prodiff-model / ProDiff /preprocess_data_temporal.py
Wuhuwill's picture
Upload ProDiff/preprocess_data_temporal.py with huggingface_hub
25b6d23 verified
import pandas as pd
import h5py
import numpy as np
from tqdm import tqdm
import os
def create_h5_temporal_split(csv_path, train_h5_path, test_h5_path, train_ratio=0.8):
"""
使用时间分割策略:每个用户的轨迹按时间分割,前80%用于训练,后20%用于测试
这样可以测试模型对同一用户未来轨迹的预测能力,同时保留所有用户的路径模式
"""
print(f"Loading data from {csv_path}...")
try:
df = pd.read_csv(csv_path, parse_dates=['datetime'])
except Exception as e:
print(f"Error reading or parsing CSV: {e}")
return
print("Sorting data by user and time...")
df.sort_values(by=['userid', 'datetime'], inplace=True)
all_user_ids = df['userid'].unique()
print(f"Total users: {len(all_user_ids)}")
print(f"Using temporal split: {train_ratio*100:.0f}% for training, {(1-train_ratio)*100:.0f}% for testing")
# 为训练集和测试集创建HDF5文件
train_sample_count = 0
test_sample_count = 0
with h5py.File(train_h5_path, 'w') as train_h5f, h5py.File(test_h5_path, 'w') as test_h5f:
for user_id in tqdm(all_user_ids, desc="Processing users"):
user_df = df[df['userid'] == user_id].sort_values('datetime')
# 按时间分割:前train_ratio用于训练,后面用于测试
split_point = int(len(user_df) * train_ratio)
train_user_df = user_df.iloc[:split_point]
test_user_df = user_df.iloc[split_point:]
# 处理训练数据(如果有足够的数据点)
if len(train_user_df) > 0:
timestamps = train_user_df['datetime'].apply(lambda x: x.timestamp()).values
latitudes = train_user_df['lat'].values
longitudes = train_user_df['lng'].values
train_user_group = train_h5f.create_group(f"{user_id}_train")
train_user_group.create_dataset('hours', data=timestamps, dtype='float64')
train_user_group.create_dataset('latitudes', data=latitudes, dtype='float64')
train_user_group.create_dataset('longitudes', data=longitudes, dtype='float64')
train_sample_count += len(timestamps)
# 处理测试数据(如果有足够的数据点)
if len(test_user_df) > 0:
timestamps = test_user_df['datetime'].apply(lambda x: x.timestamp()).values
latitudes = test_user_df['lat'].values
longitudes = test_user_df['lng'].values
test_user_group = test_h5f.create_group(f"{user_id}_test")
test_user_group.create_dataset('hours', data=timestamps, dtype='float64')
test_user_group.create_dataset('latitudes', data=latitudes, dtype='float64')
test_user_group.create_dataset('longitudes', data=longitudes, dtype='float64')
test_sample_count += len(timestamps)
print(f"\nData processing complete!")
print(f"Training samples: {train_sample_count}")
print(f"Testing samples: {test_sample_count}")
print(f"Train file saved to: {train_h5_path}")
print(f"Test file saved to: {test_h5_path}")
def create_h5_mixed_split(csv_path, train_h5_path, test_h5_path, full_test_users=5, temporal_ratio=0.8):
"""
混合分割策略:
- 少数用户完全作为测试集(测试跨用户泛化)
- 其余用户按时间分割(测试时间泛化)
"""
print(f"Loading data from {csv_path}...")
try:
df = pd.read_csv(csv_path, parse_dates=['datetime'])
except Exception as e:
print(f"Error reading or parsing CSV: {e}")
return
print("Sorting data by user and time...")
df.sort_values(by=['userid', 'datetime'], inplace=True)
all_user_ids = df['userid'].unique()
# 随机选择几个用户完全作为测试集
np.random.seed(42) # 固定随机种子确保可重复
full_test_user_ids = set(np.random.choice(all_user_ids, size=full_test_users, replace=False))
temporal_split_user_ids = set(all_user_ids) - full_test_user_ids
print(f"Total users: {len(all_user_ids)}")
print(f"Users for temporal split: {len(temporal_split_user_ids)}")
print(f"Users completely in test set: {len(full_test_user_ids)}")
print(f"Full test users: {sorted(full_test_user_ids)}")
train_sample_count = 0
test_sample_count = 0
with h5py.File(train_h5_path, 'w') as train_h5f, h5py.File(test_h5_path, 'w') as test_h5f:
# 处理时间分割的用户
for user_id in tqdm(temporal_split_user_ids, desc="Processing temporal split users"):
user_df = df[df['userid'] == user_id].sort_values('datetime')
split_point = int(len(user_df) * temporal_ratio)
train_user_df = user_df.iloc[:split_point]
test_user_df = user_df.iloc[split_point:]
# 训练数据
if len(train_user_df) > 0:
timestamps = train_user_df['datetime'].apply(lambda x: x.timestamp()).values
latitudes = train_user_df['lat'].values
longitudes = train_user_df['lng'].values
train_user_group = train_h5f.create_group(f"{user_id}_temporal")
train_user_group.create_dataset('hours', data=timestamps, dtype='float64')
train_user_group.create_dataset('latitudes', data=latitudes, dtype='float64')
train_user_group.create_dataset('longitudes', data=longitudes, dtype='float64')
train_sample_count += len(timestamps)
# 测试数据
if len(test_user_df) > 0:
timestamps = test_user_df['datetime'].apply(lambda x: x.timestamp()).values
latitudes = test_user_df['lat'].values
longitudes = test_user_df['lng'].values
test_user_group = test_h5f.create_group(f"{user_id}_temporal")
test_user_group.create_dataset('hours', data=timestamps, dtype='float64')
test_user_group.create_dataset('latitudes', data=latitudes, dtype='float64')
test_user_group.create_dataset('longitudes', data=longitudes, dtype='float64')
test_sample_count += len(timestamps)
# 处理完全作为测试集的用户
for user_id in tqdm(full_test_user_ids, desc="Processing full test users"):
user_df = df[df['userid'] == user_id].sort_values('datetime')
timestamps = user_df['datetime'].apply(lambda x: x.timestamp()).values
latitudes = user_df['lat'].values
longitudes = user_df['lng'].values
test_user_group = test_h5f.create_group(f"{user_id}_full")
test_user_group.create_dataset('hours', data=timestamps, dtype='float64')
test_user_group.create_dataset('latitudes', data=latitudes, dtype='float64')
test_user_group.create_dataset('longitudes', data=longitudes, dtype='float64')
test_sample_count += len(timestamps)
print(f"\nMixed split processing complete!")
print(f"Training samples: {train_sample_count}")
print(f"Testing samples: {test_sample_count}")
print(f"Train file saved to: {train_h5_path}")
print(f"Test file saved to: {test_h5_path}")
if __name__ == '__main__':
# 配置
# 直接使用新的轨迹数据文件
CSV_DATA_PATH = 'data/matched_trajectory_data.csv'
output_dir = 'data'
print(f"将使用输入文件: {CSV_DATA_PATH}")
print("将使用时间分割策略生成 train_temporal.h5 和 test_temporal.h5")
# 定义输出路径
TRAIN_H5_PATH = os.path.join(output_dir, 'train_temporal.h5')
TEST_H5_PATH = os.path.join(output_dir, 'test_temporal.h5')
# 运行转换
create_h5_temporal_split(CSV_DATA_PATH, TRAIN_H5_PATH, TEST_H5_PATH)
# 验证生成的文件
print("\n验证生成的HDF5文件...")
try:
with h5py.File(TRAIN_H5_PATH, 'r') as h5f:
print(f"训练集包含 {len(h5f.keys())} 个用户组")
if h5f.keys():
sample_key = list(h5f.keys())[0]
sample_group = h5f[sample_key]
print(f"示例用户组 '{sample_key}':")
for dset_name in sample_group.keys():
dset = sample_group[dset_name]
print(f" - {dset_name}: {dset.shape}")
except Exception as e:
print(f"验证文件时出错: {e}")