Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -21,7 +21,7 @@ size_categories:
|
|
| 21 |
<a href="https://huggingface.co/FutureMa/Eva-4B-V2"><img src="https://img.shields.io/badge/🤗-Model-yellow?style=for-the-badge" alt="Model"></a>
|
| 22 |
<a href="https://github.com/IIIIQIIII/EvasionBench"><img src="https://img.shields.io/badge/GitHub-Repo-black?style=for-the-badge&logo=github" alt="GitHub"></a>
|
| 23 |
<a href="https://colab.research.google.com/github/IIIIQIIII/EvasionBench/blob/main/scripts/eva4b_inference.ipynb"><img src="https://img.shields.io/badge/Colab-Quick_Start-F9AB00?style=for-the-badge&logo=googlecolab" alt="Open In Colab"></a>
|
| 24 |
-
<a href="https://arxiv.org/abs/
|
| 25 |
</p>
|
| 26 |
|
| 27 |
EvasionBench is a benchmark dataset for detecting **evasive answers** in earnings call Q&A sessions. The task is to classify how directly corporate management addresses questions from financial analysts.
|
|
@@ -29,7 +29,7 @@ EvasionBench is a benchmark dataset for detecting **evasive answers** in earning
|
|
| 29 |
## Dataset Description
|
| 30 |
|
| 31 |
- **Repository:** [https://github.com/IIIIQIIII/EvasionBench](https://github.com/IIIIQIIII/EvasionBench)
|
| 32 |
-
- **Paper:**
|
| 33 |
- **Point of Contact:** [GitHub Issues](https://github.com/IIIIQIIII/EvasionBench/issues)
|
| 34 |
|
| 35 |
### Dataset Summary
|
|
@@ -168,11 +168,14 @@ This dataset can be used to:
|
|
| 168 |
If you use this dataset, please cite:
|
| 169 |
|
| 170 |
```bibtex
|
| 171 |
-
@misc{
|
| 172 |
-
title={EvasionBench: A Benchmark for Detecting
|
| 173 |
-
author={
|
| 174 |
-
year={
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
| 176 |
}
|
| 177 |
```
|
| 178 |
|
|
|
|
| 21 |
<a href="https://huggingface.co/FutureMa/Eva-4B-V2"><img src="https://img.shields.io/badge/🤗-Model-yellow?style=for-the-badge" alt="Model"></a>
|
| 22 |
<a href="https://github.com/IIIIQIIII/EvasionBench"><img src="https://img.shields.io/badge/GitHub-Repo-black?style=for-the-badge&logo=github" alt="GitHub"></a>
|
| 23 |
<a href="https://colab.research.google.com/github/IIIIQIIII/EvasionBench/blob/main/scripts/eva4b_inference.ipynb"><img src="https://img.shields.io/badge/Colab-Quick_Start-F9AB00?style=for-the-badge&logo=googlecolab" alt="Open In Colab"></a>
|
| 24 |
+
<a href="https://arxiv.org/abs/2601.09142"><img src="https://img.shields.io/badge/arXiv-Paper-red?style=for-the-badge" alt="Paper"></a>
|
| 25 |
</p>
|
| 26 |
|
| 27 |
EvasionBench is a benchmark dataset for detecting **evasive answers** in earnings call Q&A sessions. The task is to classify how directly corporate management addresses questions from financial analysts.
|
|
|
|
| 29 |
## Dataset Description
|
| 30 |
|
| 31 |
- **Repository:** [https://github.com/IIIIQIIII/EvasionBench](https://github.com/IIIIQIIII/EvasionBench)
|
| 32 |
+
- **Paper:** [https://arxiv.org/abs/2601.09142](https://arxiv.org/abs/2601.09142)
|
| 33 |
- **Point of Contact:** [GitHub Issues](https://github.com/IIIIQIIII/EvasionBench/issues)
|
| 34 |
|
| 35 |
### Dataset Summary
|
|
|
|
| 168 |
If you use this dataset, please cite:
|
| 169 |
|
| 170 |
```bibtex
|
| 171 |
+
@misc{ma2026evasionbenchlargescalebenchmarkdetecting,
|
| 172 |
+
title={EvasionBench: A Large-Scale Benchmark for Detecting Managerial Evasion in Earnings Call Q&A},
|
| 173 |
+
author={Shijian Ma and Yan Lin and Yi Yang},
|
| 174 |
+
year={2026},
|
| 175 |
+
eprint={2601.09142},
|
| 176 |
+
archivePrefix={arXiv},
|
| 177 |
+
primaryClass={cs.LG},
|
| 178 |
+
url={https://arxiv.org/abs/2601.09142}
|
| 179 |
}
|
| 180 |
```
|
| 181 |
|