FutureMa commited on
Commit
d87d231
·
verified ·
1 Parent(s): 57a703b

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +10 -7
README.md CHANGED
@@ -21,7 +21,7 @@ size_categories:
21
  <a href="https://huggingface.co/FutureMa/Eva-4B-V2"><img src="https://img.shields.io/badge/🤗-Model-yellow?style=for-the-badge" alt="Model"></a>
22
  <a href="https://github.com/IIIIQIIII/EvasionBench"><img src="https://img.shields.io/badge/GitHub-Repo-black?style=for-the-badge&logo=github" alt="GitHub"></a>
23
  <a href="https://colab.research.google.com/github/IIIIQIIII/EvasionBench/blob/main/scripts/eva4b_inference.ipynb"><img src="https://img.shields.io/badge/Colab-Quick_Start-F9AB00?style=for-the-badge&logo=googlecolab" alt="Open In Colab"></a>
24
- <a href="https://arxiv.org/abs/2602.xxxxx"><img src="https://img.shields.io/badge/arXiv-Paper-red?style=for-the-badge" alt="Paper"></a>
25
  </p>
26
 
27
  EvasionBench is a benchmark dataset for detecting **evasive answers** in earnings call Q&A sessions. The task is to classify how directly corporate management addresses questions from financial analysts.
@@ -29,7 +29,7 @@ EvasionBench is a benchmark dataset for detecting **evasive answers** in earning
29
  ## Dataset Description
30
 
31
  - **Repository:** [https://github.com/IIIIQIIII/EvasionBench](https://github.com/IIIIQIIII/EvasionBench)
32
- - **Paper:** Coming soon
33
  - **Point of Contact:** [GitHub Issues](https://github.com/IIIIQIIII/EvasionBench/issues)
34
 
35
  ### Dataset Summary
@@ -168,11 +168,14 @@ This dataset can be used to:
168
  If you use this dataset, please cite:
169
 
170
  ```bibtex
171
- @misc{evasionbench2025,
172
- title={EvasionBench: A Benchmark for Detecting Evasive Answers in Earnings Calls},
173
- author={EvasionBench Team},
174
- year={2025},
175
- url={https://github.com/IIIIQIIII/EvasionBench}
 
 
 
176
  }
177
  ```
178
 
 
21
  <a href="https://huggingface.co/FutureMa/Eva-4B-V2"><img src="https://img.shields.io/badge/🤗-Model-yellow?style=for-the-badge" alt="Model"></a>
22
  <a href="https://github.com/IIIIQIIII/EvasionBench"><img src="https://img.shields.io/badge/GitHub-Repo-black?style=for-the-badge&logo=github" alt="GitHub"></a>
23
  <a href="https://colab.research.google.com/github/IIIIQIIII/EvasionBench/blob/main/scripts/eva4b_inference.ipynb"><img src="https://img.shields.io/badge/Colab-Quick_Start-F9AB00?style=for-the-badge&logo=googlecolab" alt="Open In Colab"></a>
24
+ <a href="https://arxiv.org/abs/2601.09142"><img src="https://img.shields.io/badge/arXiv-Paper-red?style=for-the-badge" alt="Paper"></a>
25
  </p>
26
 
27
  EvasionBench is a benchmark dataset for detecting **evasive answers** in earnings call Q&A sessions. The task is to classify how directly corporate management addresses questions from financial analysts.
 
29
  ## Dataset Description
30
 
31
  - **Repository:** [https://github.com/IIIIQIIII/EvasionBench](https://github.com/IIIIQIIII/EvasionBench)
32
+ - **Paper:** [https://arxiv.org/abs/2601.09142](https://arxiv.org/abs/2601.09142)
33
  - **Point of Contact:** [GitHub Issues](https://github.com/IIIIQIIII/EvasionBench/issues)
34
 
35
  ### Dataset Summary
 
168
  If you use this dataset, please cite:
169
 
170
  ```bibtex
171
+ @misc{ma2026evasionbenchlargescalebenchmarkdetecting,
172
+ title={EvasionBench: A Large-Scale Benchmark for Detecting Managerial Evasion in Earnings Call Q&A},
173
+ author={Shijian Ma and Yan Lin and Yi Yang},
174
+ year={2026},
175
+ eprint={2601.09142},
176
+ archivePrefix={arXiv},
177
+ primaryClass={cs.LG},
178
+ url={https://arxiv.org/abs/2601.09142}
179
  }
180
  ```
181