallback_protocol
  • confidence_score

Intervention routes

Examples:

  • continue (safe zone)
  • tighten QA thresholds
  • segmentation repair then rerun
  • re-scan protocol
  • defer AI-FFR and route to invasive FFR
  • secondary model arbitration

Why it matters

Validators need a map of:

  • which subgroup is failing
  • how big the likely error is
  • what the safest workflow route is

This makes AI-FFR deployable
with a defined safety envelope.

Evaluation

The scorer checks that the response includes:

  • subgroup name
  • numeric error range
  • route and fallback
  • confidence score from 0 to 1
Downloads last month
15