Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError
Exception: DatasetGenerationCastError
Message: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 1 new columns ({'__index_level_0__'})
This happened while the csv dataset builder was generating data using
hf://datasets/ClarusC64/ffr-subgroup-failure-surface-routing-v0.1/data/test.csv (at revision 9b4517132fb531a9e4b96f29cbd5a66f461427ef), [/tmp/hf-datasets-cache/medium/datasets/58105004692090-config-parquet-and-info-ClarusC64-ffr-subgroup-fa-7db82c19/hub/datasets--ClarusC64--ffr-subgroup-failure-surface-routing-v0.1/snapshots/9b4517132fb531a9e4b96f29cbd5a66f461427ef/data/test.csv (origin=hf://datasets/ClarusC64/ffr-subgroup-failure-surface-routing-v0.1@9b4517132fb531a9e4b96f29cbd5a66f461427ef/data/test.csv)]
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback: Traceback (most recent call last):
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1887, in _prepare_split_single
writer.write_table(table)
File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 675, in write_table
pa_table = table_cast(pa_table, self._schema)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
return cast_table_to_schema(table, schema)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
raise CastError(
datasets.table.CastError: Couldn't cast
id: string
case_context: double
vessel_tortuosity: double
calcification_burden: int64
lesion_length_mm: double
segmentation_confidence: double
image_artifact_score: double
ai_ffr_prediction: double
ai_ffr_run_variance: double
model_disagreement: double
invasive_ffr_ground_truth: double
abs_error: int64
discordance_flag: string
discordance_type: string
subgroup_risk_label: double
reliability_drop_score: double
failure_subgroup: double
predicted_error_range: double
intervention_route: double
fallback_protocol: double
route_priority: double
confidence_score: double
notes: string
constraints: string
gold_checklist: string
__index_level_0__: string
-- schema metadata --
pandas: '{"index_columns": ["__index_level_0__"], "column_indexes": [{"na' + 3649
to
{'id': Value('string'), 'case_context': Value('string'), 'vessel_tortuosity': Value('float64'), 'calcification_burden': Value('float64'), 'lesion_length_mm': Value('int64'), 'segmentation_confidence': Value('float64'), 'image_artifact_score': Value('float64'), 'ai_ffr_prediction': Value('float64'), 'ai_ffr_run_variance': Value('float64'), 'model_disagreement': Value('float64'), 'invasive_ffr_ground_truth': Value('float64'), 'abs_error': Value('float64'), 'discordance_flag': Value('int64'), 'discordance_type': Value('string'), 'subgroup_risk_label': Value('string'), 'reliability_drop_score': Value('float64'), 'failure_subgroup': Value('string'), 'predicted_error_range': Value('string'), 'intervention_route': Value('string'), 'fallback_protocol': Value('string'), 'route_priority': Value('string'), 'confidence_score': Value('float64'), 'notes': Value('string'), 'constraints': Value('string'), 'gold_checklist': Value('string')}
because column names don't match
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1347, in compute_config_parquet_and_info_response
parquet_operations = convert_to_parquet(builder)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 980, in convert_to_parquet
builder.download_and_prepare(
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 884, in download_and_prepare
self._download_and_prepare(
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 947, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1736, in _prepare_split
for job_id, done, content in self._prepare_split_single(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1889, in _prepare_split_single
raise DatasetGenerationCastError.from_cast_error(
datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 1 new columns ({'__index_level_0__'})
This happened while the csv dataset builder was generating data using
hf://datasets/ClarusC64/ffr-subgroup-failure-surface-routing-v0.1/data/test.csv (at revision 9b4517132fb531a9e4b96f29cbd5a66f461427ef), [/tmp/hf-datasets-cache/medium/datasets/58105004692090-config-parquet-and-info-ClarusC64-ffr-subgroup-fa-7db82c19/hub/datasets--ClarusC64--ffr-subgroup-failure-surface-routing-v0.1/snapshots/9b4517132fb531a9e4b96f29cbd5a66f461427ef/data/test.csv (origin=hf://datasets/ClarusC64/ffr-subgroup-failure-surface-routing-v0.1@9b4517132fb531a9e4b96f29cbd5a66f461427ef/data/test.csv)]
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
id
string | case_context
string | vessel_tortuosity
float64 | calcification_burden
float64 | lesion_length_mm
int64 | segmentation_confidence
float64 | image_artifact_score
float64 | ai_ffr_prediction
float64 | ai_ffr_run_variance
float64 | model_disagreement
float64 | invasive_ffr_ground_truth
float64 | abs_error
float64 | discordance_flag
int64 | discordance_type
string | subgroup_risk_label
string | reliability_drop_score
float64 | failure_subgroup
string | predicted_error_range
string | intervention_route
string | fallback_protocol
string | route_priority
string | confidence_score
float64 | notes
string | constraints
string | gold_checklist
string |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SFR-001
|
clean vessel
| 0.2
| 0.1
| 12
| 0.95
| 0.06
| 0.84
| 0.01
| 0.02
| 0.83
| 0.01
| 0
|
none
|
none
| 0.08
|
none
|
±0.03
|
continue
|
none
|
none
| 0.9
|
safe
|
<=320 words
|
subgroup+range+route+fallback+confidence
|
SFR-002
|
heavily calcified silent drift
| 0.4
| 0.8
| 26
| 0.78
| 0.14
| 0.76
| 0.03
| 0.06
| 0.67
| 0.09
| 1
|
calcification-driven overestimate
|
heavily-calcified
| 0.62
|
calcification failure surface
|
±0.10
|
defer-ai-ffr
|
invasive FFR recommended
|
high
| 0.84
|
route to invasive
|
<=320 words
|
subgroup+range+route+fallback+confidence
|
SFR-003
|
high tortuosity instability
| 0.72
| 0.25
| 22
| 0.72
| 0.12
| 0.74
| 0.05
| 0.1
| 0.66
| 0.08
| 1
|
tortuosity-driven instability
|
high-tortuosity
| 0.58
|
tortuosity failure surface
|
±0.08
|
segmentation-repair-then-rerun
|
manual edit + rerun; if discordant invasive
|
medium
| 0.82
|
repair path
|
<=320 words
|
subgroup+range+route+fallback+confidence
|
SFR-004
|
artifact-amplified discordance
| 0.55
| 0.65
| 28
| 0.68
| 0.26
| 0.75
| 0.06
| 0.14
| 0.63
| 0.12
| 1
|
artifact-amplified discordance
|
calcified+artifact
| 0.74
|
artifact-driven failure surface
|
±0.12
|
rescan-protocol
|
repeat scan with motion control
|
critical
| 0.8
|
block unreliable scan
|
<=320 words
|
subgroup+range+route+fallback+confidence
|
SFR-005
|
long lesion low confidence
| 0.5
| 0.4
| 40
| 0.62
| 0.18
| 0.73
| 0.06
| 0.12
| 0.64
| 0.09
| 1
|
low-confidence under-call risk
|
long-lesion+low-conf
| 0.66
|
low-confidence failure surface
|
±0.09
|
second-model-arbitration
|
run secondary model; manual review if split
|
high
| 0.81
|
arbitration route
|
<=320 words
|
subgroup+range+route+fallback+confidence
|
SFR-006
|
moderate calcification stable
| 0.38
| 0.45
| 20
| 0.86
| 0.1
| 0.78
| 0.02
| 0.05
| 0.75
| 0.03
| 0
|
calcification-tolerant
|
moderate-calcified
| 0.22
|
tolerant subgroup
|
±0.05
|
tighten-qa-thresholds
|
raise artifact gate; monitor variance
|
low
| 0.86
|
keep but monitor
|
<=320 words
|
subgroup+range+route+fallback+confidence
|
Goal
Given a discordance event
route the correct clinical action.
This dataset treats failure
as a subgroup surface.
Not a single bad prediction.
Inputs
- anatomy complexity metrics
- image artifact signals
- AI prediction stability signals
- invasive FFR ground truth (for labeling)
Required outputs
- failure_subgroup
- predicted_error_range
- intervention_route
- fallback_protocol
- confidence_score
Intervention routes
Examples:
- continue (safe zone)
- tighten QA thresholds
- segmentation repair then rerun
- re-scan protocol
- defer AI-FFR and route to invasive FFR
- secondary model arbitration
Why it matters
Validators need a map of:
- which subgroup is failing
- how big the likely error is
- what the safest workflow route is
This makes AI-FFR deployable
with a defined safety envelope.
Evaluation
The scorer checks that the response includes:
- subgroup name
- numeric error range
- route and fallback
- confidence score from 0 to 1
- Downloads last month
- 15