Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

VIPER-N — Noisy-label benchmark for instance segmentation (COCO-format annotations)

VIPER-N provides noisy COCO instance segmentation annotations for the VIPER dataset, as introduced in:

This repo is annotations-only (no images). Pair it with kimhi/viper (VIPER images + clean annotations).

Collection (all related datasets):

What’s included

  • COCO instances JSON (same schema as COCO 2017):
    • benchmark/annotations/instances_train2017.json
    • benchmark/annotations/instances_val2017.json

Intended use

VIPER-N is meant for robust instance segmentation under label noise:

  • train/eval with the noisy annotations, or
  • compare clean vs noisy, or
  • evaluate noise-robust learning methods.

How to use (apply VIPER-N on top of VIPER)

You need the VIPER images and (optionally) clean labels from kimhi/viper.

Option A — keep a COCO-like folder layout

Assume you have:

  • VIPER images at: .../viper/images/...
  • VIPER clean labels at: .../viper/coco/annotations/instances_{train,val}2017.json

To evaluate/train with VIPER-N, simply point your dataloader to the JSONs in this repo:

  • .../viper-n/benchmark/annotations/instances_train2017.json
  • .../viper-n/benchmark/annotations/instances_val2017.json

Option B — overwrite the annotation files (quick & dirty)

Replace the clean VIPER annotation files with the VIPER-N ones while keeping filenames:

  • overwrite instances_train2017.json
  • overwrite instances_val2017.json

Loading code snippets

1) Download with huggingface_hub

from huggingface_hub import snapshot_download

viper_root = snapshot_download("kimhi/viper", repo_type="dataset")
viper_n_root = snapshot_download("kimhi/viper-n", repo_type="dataset")

images_root = f"{viper_root}/images"  # contains train/val images
ann_train = f"{viper_n_root}/benchmark/annotations/instances_train2017.json"
ann_val   = f"{viper_n_root}/benchmark/annotations/instances_val2017.json"

print(images_root)
print(ann_train)

2) Read COCO annotations with pycocotools

from pycocotools.coco import COCO

coco = COCO(ann_val)
img_ids = coco.getImgIds()[:5]
imgs = coco.loadImgs(img_ids)
print(imgs[0])

ann_ids = coco.getAnnIds(imgIds=img_ids[0])
anns = coco.loadAnns(ann_ids)
print(len(anns), anns[0].keys())

Applying the same noise recipe to other datasets

See the paper repo for scripts and recipes to generate/apply noisy labels to other COCO-format instance segmentation datasets:

(High-level idea: convert dataset → COCO instances JSON → apply noise model → export new instances_*.json.)

Dataset viewer

Hugging Face’s built-in dataset viewer does not currently render COCO instance-segmentation JSONs directly. Use the snippets above (or your training pipeline) to visualize masks.

Citation

@misc{kimhi2025noisyannotationssemanticsegmentation,
  title={Noisy Annotations in Semantic Segmentation},
  author={Moshe Kimhi and Omer Kerem and Eden Grad and Ehud Rivlin and Chaim Baskin},
  year={2025},
  eprint={2406.10891},
}

License

CC BY-NC 4.0 — Attribution–NonCommercial 4.0 International.

Downloads last month
35

Collection including Kimhi/viper-n

Paper for Kimhi/viper-n