Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 10 new columns ({'mutant_rank', 'mut_Rank_Stab', 'mut_netchop_score_ct', 'mutant_rank_PRIME', 'mutant_other_significant_alleles', 'mutant_seq', 'seq_len', 'TAP_score', 'mutant_rank_netMHCpan', 'wt_seq'}) and 31 missing columns ({'HLA', 'anchor_mutation', 'pubmed_id', 'genomic_coord', 'mt_peptide', 'netmhcpan_rank', 'tumor_type_detail', 'netmhcstabpan_stability', 'length', 'effector_origin', 'wt_peptide', 'assay_type', 'dai_netmhcpan', 'bigmhc_im_score', 'mutation_type', 'presentation_method', 'ndd_id', 'reference_name', 'ref', 'eluted_ligand_match', 'position', 'tcga_cancer_expression_tpm_median', 'mutation', 'alt', 'prime_rank', 'driver_status', 'chromosome', 'tap_score', 'stimulation_target', 'tumor_tissue', 'netchop_score'}).

This happened while the csv dataset builder was generating data using

hf://datasets/NeoDiscovery/NDD/data/leaderboard/nip_leaderboard_train.tsv (at revision f4d033289b4846e6a9bc50efd5ed847e438bdd2e)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 714, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              patient_id: string
              response_type: string
              gene: string
              mutant_seq: string
              wt_seq: string
              seq_len: int64
              mutant_rank_netMHCpan: double
              mutant_rank: double
              mutant_other_significant_alleles: int64
              mutant_rank_PRIME: double
              TAP_score: double
              mut_Rank_Stab: double
              mut_netchop_score_ct: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1909
              to
              {'ndd_id': Value('string'), 'patient_id': Value('string'), 'tumor_tissue': Value('string'), 'tumor_type_detail': Value('string'), 'gene': Value('string'), 'mutation_type': Value('string'), 'mutation': Value('string'), 'position': Value('string'), 'mt_peptide': Value('string'), 'wt_peptide': Value('string'), 'length': Value('int64'), 'chromosome': Value('string'), 'genomic_coord': Value('string'), 'ref': Value('string'), 'alt': Value('string'), 'HLA': Value('string'), 'response_type': Value('string'), 'assay_type': Value('string'), 'effector_origin': Value('string'), 'stimulation_target': Value('string'), 'presentation_method': Value('string'), 'netmhcpan_rank': Value('float64'), 'netmhcstabpan_stability': Value('float64'), 'prime_rank': Value('float64'), 'bigmhc_im_score': Value('float64'), 'tap_score': Value('float64'), 'netchop_score': Value('float64'), 'dai_netmhcpan': Value('float64'), 'anchor_mutation': Value('string'), 'eluted_ligand_match': Value('int64'), 'tcga_cancer_expression_tpm_median': Value('float64'), 'driver_status': Value('string'), 'pubmed_id': Value('string'), 'reference_name': Value('string')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1455, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1054, in convert_to_parquet
                  builder.download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 10 new columns ({'mutant_rank', 'mut_Rank_Stab', 'mut_netchop_score_ct', 'mutant_rank_PRIME', 'mutant_other_significant_alleles', 'mutant_seq', 'seq_len', 'TAP_score', 'mutant_rank_netMHCpan', 'wt_seq'}) and 31 missing columns ({'HLA', 'anchor_mutation', 'pubmed_id', 'genomic_coord', 'mt_peptide', 'netmhcpan_rank', 'tumor_type_detail', 'netmhcstabpan_stability', 'length', 'effector_origin', 'wt_peptide', 'assay_type', 'dai_netmhcpan', 'bigmhc_im_score', 'mutation_type', 'presentation_method', 'ndd_id', 'reference_name', 'ref', 'eluted_ligand_match', 'position', 'tcga_cancer_expression_tpm_median', 'mutation', 'alt', 'prime_rank', 'driver_status', 'chromosome', 'tap_score', 'stimulation_target', 'tumor_tissue', 'netchop_score'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/NeoDiscovery/NDD/data/leaderboard/nip_leaderboard_train.tsv (at revision f4d033289b4846e6a9bc50efd5ed847e438bdd2e)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

ndd_id
string
patient_id
string
tumor_tissue
string
tumor_type_detail
string
gene
string
mutation_type
string
mutation
string
position
string
mt_peptide
string
wt_peptide
string
length
int64
chromosome
string
genomic_coord
string
ref
string
alt
string
HLA
string
response_type
string
assay_type
string
effector_origin
string
stimulation_target
string
presentation_method
string
netmhcpan_rank
float64
netmhcstabpan_stability
float64
prime_rank
float64
bigmhc_im_score
float64
tap_score
float64
netchop_score
float64
dai_netmhcpan
float64
anchor_mutation
string
eluted_ligand_match
int64
tcga_cancer_expression_tpm_median
float64
driver_status
string
pubmed_id
string
reference_name
string
NDDR-8Y7QQTRFWC-U
GEXOATK7
Skin
Skin Cutaneous Melanoma
WDR46
SNV
p.T227I
3
FLIYLDVSV
FLTYLDVSV
9
6
33287207
G
A
HLA-A02:01
CD8
ELISPOT, ICS
patient_TIL
peptide_pulsed_APC, tumor_cells
none
0.123
0.17
0.124
0.500021
0.2
0.152263
-0.198451
no
1
5.306263
null
PMID:33303615
Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer
NDDR-2HJHFX0EFJ-0
GEXOATK7
Skin
Skin Cutaneous Melanoma
AHNAK
SNV
p.S4460F
1
FMPDFDLHL
SMPDFDLHL
9
11
62526678
G
A
HLA-A02:01
CD8
ELISPOT, ICS, multimer
patient_TIL
peptide_pulsed_APC
none
0.057
0.3
0.053
0.582847
0.782
0.978539
-0.816761
no
1
4.897806
Other Tumor Driver
PMID:33303615
Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer
NDDR-M2GXDWKP1W-D
ZWHDI5GT
Skin
Skin Cutaneous Melanoma
GNB5
SNV
p.P377L
9
RVSTLRVSL
RVSTLRVSP
9
15
52124519
G
A
HLA-B07:02
CD8
ELISPOT, ICS
patient_TIL
peptide_pulsed_APC
none
0.139
0.8
0.088
0.476441
1.286
0.034531
-3.435379
no
0
0.389732
null
PMID:33303615
Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer
NDDR-JRGCAYDCQA-S
6FHDB5EK
Skin
Skin Cutaneous Melanoma
TRAPPC1
SNV
p.R129G
4
FRSGLDSYV
FRSRLDSYV
9
17
7930659
G
C
HLA-C06:02
CD8
51Cr, HLA-block
patient_Tc_line
peptide_pulsed_APC, tumor_cells
endogenous(HLA-block)
0.1
29
0.018
0.380201
0.366
0.73499
-0.41871
no
1
5.942411
null
PMID:10582700
Two antigens recognized by autologous cytolytic T lymphocytes on a Melanoma result from a single point mutation
NDDR-VXMQ2DHCNY-F
DAXCBTFA
Skin
Skin Cutaneous Melanoma
TRAPPC1
SNV
p.R129G
7
SELFRSGLDSY
SELFRSRLDSY
11
17
7930659
G
C
HLA-B44:02
CD8
51Cr, HLA-block
patient_Tc_line
peptide_pulsed_APC, tumor_cells
endogenous(HLA-block)
0.266
0.4
0.581
0.052169
3.04
0.763436
0.158546
no
1
5.942411
null
PMID:10582700
Two antigens recognized by autologous cytolytic T lymphocytes on a Melanoma result from a single point mutation
NDDR-AHCH9CD88T-A
M4HZA63S
Skin
Skin Cutaneous Melanoma
HERV-K-MEL
SNV
p.V102I
5
MLAVISCAV
MLAVVSCAV
9
null
null
null
null
HLA-A02:01
CD8
51Cr, HLA-block
patient_Tc_line
peptide_pulsed_APC, tumor_cells
endogenous(HLA-block)
1.022
0.3
0.553
0.416587
0.378
null
-0.068993
no
0
null
null
PMID:12359761
A human endogenous retroviral sequence encoding an antigen recognized on Melanoma by cytolytic T lymphocytes
NDDR-MG2GYB7FKK-1
LFXUCEDT
Skin
Skin Cutaneous Melanoma
PRDX5
SNV
p.S79L
6
LLLDDLLVSI
LLLDDSLVSI
10
11
64321032
C
T
HLA-A02:01
CD8
51Cr, HLA-block, multimer
patient_Tc_line, patient_TIL
peptide_pulsed_APC, tumor_cells
endogenous(HLA-block)
0.171
0.4
0.046
0.535931
0.624
0.954141
0.047913
no
1
7.68365
null
PMID:15695408
Immunogenicity without immunoselection: a mutant but functional antioxidant enzyme retained in a human metastatic Melanoma and targeted by CD8(+) T cells with a memory phenotype
NDDR-3Q45K91QR4-F
D35NTCNS
Skin
Skin Cutaneous Melanoma
MYO1B
SNV
p.E911K
1
KINKNPKYK
EINKNPKYK
9
2
191414079
G
A
HLA-A03:01
CD8
51Cr, HLA-block, multimer
patient_Tc_line, patient_TIL
peptide_pulsed_APC, tumor_cells
endogenous(HLA-block)
0.024
0.2
0.013
0.446357
0.552
0.634706
-4.044512
no
1
3.642422
null
PMID:10064075
A natural cytotoxic T cell response in a spontaneously regressing human Melanoma targets a neoantigen resulting from a somatic point mutation
NDDR-7SABVDNYFG-Y
TSXDFNM6
Head & Neck
Head and Neck Squamous Cell Carcinoma
TP53
SNV
p.Y220C
4
VVPCEPPEV
VVPYEPPEV
9
null
null
null
null
HLA-A02:01
CD8
51Cr, HLA-block
patient_Tc_line
peptide_pulsed_APC, tumor_cells
endogenous(HLA-block)
0.751
9
1.073
0.317315
0.454
0.687508
0.629941
no
1
3.293914
Tumor Driver
PMID:17294448
Immunological characterization of missense mutations occurring within cytotoxic T cell defined p53 epitopes in HLA A0201 squamous cell carcinomas of the head and neck
NDDR-GSSA542C57-I
7LJZLSYK
Skin
Skin Cutaneous Melanoma
ENTPD4
SNV
p.P85L
7
ATDTNNLNVNY
ATDTNNPNVNY
11
8
23447838
G
A
HLA-A11:01
CD8
ELISPOT, ICS, multimer
PBMC_pre, patient_TIL
peptide_pulsed_APC, TMC_minigene
none
2.391
4.5
1.282
0.364496
2.864
0.96242
0.671223
no
0
3.119629
null
PMID:33038342
Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction
NDDR-SGEY1B756Q-7
7LJZLSYK
Skin
Skin Cutaneous Melanoma
TTC37
SNV
p.A692V
6
YLDGKVVDY
YLDGKAVDY
9
5
95520755
G
A
HLA-A11:01
CD8
ELISPOT, ICS, multimer
PBMC_pre, patient_TIL
peptide_pulsed_APC, TMC_minigene
none
3.937
35
11.33
0.307559
2.426
null
-0.116625
no
0
3.005436
null
PMID:33038342
Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction
NDDR-WSV1MDSJB6-H
TFT6DO6A
Skin
Skin Cutaneous Melanoma
ARMT1
SNV
p.P286L
2
FYGKTILWF
FPGKTILWF
9
6
151468641
C
T
HLA-A24:02
CD8
ELISPOT, ICS, multimer
PBMC_postVax
peptide_pulsed_APC
none
0.052
0.25
0.02
0.351818
2.108
null
-4.193145
no
0
2.896756
null
PMID:30880120
Identification of a neoantigen epitope in a Melanoma patient with good response to anti-PD-1 antibody therapy
NDDR-XMMWH86R9X-E
FNWFEVPE
Cerebellum/Posterior fossa
Medulloblastoma (pediatric)
PDCD10
SNV
p.A74P
4
IASPIKEL
IASAIKEL
8
3
167687680
C
G
HLA-C12:02
CD8
ELISPOT, ICS, multimer
patient_Tc_line, PBMC_pre
peptide_pulsed_APC
none
0.234
2.5
3.957
0.149582
0.99
0.48951
-1.082819
no
0
null
null
PMID:31351799
Low mutational load in pediatric medulloblastoma still translates into neoantigens as targets for specific T-cell immunotherapy
NDDR-BBEYF3X3HN-4
FNWFEVPE
Cerebellum/Posterior fossa
Medulloblastoma (pediatric)
PDCD10
SNV
p.A74P
10
LQTIKDIASPI
LQTIKDIASAI
11
3
167687680
C
G
HLA-B52:01
CD8
ELISPOT, ICS, multimer
patient_Tc_line, PBMC_pre
peptide_pulsed_APC
none
7.046
0.4
10.695
0.000387
0.728
0.897295
0.649004
no
0
null
null
PMID:31351799
Low mutational load in pediatric medulloblastoma still translates into neoantigens as targets for specific T-cell immunotherapy
NDDR-8FNTWKZDFG-Y
FU5SPZUA
Cerebellum/Posterior fossa
Medulloblastoma (pediatric)
TSEN54
SNV
p.R472Q
2
AQMCISGF
ARMCISGF
8
17
75523764
G
A
HLA-C12:03
CD8
ELISPOT, ICS, multimer
patient_Tc_line, PBMC_pre
peptide_pulsed_APC
none
22.864
1.2
33.066
0.003008
3.142
0.307014
-0.193672
yes
0
null
null
PMID:31351799
Low mutational load in pediatric medulloblastoma still translates into neoantigens as targets for specific T-cell immunotherapy
NDDR-JDQYDNJXFT-A
FU5SPZUA
Cerebellum/Posterior fossa
Medulloblastoma (pediatric)
PCSK9
SNV
p.V202F
11
DHREIEGRVMF
DHREIEGRVMV
11
1
55052358
G
T
HLA-B18:01
CD8
ELISPOT, ICS, multimer
patient_Tc_line, PBMC_pre
peptide_pulsed_APC
none
0.158
12
1.548
0.145635
2.264
0.536006
-2.522178
no
0
null
null
PMID:31351799
Low mutational load in pediatric medulloblastoma still translates into neoantigens as targets for specific T-cell immunotherapy
NDDR-0J9XF0AJTT-A
FU5SPZUA
Cerebellum/Posterior fossa
Medulloblastoma (pediatric)
PCSK9
SNV
p.V202F
1
FTDFENVP
VTDFENVP
8
1
55052358
G
T
HLA-C05:01
CD8
ELISPOT, ICS, multimer
patient_Tc_line, PBMC_pre
peptide_pulsed_APC
none
9.493
45
8.173
0.146671
-0.474
0.405231
-0.296779
no
0
null
null
PMID:31351799
Low mutational load in pediatric medulloblastoma still translates into neoantigens as targets for specific T-cell immunotherapy
NDDR-0V67NT0BT2-D
FU5SPZUA
Cerebellum/Posterior fossa
Medulloblastoma (pediatric)
NEU2
SNV
p.L234T
9
KTGEQRVVTL
KTGEQRVVLL
10
2
233034587
G
A
HLA-C12:03
CD8
ELISPOT, ICS, multimer
patient_Tc_line, PBMC_pre
peptide_pulsed_APC
none
9.571
5.5
5.727
0.004257
0.814
null
-0.381034
yes
0
null
null
PMID:31351799
Low mutational load in pediatric medulloblastoma still translates into neoantigens as targets for specific T-cell immunotherapy
NDDR-9A9KVDPVGD-V
FU5SPZUA
Cerebellum/Posterior fossa
Medulloblastoma (pediatric)
SVIL
SNV
p.D1285N
8
RTDVKAYNVT
RTDVKAYDVT
10
null
null
null
null
HLA-C05:01
CD8
ELISPOT, ICS, multimer
patient_Tc_line, PBMC_pre
peptide_pulsed_APC
none
12.052
31
3.575
0.175771
-0.81
0.027018
-0.39557
no
0
null
null
PMID:31351799
Low mutational load in pediatric medulloblastoma still translates into neoantigens as targets for specific T-cell immunotherapy
NDDR-NB93YAHBJ0-B
4V2JUJEQ
Liver
Hepatocellular Carcinoma
C5orf42
SNV
p.I1134K
13
DADILSETFQLLK
DADILSETFQLLI
13
5
37201697
A
T
HLA-A11:01
CD8
ELISPOT, ICS, multimer
PBMC_pre, patient_Tc_line
peptide_pulsed_APC
none
12.983
5.5
2.664
0.158422
null
null
-1.87901
no
0
null
null
PMID:31887370
Heterogeneous immunogenomic features and distinct escape mechanisms in multifocal hepatocellular carcinoma
NDDR-1YAP0FVN2C-U
4V2JUJEQ
Liver
Hepatocellular Carcinoma
C5orf42
SNV
p.I1134K
11
DILSETFQLLK
DILSETFQLLI
11
5
37201697
A
T
HLA-A11:01
CD8
ELISPOT, ICS, multimer
PBMC_pre, patient_Tc_line
peptide_pulsed_APC
none
3.101
1.8
0.978
0.09474
0.296
null
-2.96262
no
0
null
null
PMID:31887370
Heterogeneous immunogenomic features and distinct escape mechanisms in multifocal hepatocellular carcinoma
NDDR-0T85G4PK4N-4
4V2JUJEQ
Liver
Hepatocellular Carcinoma
C5orf42
SNV
p.I1134K
10
ILSETFQLLK
ILSETFQLLI
10
5
37201697
A
T
HLA-A11:01
CD8
ELISPOT, ICS, multimer
PBMC_pre, patient_Tc_line
peptide_pulsed_APC
none
0.675
0.5
0.762
0.072464
0.432
null
-3.858778
no
0
null
null
PMID:31887370
Heterogeneous immunogenomic features and distinct escape mechanisms in multifocal hepatocellular carcinoma
NDDR-JPW6QH0ZNW-D
4V2JUJEQ
Liver
Hepatocellular Carcinoma
C5orf42
SNV
p.I1134K
9
LSETFQLLK
LSETFQLLI
9
5
37201697
A
T
HLA-A11:01
CD8
ELISPOT, ICS, multimer
PBMC_pre, patient_Tc_line
peptide_pulsed_APC
none
0.544
1.2
0.28
0.121928
0.316
null
-3.752958
no
0
null
null
PMID:31887370
Heterogeneous immunogenomic features and distinct escape mechanisms in multifocal hepatocellular carcinoma
NDDR-NPWGNEDF13-E
G4ZPYEDM
Skin
Skin Cutaneous Melanoma
DDX3X
SNV
p.E388K
4
FPKKIQMLA
FPKEIQMLA
9
X
41345316
G
A
HLA-B56:01
CD8
ELISPOT
PBMC_postVax
peptide_pulsed_APC
TMC
0.006
0.07
0.347
0.831153
-1.374
0.920179
0.405465
no
0
4.161428
Tumor Driver
PMID:28678778
An immunogenic personal neoantigen vaccine for patients with Melanoma
NDDR-1RZ65VX580-B
G4ZPYEDM
Skin
Skin Cutaneous Melanoma
ITGA9
SNV
p.L548P
7
VTEKLQPTY
VTEKLQLTY
9
3
37542539
T
C
HLA-A01:01
CD8
ELISPOT
PBMC_postVax
peptide_pulsed_APC
TMC
0.02
0.12
0.02
0.281449
2.714
0.946856
1.609438
no
0
1.3091
null
PMID:28678778
An immunogenic personal neoantigen vaccine for patients with Melanoma
NDDR-5NDTKW9WVC-U
G6DBM54G
Skin
Skin Cutaneous Melanoma
VPS16
SNV
p.S404F
5
LRAAFFGKCF
LRAASFGKCF
10
20
2862814
C
T
HLA-B27:05
CD8
ELISPOT
PBMC_postVax
peptide_pulsed_APC
TMC
2.327
0.8
0.612
0.411294
2.934
0.412664
-0.018732
no
0
3.703167
null
PMID:28678778
An immunogenic personal neoantigen vaccine for patients with Melanoma
NDDR-MHSQEBMGSW-D
G6DBM54G
Skin
Skin Cutaneous Melanoma
CIT
SNV
p.P2056L
4
VRTLLSQVNK
VRTPLSQVNK
10
12
119690296
G
A
HLA-B27:05
CD8
ELISPOT
PBMC_postVax
peptide_pulsed_APC
TMC
0.829
0.4
1.059
0.659847
0.756
0.817271
0.578183
no
0
0.65081
null
PMID:28678778
An immunogenic personal neoantigen vaccine for patients with Melanoma
NDDR-M431P5K4KM-3
G6DBM54G
Skin
Skin Cutaneous Melanoma
CASP1
SNV
p.P172S
8
WRNILLLSLH
WRNILLLPLH
10
11
105041480
G
A
HLA-B27:05
CD8
ELISPOT
PBMC_postVax
peptide_pulsed_APC
TMC
2.113
1.2
0.462
0.79588
-0.566
null
-0.025235
no
0
2.91849
null
PMID:28678778
An immunogenic personal neoantigen vaccine for patients with Melanoma
NDDR-YZD3GSV3PV-C
F3XRZQLP
Skin
Skin Cutaneous Melanoma
FAM200A
SNV
p.S116F
9
IPLSDNTIF
IPLSDNTIS
9
7
99548061
G
A
HLA-B35:01
CD8
ELISPOT
PBMC_postVax
peptide_pulsed_APC
TMC
0.049
0.12
0.039
0.542263
1.964
0.042772
-4.541121
yes
0
1.976985
null
PMID:28678778
An immunogenic personal neoantigen vaccine for patients with Melanoma
NDDR-QFKBAJAWPA-S
F3XRZQLP
Skin
Skin Cutaneous Melanoma
GRIN2B
SNV
p.E1104K
5
REFDKIELAY
REFDEIELAY
10
12
13563928
C
T
HLA-B41:02
CD8
ELISPOT
PBMC_postVax
peptide_pulsed_APC
TMC
0.527
2.5
0.137
0.473416
3.384
0.977014
-0.564753
no
0
-7.861448
null
PMID:28678778
An immunogenic personal neoantigen vaccine for patients with Melanoma
NDDR-3FYD6RDVNQ-7
F3XRZQLP
Skin
Skin Cutaneous Melanoma
TBX4
SNV
p.S271F
5
YPVIFKSIM
YPVISKSIM
9
17
61480110
C
T
HLA-B35:01
CD8
ELISPOT
PBMC_postVax
peptide_pulsed_APC
TMC
0.083
0.08
0.076
0.853465
-0.268
0.949069
0.170345
yes
0
-5.357024
null
PMID:28678778
An immunogenic personal neoantigen vaccine for patients with Melanoma
NDDR-J3PXJHBAC2-D
URSBQAUG
Skin
Skin Cutaneous Melanoma
FAM50B
SNV
p.E78K
7
DMKARQKALV
DMKARQEALV
10
6
3850043
G
A
HLA-B08:01
CD8
ELISPOT
PBMC_postVax
peptide_pulsed_APC
TMC
0.843
3
3.24
0.65091
0.1
0.521495
0.064934
yes
0
2.637761
null
PMID:28678778
An immunogenic personal neoantigen vaccine for patients with Melanoma
NDDR-BGT2WPZEN8-J
F3XRZQLP
Skin
Skin Cutaneous Melanoma
COL22A1
SNV
p.D291N
7
FPQGLPNEY
FPQGLPDEY
9
8
138826756
C
T
HLA-B35:01
CD8
ELISPOT
PBMC_postVax
peptide_pulsed_APC
none
0.003
0.09
0.016
0.566362
2.026
0.818258
0
yes
0
0.919263
null
PMID:28678778
An immunogenic personal neoantigen vaccine for patients with Melanoma
NDDR-51YCQP8A9M-3
F3XRZQLP
Skin
Skin Cutaneous Melanoma
COL22A1
SNV
p.D291N
3
LPNEYAFVTT
LPDEYAFVTT
10
8
138826756
C
T
HLA-B35:01
CD8
ELISPOT
PBMC_postVax
peptide_pulsed_APC
TMC
4.521
1
0.237
0.364148
-1.422
0.05056
0.028721
yes
0
0.919263
null
PMID:28678778
An immunogenic personal neoantigen vaccine for patients with Melanoma
NDDR-B7GMHB69XA-S
F3XRZQLP
Skin
Skin Cutaneous Melanoma
COL22A1
SNV
p.D291N
3
LPNEYAFVT
LPDEYAFVT
9
8
138826756
C
T
HLA-B35:01
CD8
ELISPOT
PBMC_postVax
peptide_pulsed_APC
TMC
0.923
0.5
0.19
0.718165
-1.422
0.499
-0.327767
yes
0
0.919263
null
PMID:28678778
An immunogenic personal neoantigen vaccine for patients with Melanoma
NDDR-2YDKRK2AD9-K
NGE5BUYC
Skin
Skin Cutaneous Melanoma
TTBK2
SNV
p.S1088L
9
RPHHDQRSL
RPHHDQRSS
9
15
42745988
G
A
HLA-B07:02
CD8
ELISPOT, ICS
PBMC_postVax
peptide_pulsed_APC
none
0.008
0.05
0.1
0.729896
0.654
0.118015
-4.77702
no
0
0.111698
null
PMID:28678784
Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer
NDDR-VAPV22ZYG6-H
LC3W5VRX
Skin
Skin Cutaneous Melanoma
KIF26B
SNV
p.N256S
2
SSYTGFANK
SNYTGFANK
9
1
245367135
A
G
HLA-A11:01
CD8
ELISPOT, ICS
PBMC_postVax
peptide_pulsed_APC
none
0.007
0.3
0.006
0.334228
0.99
0.970843
-4.330733
no
0
1.124709
null
PMID:28678784
Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer
NDDR-KWE7NJQDW7-I
LYXKV47S
Skin
Skin Cutaneous Melanoma
SPOP
SNV
p.N147I
7
FLLDEAIGL
FLLDEANGL
9
17
49619021
T
A
HLA-A02:01
CD8
ELISPOT, ICS
PBMC_postVax
peptide_pulsed_APC
none
0.009
0.8
0.042
0.644657
0.738
0.943178
-0.893818
no
1
2.900451
Other Tumor Driver
PMID:28678784
Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer
NDDR-KYVW6EZ6RX-E
OKQRI23E
Skin
Skin Cutaneous Melanoma
NARFL
SNV
p.E62K
1
KSQREEVRR
ESQREEVRR
9
null
null
null
null
HLA-A31:01
CD8
ELISPOT, ICS
PBMC_postVax
peptide_pulsed_APC
none
0.411
1.3
0.683
0.025452
1.666
null
-2.183067
no
0
null
null
PMID:28678784
Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer
NDDR-NFN8N8118Y-F
VU5HBL4S
Skin
Skin Cutaneous Melanoma
PPFIA4
SNV
p.S709N
4
MRMNQGVCC
MRMSQGVCC
9
1
203053848
G
A
HLA-B39:06
CD8
ELISPOT, ICS
PBMC_postVax
peptide_pulsed_APC
none
0.418
0.09
3.039
0.972498
0.486
0.033837
0.42601
no
0
-0.786497
null
PMID:28678784
Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer
NDDR-73G4NR2F2Q-7
LYXKV47S
Skin
Skin Cutaneous Melanoma
CDK4
SNV
p.R24L
2
ALDPHSGHFV
ARDPHSGHFV
10
12
57751647
C
A
HLA-A02:01
CD8
ELISPOT, ICS
PBMC_postVax
peptide_pulsed_APC
none
0.085
1.2
0.065
0.469788
0.228
0.668099
-4.919637
no
1
4.89147
Tumor Driver
PMID:28678784
Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer
NDDR-B1DKTHN336-H
5DJDBZPW
Skin
Skin Cutaneous Melanoma
SYTL4
SNV
p.S363F
6
GRIAFFLKY
GRIAFSLKY
9
X
100687163
G
A
HLA-B27:05
CD8
ELISPOT, ICS
patient_TIL
peptide_pulsed_APC
MS
0.009
0.4
0.001
0.914394
3.272
0.977758
0.117783
no
1
-2.573045
null
PMID:27869121
Direct identification of clinically relevant neoepitopes presented on native human Melanoma tissue by mass spectrometry
NDDR-VZ6AX01GXJ-0
5DJDBZPW
Skin
Skin Cutaneous Melanoma
NCAPG2
SNV
p.P333L
2
KLILWRGLK
KPILWRGLK
9
7
158680743
G
A
HLA-A03:01
CD8
ELISPOT
patient_TIL
peptide_pulsed_APC
MS
0.184
0.4
0.122
0.435756
0.762
0.861472
-3.519785
no
1
2.653482
null
PMID:27869121
Direct identification of clinically relevant neoepitopes presented on native human Melanoma tissue by mass spectrometry
NDDR-PBXJS7YJDT-A
5DJDBZPW
Skin
Skin Cutaneous Melanoma
AKAP6
SNV
p.M1482I
6
KLKLPIIMK
KLKLPMIMK
9
14
32822259
G
C
HLA-A03:01
CD8
ELISPOT
patient_TIL
peptide_pulsed_APC
MS
0.006
0.12
0.001
0.468706
0.62
0.968833
-0.154151
no
1
-0.385819
null
PMID:27869121
Direct identification of clinically relevant neoepitopes presented on native human Melanoma tissue by mass spectrometry
NDDR-WKQY9KFRV9-K
PKPFBJDF
Skin
Skin Cutaneous Melanoma
NOP16
SNV
p.P169L
9
SPGPVKLEL
SPGPVKLEP
9
5
176384171
G
A
HLA-B07:02
CD8
ELISPOT
patient_TIL
peptide_pulsed_APC
MS
0.011
0.7
0.028
0.235061
0.112
null
-4.500819
no
1
2.721895
null
PMID:27869121
Direct identification of clinically relevant neoepitopes presented on native human Melanoma tissue by mass spectrometry
NDDR-C98AVT8VA9-K
I4HS6WN2
Skin
Skin Cutaneous Melanoma
CSNK1A1
SNV
p.S27L
2
GLFGDIYLA
GSFGDIYLA
9
5
149550885_149550886
TC
CT
HLA-A02:01
CD8
ELISPOT, ICS
patient_TIL
peptide_pulsed_APC
none
0.052
1.5
0.046
0.590849
-0.414
0.312295
-4.006284
no
1
3.029707
null
PMID:23644516
Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells
NDDR-FF8XNFEPVF-X
74LV6E74
Skin
Skin Cutaneous Melanoma
MATN2
SNV
p.E226K
1
KTLTSVFQK
ETLTSVFQK
9
8
97931486
G
A
HLA-A11:01
CD8
ELISPOT, ICS
patient_TIL
peptide_pulsed_APC
none
0.004
0.01
0.001
0.441139
0.686
0.926989
-3.102342
no
1
2.156137
null
PMID:23644516
Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells
NDDR-894FCPT0FK-1
74LV6E74
Skin
Skin Cutaneous Melanoma
CDK12
SNV
p.E928K
5
CILGKLFTK
CILGELFTK
9
7
40063036
G
A
HLA-A11:01
CD8
ELISPOT, ICS
patient_TIL
peptide_pulsed_APC
none
0.279
1.1
0.021
0.14316
0.56
0.34099
-0.327213
no
1
2.569549
Tumor Driver
PMID:23644516
Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells
NDDR-AYRXPFMZNE-W
74LV6E74
Skin
Skin Cutaneous Melanoma
CDK12
SNV
p.E928K
5
CILGKLFTKK
CILGELFTKK
10
7
40063036
G
A
HLA-A11:01
CD8
ELISPOT, ICS
patient_TIL
peptide_pulsed_APC
none
1.908
1.2
0.466
0.20399
0.56
0.794302
0.048869
no
0
2.569549
Tumor Driver
PMID:23644516
Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells
NDDR-YRY5RYAEAT-A
I4HS6WN2
Skin
Skin Cutaneous Melanoma
CSNK1A1
SNV
p.S27L
2
GLFGDIYLAI
GSFGDIYLAI
10
5
149550885_149550886
TC
CT
HLA-A02:01
CD8
ELISPOT, ICS
patient_TIL
peptide_pulsed_APC
none
0.369
0.8
0.185
0.573459
0.656
0.921601
-3.064454
no
1
3.029707
null
PMID:23644516
Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells
NDDR-EMJNAQ3KAZ-G
I4HS6WN2
Skin
Skin Cutaneous Melanoma
HAUS3
SNV
p.T160A
7
ILNAMIAKI
ILNAMITKI
9
4
2240469
T
C
HLA-A02:01
CD8
ELISPOT, ICS
patient_TIL
peptide_pulsed_APC
none
0.43
0.5
0.15
0.647834
0.322
0.879551
0.750579
no
1
0.52195
null
PMID:23644516
Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells
NDDR-BGR5R73328-J
74LV6E74
Skin
Skin Cutaneous Melanoma
MATN2
SNV
p.E226K
1
KTLTSVFQKK
ETLTSVFQKK
10
8
97931486
G
A
HLA-A11:01
CD8
ELISPOT, ICS
patient_TIL
peptide_pulsed_APC
none
0.054
0.01
0.069
0.448778
0.686
0.963817
-2.580497
no
0
2.156137
null
PMID:23644516
Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells
NDDR-545JRB33M5-G
J5PM7M2Y
Skin
Skin Cutaneous Melanoma
PLEKHM2
SNV
p.H1005Y
10
LTDDRLFTCY
LTDDRLFTCH
10
1
15732428
C
T
HLA-A01:01
CD8
ELISPOT, ICS
patient_TIL
peptide_pulsed_APC
none
0.009
0.01
0.006
0.695479
2.652
0.412145
-4.333653
no
0
5.051104
null
PMID:23644516
Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells
NDDR-F477MEXVTB-T
I4HS6WN2
Skin
Skin Cutaneous Melanoma
GAS7
SNV
p.H225Y
9
SLADEAEVYL
SLADEAEVHL
10
17
9934186
G
A
HLA-A02:01
CD8
ELISPOT, ICS
patient_TIL
peptide_pulsed_APC
none
0.095
2.5
0.045
0.343229
1.054
0.969244
-0.408968
no
1
5.458259
null
PMID:23644516
Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells
NDDR-1NGBH26P25-G
J5PM7M2Y
Skin
Skin Cutaneous Melanoma
PPP1R3B
SNV
p.P176H
5
YTDFHCQYV
YTDFPCQYV
9
8
9141125
G
T
HLA-A01:01
CD8
ELISPOT, ICS
patient_TIL
peptide_pulsed_APC
none
0.224
1.3
0.005
0.684944
-0.158
0.901694
-0.117783
no
1
2.600531
null
PMID:23644516
Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells
NDDR-3397S1P89B-T
J5PM7M2Y
Skin
Skin Cutaneous Melanoma
PPP1R3B
SNV
p.P176H
5
YTDFHCQYVK
YTDFPCQYVK
10
8
9141125
G
T
HLA-A01:01
CD8
ELISPOT, ICS
patient_TIL
peptide_pulsed_APC, tumor_cells
endogenous(HLA-block)
0.841
1.2
0.145
0.480959
-0.008
0.912707
0.144291
no
1
2.600531
null
PMID:23644516
Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells
NDDR-4H8V6XSZ4F-X
6K4YGFNF
Skin
Skin Cutaneous Melanoma
KIF16B
SNV
p.L1009P
2
APARLERRHSA
ALARLERRHSA
11
20
16378976
A
G
HLA-B07:02
CD8
multimer, ELISPOT
PBMC_pre, patient_TIL
peptide_pulsed_APC, TMC_minigene
TMC
0.459
0.7
2.211
0.022523
-0.818
0.78183
-3.671241
no
0
1.905253
null
PMID:26901407
Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of Melanoma patients
NDDR-1C3G4QSC15-G
6K4YGFNF
Skin
Skin Cutaneous Melanoma
FLNA
SNV
p.R2049C
1
CVRVSGQGL
RVRVSGQGL
9
X
154353082
G
A
HLA-B07:02
CD8
multimer, ELISPOT
PBMC_pre, patient_TIL
peptide_pulsed_APC, TMC_minigene
TMC
1.384
1.8
0.386
0.063144
1.114
0.953143
2.305479
no
0
7.162795
Other Tumor Driver
PMID:26901407
Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of Melanoma patients
NDDR-WYJW76M06R-8
TOGZJCOT
Skin
Skin Cutaneous Melanoma
PDS5A
SNV
p.Y1000F;H1007Y
1,8
FVVPYMIYLL
YVVPYMIHLL
10
null
null
null
null
HLA-C03:03
CD8
multimer, ELISPOT
PBMC_pre, patient_TIL
peptide_pulsed_APC, TMC_minigene
TMC
4.104
4.5
0.127
0.088732
0.976
0.971609
1.044545
yes
0
3.19243
null
PMID:26901407
Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of Melanoma patients
NDDR-XJ3RMEC41A-S
TOGZJCOT
Skin
Skin Cutaneous Melanoma
MAGEA6
SNV
p.E168K
1
KVDPIGHVY
EVDPIGHVY
9
X
152767149
C
T
HLA-A01:01
CD8
multimer, ELISPOT
PBMC_pre, patient_TIL
peptide_pulsed_APC, TMC_minigene
TMC
0.011
0.02
0.006
0.538203
2.85
0.975792
0.606136
no
0
2.919136
null
PMID:26901407
Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of Melanoma patients
NDDR-BS3218G751-C
TOGZJCOT
Skin
Skin Cutaneous Melanoma
MAGEA6
SNV
p.E168K
1
KVDPIGHVYIF
EVDPIGHVYIF
11
null
null
null
null
HLA-C05:01
CD8
multimer, ELISPOT
PBMC_pre, patient_TIL
peptide_pulsed_APC, TMC_minigene
TMC
0.207
20
0.147
0.218765
2.46
0.972332
-1.486205
no
0
2.919136
null
PMID:26901407
Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of Melanoma patients
NDDR-YXV2AQ4573-E
TOGZJCOT
Skin
Skin Cutaneous Melanoma
MAGEA6
SNV
p.E168K
3
LMKVDPIGHVY
LMEVDPIGHVY
11
null
null
null
null
HLA-B15:01
CD8
multimer, ELISPOT
PBMC_pre, patient_TIL
peptide_pulsed_APC, TMC_minigene
TMC
0.178
0.04
0.557
0.094909
3.084
0.975792
-1.548041
no
0
2.919136
null
PMID:26901407
Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of Melanoma patients
NDDR-0CQM64X89C-U
TOGZJCOT
Skin
Skin Cutaneous Melanoma
MED13
SNV
p.P1691S
6
SVQIISCQY
SVQIIPCQY
9
null
null
null
null
HLA-A30:02
CD8
multimer, ELISPOT
PBMC_pre, patient_TIL
peptide_pulsed_APC, TMC_minigene
TMC
0.122
2.5
0.031
0.996467
3.044
0.965587
0.541341
no
0
2.53319
null
PMID:26901407
Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of Melanoma patients
NDDR-8V8HWA94GP-6
TOGZJCOT
Skin
Skin Cutaneous Melanoma
MED13
SNV
p.P1691S
5
VQIISCQY
VQIIPCQY
8
17
61961773
G
A
HLA-A30:02
CD8
multimer, ELISPOT
PBMC_pre, patient_TIL
peptide_pulsed_APC, TMC_minigene
TMC
1.365
4
11.228
0.965486
3.326
0.965587
0.328301
no
0
2.53319
null
PMID:26901407
Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of Melanoma patients
NDDR-R8DTB8R876-H
TOGZJCOT
Skin
Skin Cutaneous Melanoma
MED13
SNV
p.P1691S
5
VQIISCQY
VQIIPCQY
8
17
61961773
G
A
HLA-B15:01
CD8
multimer, ELISPOT
PBMC_pre, patient_TIL
peptide_pulsed_APC, TMC_minigene
TMC
0.34
0.12
0.377
0.395824
3.326
0.965587
0.102098
no
0
2.53319
null
PMID:26901407
Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of Melanoma patients
NDDR-NG120S2XBY-F
TOGZJCOT
Skin
Skin Cutaneous Melanoma
MED13
SNV
p.P1691S
7
VSVQIISCQY
VSVQIIPCQY
10
null
null
null
null
HLA-A30:02
CD8
multimer, ELISPOT
PBMC_pre, patient_TIL
peptide_pulsed_APC, TMC_minigene
TMC
0.491
3.5
1.446
0.992012
3.218
0.965587
-0.085823
no
0
2.53319
null
PMID:26901407
Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of Melanoma patients
NDDR-HHJP6E4WJE-W
TOGZJCOT
Skin
Skin Cutaneous Melanoma
MED13
SNV
p.P1691S
7
VSVQIISCQY
VSVQIIPCQY
10
null
null
null
null
HLA-A01:01
CD8
multimer, ELISPOT
PBMC_pre, patient_TIL
peptide_pulsed_APC, TMC_minigene
TMC
0.715
0.12
1.623
0.058955
3.218
0.965587
0.035591
no
0
2.53319
null
PMID:26901407
Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of Melanoma patients
NDDR-NATBNFYEAK-1
YQSS3IYL
Ovary
Ovarian Cancer
HS6ST1
SNV
p.S405I
4
DYMIHIIEKW
DYMSHIIEKW
10
2
128268184
C
A
HLA-A23:01
CD8
ELISPOT, ICS, multimer
PBMC_pre
peptide_pulsed_APC
none
0.328
0.9
0.215
0.596565
0.846
0.959502
0.291755
no
0
4.582285
null
PMID:29545564
Sensitive and frequent identification of high avidity neo-epitope specific CD8?+?T cells in immunotherapy-naive ovarian cancer
NDDR-BHHDNDR6ZQ-7
VMHDDH4X
Ovary
Ovarian Cancer
COPG2
SNV
p.T37I
1
IPINPRRCL
TPINPRRCL
9
7
130666910
G
A
HLA-B07:02
CD8
ELISPOT, ICS, multimer
PBMC_pre
peptide_pulsed_APC
none
0.025
0.06
0.434
0.808351
0.486
0.764573
0.083382
no
0
3.153886
null
PMID:29545564
Sensitive and frequent identification of high avidity neo-epitope specific CD8?+?T cells in immunotherapy-naive ovarian cancer
NDDR-RABCTRZ18B-T
TKJU56TT
Ovary
Ovarian Cancer
SEPT9
SNV
p.R289H
7
SILEQMHRK
SILEQMRRK
9
null
null
null
null
HLA-A11:01
CD8
ELISPOT, ICS, multimer
PBMC_pre
peptide_pulsed_APC
none
0.02
0.6
0.128
0.189973
0.682
null
-1.848455
no
1
null
null
PMID:29545564
Sensitive and frequent identification of high avidity neo-epitope specific CD8?+?T cells in immunotherapy-naive ovarian cancer
NDDR-81PF6HAJE6-H
Q2ITNIFI
Ovary
Ovarian Cancer
PDPN
SNV
p.G222C
3
FICAIIVVV
FIGAIIVVV
9
1
13614365
G
T
HLA-A02:01
CD8
ELISPOT, ICS, multimer
PBMC_pre
peptide_pulsed_APC
none
1.217
0.4
0.024
0.68459
0.196
0.680153
0.893544
no
0
2.404058
null
PMID:29545564
Sensitive and frequent identification of high avidity neo-epitope specific CD8?+?T cells in immunotherapy-naive ovarian cancer
NDDR-WAWJVEYCNM-3
Q2ITNIFI
Ovary
Ovarian Cancer
KIR2DS4
SNV
p.I7S
1
SMACVGFFL
IMACVGFFL
9
null
null
null
null
HLA-A02:01
CD8
ELISPOT, ICS, multimer
PBMC_pre
peptide_pulsed_APC
none
1.021
1.9
0.068
0.363276
1.164
0.623868
-0.075436
no
0
-5.058894
null
PMID:29545564
Sensitive and frequent identification of high avidity neo-epitope specific CD8?+?T cells in immunotherapy-naive ovarian cancer
NDDR-B9FTPHZX9N-4
GNQ75CJK
Ovary
Ovarian Cancer
USP47
SNV
p.V170L
5
TSDYLSQSY
TSDYVSQSY
9
11
11892058
G
C
HLA-A01:01
CD8
ELISPOT, ICS, multimer
PBMC_pre
peptide_pulsed_APC
none
0.002
0.4
0.004
0.252534
2.636
0.971324
0
no
0
0.7376
null
PMID:29545564
Sensitive and frequent identification of high avidity neo-epitope specific CD8?+?T cells in immunotherapy-naive ovarian cancer
NDDR-8KVBFCA09D-V
4DKUZH62
Ovary
Ovarian Cancer
ODZ3
SNV
p.A2490V
9
GAQSWLWFV
GAQSWLWFA
9
4
182799720
C
T
HLA-A02:11
CD8
ELISPOT, ICS, multimer
PBMC_pre
peptide_pulsed_APC
none
0.923
0.7
0.142
0.975253
0.216
null
-1.199847
yes
0
null
null
PMID:29545564
Sensitive and frequent identification of high avidity neo-epitope specific CD8?+?T cells in immunotherapy-naive ovarian cancer
NDDR-453FFPEY00-B
YG2NSK3U
Brain
Glioblastoma (GBM)
IDH1
SNV
p.R132H
10
GWVKPIIIGH
GWVKPIIIGR
10
2
208248388
C
T
HLA-B58:01
CD8
ICS
PBMC_postVax
peptide_pulsed_APC
none
29.107
49
20.4
0.019775
-0.336
0.868231
-0.230244
yes
0
5.024923
Tumor Driver
PMID:30733620
Actively personalized vaccination trial for newly diagnosed glioblastoma
NDDR-W3ZRQB9QB9-K
TBH3PNXF
Brain
Glioblastoma (GBM)
SLC44A2
SNV
p.L204M
4
ITDMVEGAKK
ITDLVEGAKK
10
null
null
null
null
HLA-A03:01
CD8
ICS
PBMC_postVax
peptide_pulsed_APC
none
2.002
2.5
1.811
0.177257
0.114
0.373603
-0.165362
no
0
5.43825
null
PMID:30733620
Actively personalized vaccination trial for newly diagnosed glioblastoma
NDDR-Q35B4A9CVQ-7
MYK5YWYV
Brain
Glioblastoma (GBM)
RFX1
SNV
p.T324M
2
YMQTASTSYY
YTQTASTSYY
10
null
null
null
null
HLA-A01:01
CD8
ICS
PBMC_postVax
peptide_pulsed_APC
none
0.332
1
0.059
0.130624
2.824
0.966927
2.221616
no
0
1.410422
null
PMID:30733620
Actively personalized vaccination trial for newly diagnosed glioblastoma
NDDR-0EZ996H7KA-S
MYK5YWYV
Brain
Glioblastoma (GBM)
EPHB3
SNV
p.R677W
7
YTERQRWDF
YTERQRRDF
9
null
null
null
null
HLA-A01:01
CD8
ICS
PBMC_postVax
peptide_pulsed_APC
none
0.615
5
0.469
0.021732
2.126
0.088796
-0.998957
no
0
2.61188
null
PMID:30733620
Actively personalized vaccination trial for newly diagnosed glioblastoma
NDDR-A9KQRJ0YTC-U
ZLZLTBFT
Brain
Glioblastoma (GBM)
NUCB1
SNV
p.V300M
8
RLRMREHMMK
RLRMREHVMK
10
null
null
null
null
HLA-A03:01
CD8
ICS
PBMC_postVax
peptide_pulsed_APC
none
0.167
0.15
0.361
0.359162
0.784
0.947325
-0.247982
no
0
5.924214
null
PMID:30733620
Actively personalized vaccination trial for newly diagnosed glioblastoma
NDDR-44QS1THAG3-E
F3UNKL3Y
Brain
Glioblastoma (GBM)
RBKS
SNV
p.T95A
7
KQNDISAEF
KQNDISTEF
9
null
null
null
null
HLA-B15:01
CD8
ICS
PBMC_postVax
peptide_pulsed_APC
none
0.004
0.02
0.002
0.295377
2.718
0.966161
0.287682
no
0
0.333136
null
PMID:30733620
Actively personalized vaccination trial for newly diagnosed glioblastoma
NDDR-6J2G3WKA08-J
GVYOONV4
Brain
Glioblastoma (GBM)
SLC9A6
SNV
p.N572I
10
SAWLFRMWYI
SAWLFRMWYN
10
null
null
null
null
HLA-A02:01
CD8
ICS
PBMC_postVax
peptide_pulsed_APC
none
13.515
6
1.186
0.176609
1.012
0.022848
-1.778226
no
0
2.120799
null
PMID:30733620
Actively personalized vaccination trial for newly diagnosed glioblastoma
NDDR-EDQDWAWTP4-F
PFMINZ56
Breast
Breast Cancer
ECPAS
SNV
p.S186F
10
MPYGYVLNEF
MPYGYVLNES
10
9
111437072_111437073
CA
TT
HLA-B35:01
CD8
ELISPOT, 4-1BB
patient_TIL, TCR_clone
peptide_pulsed_APC, TMC_minigene
TMC
0.056
0.05
0.018
0.478653
2.356
0.422068
-4.303582
yes
0
4.401606
null
PMID:29867227
Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer
NDDR-Y3TJTRGEMA-S
PFMINZ56
Breast
Breast Cancer
CADPS2
SNV
p.R1266H
8
TYDTVHRHL
TYDTVHRRL
9
7
122320259
C
T
HLA-C04:01
CD8
ELISPOT, 4-1BB
patient_TIL, TCR_clone
peptide_pulsed_APC, TMC_minigene
TMC
0.006
25
0.001
0.660042
0.732
0.958242
-0.287682
no
0
3.089786
null
PMID:29867227
Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer
NDDR-9MF2CZ9EEC-U
6TP4IBLE
Skin
Skin Cutaneous Melanoma
PORCN
SNV
p.H346Y
8
LLHGFSFYL
LLHGFSFHL
9
X
48515902
C
T
HLA-A02:01
CD8
multimer, 51Cr
PBMC_pre, PBMC_postVax, patient_TIL
peptide_pulsed_APC, TMC_minigene
TMC
0.086
0.15
0.015
0.734435
1.068
0.977941
0.059898
no
1
1.886384
null
PMID:31685621
Immunological ignorance is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens
NDDR-7HFGTRT2KG-Y
6TP4IBLE
Skin
Skin Cutaneous Melanoma
AKAP9
SNV
p.L947F
5
RLSDFSEQL
RLSDLSEQL
9
7
92002801
C
T
HLA-A02:01
CD8
multimer, 51Cr
PBMC_pre, PBMC_postVax, patient_TIL
peptide_pulsed_APC, TMC_minigene
TMC
0.024
0.4
0.069
0.499613
1.168
0.977036
-0.223144
no
1
2.055005
Other Tumor Driver
PMID:31685621
Immunological ignorance is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens
NDDR-R6WWVF6EQ6-H
6TP4IBLE
Skin
Skin Cutaneous Melanoma
RASAL2
SNV
p.P637S
4
IMSSSLFNL
IMSPSLFNL
9
1
178452552
C
T
HLA-A02:01
CD8
multimer
PBMC_pre, PBMC_postVax, patient_TIL
peptide_pulsed_APC
none
0.236
0.6
0.066
0.306679
1.032
0.969002
1.352958
no
1
1.331619
null
PMID:31685621
Immunological ignorance is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens
NDDR-108MYSE1VC-U
6TP4IBLE
Skin
Skin Cutaneous Melanoma
CDKN2A
SNV
p.P114L
2
LLVDLAEEL
LPVDLAEEL
9
9
21971018
G
A
HLA-A02:01
CD8
multimer
PBMC_pre, PBMC_postVax, patient_TIL
peptide_pulsed_APC
none
0.1
2.5
0.174
0.478684
1.164
0.957983
-4.712319
no
0
1.258459
Tumor Driver
PMID:31685621
Immunological ignorance is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens
NDDR-1G2Z2Z3NBX-E
6TP4IBLE
Skin
Skin Cutaneous Melanoma
PDE7B
SNV
p.G113R
1
RMWDFDIFL
GMWDFDIFL
9
6
136149105
G
A
HLA-A02:01
CD8
multimer
PBMC_pre, PBMC_postVax, patient_TIL
peptide_pulsed_APC
none
0.022
0.09
0.005
0.719792
1.63
0.968043
-0.127833
no
0
-1.260168
null
PMID:31685621
Immunological ignorance is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens
NDDR-SEA7CN1KAX-E
6TP4IBLE
Skin
Skin Cutaneous Melanoma
GCN1L1
SNV
p.P274L
6
SLLRSLENV
SLLRSPENV
9
12
120177464
G
A
HLA-A02:01
CD8
multimer, 51Cr
PBMC_pre, PBMC_postVax, patient_TIL
peptide_pulsed_APC, TMC_minigene
TMC
0.06
0.4
0.081
0.546661
0.416
null
-0.559616
no
1
null
null
PMID:31685621
Immunological ignorance is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens
NDDR-EZBD3HKP1K-1
6TP4IBLE
Skin
Skin Cutaneous Melanoma
SOCS6
SNV
p.P134L
9
SLRSHHYSL
SLRSHHYSP
9
18
70325069
C
T
HLA-B08:01
CD8
multimer, 51Cr
PBMC_pre, PBMC_postVax, patient_TIL
peptide_pulsed_APC, TMC_minigene
TMC
0.006
0.6
0.023
0.480798
1.118
0.409931
-5.372961
yes
1
3.067294
null
PMID:31685621
Immunological ignorance is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens
NDDR-5GDBWJVZ1H-Z
6TP4IBLE
Skin
Skin Cutaneous Melanoma
POGK
SNV
p.P46L
3
WVLALFDEV
WVPALFDEV
9
1
166846616
C
T
HLA-A02:01
CD8
multimer
PBMC_pre, PBMC_postVax, patient_TIL
peptide_pulsed_APC, TMC_minigene
none
3.02
4.5
0.733
0.347158
0.314
0.288239
-0.050995
no
0
3.56306
null
PMID:31685621
Immunological ignorance is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens
NDDR-T0AFTDJ9PD-V
6TP4IBLE
Skin
Skin Cutaneous Melanoma
ZDBF2
SNV
p.S2228L
3
YILKYSVFL
YISKYSVFL
9
2
206311211
C
T
HLA-A02:01
CD8
multimer, 51Cr
PBMC_pre, PBMC_postVax, patient_TIL
peptide_pulsed_APC, TMC_minigene
TMC
0.193
0.5
0.027
0.61301
0.96
0.963955
-0.179728
no
1
-0.664534
null
PMID:31685621
Immunological ignorance is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens
NDDR-47041KC807-I
6TP4IBLE
Skin
Skin Cutaneous Melanoma
GAS7
SNV
p.S270F
1
FLGEAWAQV
SLGEAWAQV
9
17
9934242
G
A
HLA-A02:01
CD8
multimer
PBMC_pre, PBMC_postVax, patient_TIL
peptide_pulsed_APC
none
0.055
0.9
0.392
0.592199
-0.264
0.969671
-0.828949
no
0
5.458259
null
PMID:31685621
Immunological ignorance is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens
NDDR-JV00FYYZJR-8
6TP4IBLE
Skin
Skin Cutaneous Melanoma
PNPLA4
SNV
p.P100S
3
ILSPSAHEL
ILPPSAHEL
9
X
7921826
G
A
HLA-A02:01
CD8
multimer
PBMC_pre, PBMC_postVax, patient_TIL
peptide_pulsed_APC
none
0.024
1.4
0.196
0.431042
0.922
0.976745
-0.432864
no
0
2.462092
null
PMID:31685621
Immunological ignorance is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens
NDDR-N6NTA1JDTE-W
352WTYXA
Ovary
Ovarian Cancer
PPM1F
SNV
p.C259Y
7
FLAPLFLVLL
FLAPLFCVLL
10
5
88203038
T
G
HLA-A24:02
CD8
ELISPOT
PBMC_postVax, patient_TIL
peptide_pulsed_APC
none
8.36
3
1.457
0.027011
0.736
null
-0.252377
no
0
0.780394
null
PMID:32660279
Intranodal Administration of Neoantigen Peptide-loaded Dendritic Cell Vaccine Elicits Epitope-specific T Cell Responses and Clinical Effects in a Patient with Chemorefractory Ovarian Cancer with Malignant Ascites
NDDR-MCK2ZAJ8GQ-7
R7NU4BAT
Brain
Glioblastoma (GBM)
WDR63
SNV
p.T690M
8
FYNDIILMV
FYNDIILTV
9
1
85124208
C
T
HLA-C06:02
CD8
ELISPOT
PBMC_postVax
peptide_pulsed_APC
none
0.042
34
0.001
0.937943
0.026
null
0.518794
no
0
null
null
PMID:30906654
Detection of neoantigen-specific T cells following a personalized vaccine in a patient with glioblastoma
NDDR-S6DN480CYD-V
XD6MQQ3M
Ovary
Ovarian Cancer
SSC4D
SNV
p.D85Y
9
YGTGHILLY
YGTGHILLD
9
7
76397626
C
A
HLA-B35:01
CD8
4-1BB, ICS
PBMC_pre
peptide_pulsed_APC, tumor_cells
none
0.347
5
0.095
0.34794
2.496
0.067292
-5.180179
yes
0
1.241352
null
PMID:31069153
Neoantigens retention in patient derived xenograft models mediates autologous T cells activation in ovarian cancer
NDDR-VS85BXHK0E-W
XD6MQQ3M
Ovary
Ovarian Cancer
SSC4D
SNV
p.D85Y
9
YGTGHILLY
YGTGHILLD
9
7
76397626
C
A
HLA-C12:03
CD8
4-1BB, ICS
PBMC_pre
peptide_pulsed_APC, tumor_cells
none
0.117
18
0.008
0.062591
2.496
0.067292
-5.774366
yes
0
1.241352
null
PMID:31069153
Neoantigens retention in patient derived xenograft models mediates autologous T cells activation in ovarian cancer
NDDR-HR56JF3PKD-V
XD6MQQ3M
Ovary
Ovarian Cancer
NAV1
SNV
p.K349M
1
MAKAKAVAL
KAKAKAVAL
9
null
null
null
null
HLA-B35:01
CD8
4-1BB, ICS
PBMC_pre
peptide_pulsed_APC, tumor_cells
none
0.841
1.2
1.189
0.061466
1.048
0.941944
-1.781601
yes
0
0.481402
null
PMID:31069153
Neoantigens retention in patient derived xenograft models mediates autologous T cells activation in ovarian cancer
NDDR-C5YZS7EBSD-V
XD6MQQ3M
Ovary
Ovarian Cancer
TRO
SNV
p.S598C
5
SVGACGFSY
SVGASGFSY
9
X
54930991
C
G
HLA-B35:01
CD8
4-1BB, ICS
PBMC_pre
peptide_pulsed_APC, tumor_cells
none
1.793
2.5
0.289
0.02987
2.782
null
1.156591
yes
0
1.602932
null
PMID:31069153
Neoantigens retention in patient derived xenograft models mediates autologous T cells activation in ovarian cancer
End of preview.

Neoantigen Discovery Dataset (NDD)


Overview

In neoantigen research, different strategies serve complementary roles: threshold-based approaches are effective for filtering candidates using known rules, while deep learning methods require large-scale, standardized datasets to uncover complex patterns and improve generalization.

NDD addresses this need by providing a curated, standardized, and feature-rich dataset that enables the development, training, and benchmarking of new algorithms, while also facilitating integration with experimental evidence.

Key highlights include

  • Integration of data from literature reports and public resources such as IEDB, TCGA, and CEDAR. Based on the positive data, we scientifically generate corresponding negative data, which has greatly improved the accuracy of prediction.
  • Coverage of core experimental evidence alongside predicted features (binding affinity, stability, anchor mutations, driver status, etc.).
  • A structured design that supports both peptide-level predictions and patient-level cohort analyses.
  • Preservation of assay details to ensure reliable immunogenicity labels and reproducibility.

NDD is not just a file collection, but a community resource for advancing model development, evaluation, and integration with experimental data. The current release, NDD v0.2, marks the starting point of an ongoing effort to expand data coverage, enrich feature annotations, and promote collaboration across the research community.


Data Sources & Curation

NDD entries are primarily curated from original literature reports, manually reviewed and standardized for consistency. To ensure transparency and traceability, each record includes PMID/DOI identifiers, allowing users to directly access the corresponding publications.

Meanwhile, we have also sequenced and analyzed the actual human biological data from relevant hospitals, generating valid training data for therapeutic approaches ranging from mutation to immunogenicity and clinical results.

The curation process draws on the frameworks established by public databases such as IEDB and CEDAR, while also integrating cross-references to resources like TCGA. This approach ensures that NDD combines the breadth of literature-derived evidence with the rigor of structured annotation.

Standardization Principles

  • Mutation nomenclature: Reported using HGVS format (e.g., KRAS p.G12D). Mutation descriptions are preserved as given in the original publications, which may reference different genome builds (commonly hg19 or hg38). In v0.1, all entries retain their original reporting style; future versions will unify genome references to improve comparability.
  • Cancer type classification: Manually normalized and mapped to widely used taxonomies such as IntOGen and TCGA, ensuring consistent categorization across diverse studies.
  • HLA typing: Harmonized to four-digit resolution (e.g., HLA-A02:01), with aliases and shorthand notations consolidated.

Quality Control

  • Missing values are explicitly marked as NA.
  • Consistency checks combine manual review with automated scripts to validate key fields.
  • Future improvements will include automated QC pipelines to further minimize potential errors.
  • Source traceability is preserved for every entry, ensuring reproducibility and enabling direct comparison with original publications.

Detailed documentation of the tools, versions, and parameters used for feature annotation is provided in docs/predicted-features.md.


Fields & Features

NDD provides information at three levels: basic fields, predicted features, and patient-level metadata. Together, these dimensions make the dataset suitable for modeling and exploratory research.

  • Basic fields capture essential information from original reports, including:
    patient ID, tumor type, gene/mutation (HGVS), mutant and wild-type peptides, HLA allele, experimental method.
    These fields form the foundation of each entry.

  • Predicted features extend each record with annotations widely used in neoantigen research, such as:
    binding affinity and rank (NetMHCpan), stability (NetMHCstabpan), recognition likelihood (PRIME, BigMHC_IM), cleavage and transport scores (NetChop, NetCTLpan), differential agretopicity index (DAI), anchor mutation position, TCGA cancer expression (TPM median), and driver gene status (IntOGen).
    These features make the dataset directly applicable to machine learning tasks.

  • Patient-level metadata (when available) include additional information such as extended HLA typing, clinical outcomes, or treatment details. In the current release these data are limited and not yet complete, but we recognize their importance and will continue to expand and refine this part of the dataset in future versions.

Field definitions and detailed documentation are provided in the docs/ directory, including:

  • field-schema.md — definitions of basic fields
  • predicted-features.md — list and description of predicted features
  • patient-metadata.md — definitions of patient-level metadata (when available)

Usage & Format

The dataset is released in tab-separated values (TSV, UTF-8 encoded) format.

  • Main file: data/ndd_v0.2.tsv
    Each row represents a mutation–HLA–peptide entry, combining both basic fields and predicted features.

  • Patient-level metadata: data/patient_metadata_v0.2.tsv
    Contains information at the patient dimension, such as extended HLA typing, clinical outcomes, and treatment details when available.

Note: Patient IDs are anonymized to ensure privacy but remain consistent across files, enabling cohort-level analysis.

Limitations

  • Patient-level metadata are currently limited in number and completeness, reflecting what is available in published sources.
  • Certain molecular features (e.g., RNA-seq coverage, expression levels, clonality, cancer cell fraction) are not yet integrated in this release. Only TCGA cancer expression (TPM median) is included.
  • Cancer type mapping to TCGA or IntOGen was performed internally during curation but is not included in the public dataset. Researchers may apply their own mapping according to their needs.

These reflect the present scope of published evidence and curation coverage. Future versions will progressively expand molecular features and strengthen patient-level annotations.

Versioning & Updates

  • Current version: v0.2
    This release contains 257 curated positive neoantigen peptides, covering 25 cancer types and 46 unique HLA class I alleles.
    All entries are experimentally validated for immunogenicity and include harmonized molecular features such as binding rank, stability, anchor mutation, and expression context.
    Peptide lengths range from 8–13 amino acids, with 9-mers remaining the most common.

  • Update strategy
    NDD v0.2 represents a focused, high-quality subset of experimentally confirmed positive neoantigens,
    refined to support transparent benchmarking and community collaboration.
    Future versions will expand by incorporating validated negatives, additional mutation types,
    and extended clinical metadata to enable comprehensive model training and evaluation.

  • Changelog
    All modifications, new fields, and updates are documented in CHANGELOG.md,
    including patient cohort adjustments and dataset schema consistency.

  • Reproducibility
    Historical drafts prior to v0.2 have been deprecated and are no longer public,
    ensuring that analyses and benchmarks reference a single, consistent dataset release.


Community & Contributions

NDD is an open community project, and we warmly welcome participation from researchers, clinicians, and data scientists. There are several ways to get involved:

  • Feedback & suggestions
    Since the dataset has been curated largely through manual annotation and standardization, omissions or errors may remain. We sincerely welcome any feedback or corrections.

  • Data contributions
    You are encouraged to share new data sources, patient cohorts, or predictive features that could enrich future releases.

  • Collaboration & discussion
    We invite contributions in areas such as data curation, feature development, or method benchmarking. Open discussions and new ideas are welcome.

  • Pull requests (PRs)
    If you wish to directly improve documentation, metadata, or scripts, you can submit a pull request — a standard GitHub workflow for proposing changes. This allows us to review your edits and merge them into the main project.

All contributions will be acknowledged in future version updates.


Citation

If you use NDD in your research, please cite as:

Neoantigen Discovery Dataset (NDD), version 0.2

GitHub Repository: https://github.com/NeoDiscovery/NDD

Hugging Face Dataset: https://huggingface.co/datasets/NeoDiscovery/NDD

For formal publications, you may include the following BibTeX entry:

@misc{ndd2025,
  title        = {Neoantigen Discovery Dataset (NDD), version 0.2},
  author       = {{Neoantigen Discovery Dataset (NDD) Contributors}},
  year         = {2025},
  howpublished = {\url{https://github.com/NeoDiscovery/NDD}},
  note         = {Accessed: YYYY-MM-DD}
}

License & Contact

Acknowledgments

We thank the broader research community for making data and tools publicly available, which has greatly facilitated the development of NDD.
We also appreciate earlier efforts to compile and share neoantigen-related datasets, which provided valuable references during our work.

License

  • Code and scripts: released under the MIT License.
  • Dataset files (e.g., .tsv, .csv, .parquet): released under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
    Users are free to share and adapt the dataset with proper attribution, in accordance with the license terms.

Full license texts are available in the LICENSE and DATA_LICENSE files in this repository.

Contact

For questions, feedback, or collaboration:

Downloads last month
22

Space using NeoDiscovery/NDD 1