Wuhuwill's picture
Upload ProDiff/test.py with huggingface_hub
766d56c verified
import os
import torch
import numpy as np
from tqdm import tqdm
import torch.nn.functional as F
from utils.metric import *
from dataset.data_util import MinMaxScaler
from utils.utils import mask_data_general, ddp_setup, continuous_mask_data, continuous_time_based_mask, mask_multiple_segments
# Diffusion model will be imported directly in the main script that calls this test function.
# from diffProModel.Diffusion import Diffusion # No, pass model as argument
def test_model(test_dataloader, diffusion_model, short_samples_model, config, epoch,
prototypes, device, logger, exp_dir):
"""
Test the unified Diffusion model (DDPM or DDIM) on the test dataset.
Args:
test_dataloader: DataLoader for test data.
diffusion_model: The unified diffusion model (instance of diffProModel.Diffusion.Diffusion).
short_samples_model: Trajectory transformer model for feature extraction.
config: Configuration object.
epoch: Current epoch number (or identifier for the test run).
prototypes: Prototype vectors (e.g., from TrajectoryTransformer or K-Means).
device: Device to run the model on (already determined by the caller).
logger: Logger object.
exp_dir: Experiment directory path.
"""
# Determine distributed status and local_rank first
distributed = config.training.dis_gpu
local_rank = 0
if distributed:
# If DDP is active, LOCAL_RANK should be set by the environment.
# ddp_setup should have been called by the parent process (e.g., train_main or main for DDP launch)
# test_model itself typically does not re-initialize DDP.
try:
local_rank = int(os.environ.get('LOCAL_RANK', 0))
except ValueError:
if logger: logger.warning("LOCAL_RANK environment variable not a valid integer. Defaulting to 0.")
local_rank = 0
# The 'device' argument passed to this function should be the correct one to use.
thresholds = [i for i in range(1000, 11000, 1000)] # Thresholds for TC metric
# Initialize lists to store metrics for each batch
mtd_list, mppe_list, maepp_list, maeps_list, aptc_list, avg_aptc_list, max_td_list = [], [], [], [], [], [], []
# Get sampling parameters from config (assuming they are in config.sampling)
sampling_type = getattr(config.sampling, 'type', 'ddpm') # Default to ddpm if not specified
ddim_steps = getattr(config.sampling, 'ddim_steps', 50)
ddim_eta = getattr(config.sampling, 'ddim_eta', 0.0)
debug_mode = getattr(config, 'debug', False) # General debug flag
if logger and local_rank == 0: # Ensure logger operations happen on rank 0 if distributed
logger.info(f"Testing with sampling_type: {sampling_type} for epoch {epoch}")
if sampling_type == 'ddim':
logger.info(f"DDIM steps: {ddim_steps}, DDIM eta: {ddim_eta}")
diffusion_model.eval() # Ensure diffusion model is in eval mode
short_samples_model.eval() # Ensure feature extractor is in eval mode
pbar_desc = f"Epoch {epoch} Test Progress ({sampling_type.upper()})"
for batch_idx, (abs_time, lat, lng) in enumerate(tqdm(test_dataloader, desc=pbar_desc, disable=(local_rank != 0))):
if debug_mode and logger and local_rank == 0:
logger.info(f"Batch {batch_idx} - Input shapes: abs_time {abs_time.shape}, lat {lat.shape}, lng {lng.shape}")
logger.info(f"Input data stats - abs_time: min={abs_time.min().item():.4f}, max={abs_time.max().item():.4f}, " +
f"lat: min={lat.min().item():.4f}, max={lat.max().item():.4f}, " +
f"lng: min={lng.min().item():.4f}, max={lng.max().item():.4f}")
if torch.isnan(abs_time).any() or torch.isnan(lat).any() or torch.isnan(lng).any():
if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected in input data!")
continue
# Prepare input tensor (ground truth for start/end points and for scaling)
# This testx_raw is used for scaler fitting and as test_x0 for diffusion model
testx_raw = torch.stack([abs_time, lat, lng], dim=-1).to(device)
# Use global normalization parameters for consistency
scaler = MinMaxScaler(global_params_file='./data/robust_normalization_params.json')
scaler.fit(testx_raw) # This does nothing for global scaler, but maintains interface
testx_scaled = scaler.transform(testx_raw) # Scale data
if debug_mode and logger and local_rank == 0:
logger.info(f"Scaler min: {scaler.min_val.flatten().cpu().numpy()}, max: {scaler.max_val.flatten().cpu().numpy()}")
if torch.isnan(testx_scaled).any():
if logger and local_rank == 0:
logger.error(f"Batch {batch_idx} - NaN detected after scaling!")
if torch.any(scaler.max_val == scaler.min_val):
logger.error("Division by zero in scaler possible: max_val equals min_val for some features.")
continue
# Permute for diffusion model input: (batch_size, num_features, traj_length)
testx_scaled_permuted = testx_scaled.permute(0, 2, 1)
# Apply masking
if config.masking_strategy == 'general':
masked_condition_permuted = mask_data_general(testx_scaled_permuted)
elif config.masking_strategy == 'continuous':
masked_condition_permuted = continuous_mask_data(testx_scaled_permuted, config.mask_ratio)
elif config.masking_strategy == 'time_based':
masked_condition_permuted = continuous_time_based_mask(testx_scaled_permuted, points_to_mask=config.mask_points_per_hour)
elif config.masking_strategy == 'multi_segment':
masked_condition_permuted = mask_multiple_segments(testx_scaled_permuted, points_per_segment=config.mask_segments)
else:
raise ValueError(f"Unknown masking strategy: {config.masking_strategy}")
masked_condition = masked_condition_permuted.permute(0, 2, 1)
with torch.no_grad():
_, query_features = short_samples_model(masked_condition)
if torch.isnan(query_features).any():
if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected in query_features!")
continue
if torch.isnan(prototypes).any():
if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected in provided prototypes!")
continue
# Match query features with prototypes (e.g., via cosine similarity and softmax attention)
# This logic should align with how matched_prototypes are generated during training
cos_sim = F.cosine_similarity(query_features.unsqueeze(1), prototypes.unsqueeze(0), dim=-1)
if torch.isnan(cos_sim).any():
if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected in cos_sim!")
continue
# Using the same attention-weighted sum as in the unified training script
d_k = query_features.size(-1)
scaled_cos_sim = F.softmax(cos_sim / np.sqrt(d_k), dim=-1)
matched_prototypes_for_diffusion = torch.matmul(scaled_cos_sim, prototypes).to(device)
if torch.isnan(matched_prototypes_for_diffusion).any():
if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected in matched_prototypes!")
continue
if debug_mode and logger and local_rank == 0:
logger.info(f"Sampling with type: {sampling_type}, DDIM steps: {ddim_steps}, eta: {ddim_eta}")
logger.info(f"Input to diffusion model (testx_scaled_permuted) shape: {testx_scaled_permuted.shape}, "
f"masked condition (masked_condition_permuted) shape: {masked_condition_permuted.shape}, "
f"matched prototypes shape: {matched_prototypes_for_diffusion.shape}")
try:
pred_x0_scaled = diffusion_model.sample(
test_x0=testx_scaled_permuted, # Ground truth (scaled) for start/end points and reference
attr=masked_condition_permuted, # Masked data for conditional U-Net input (GuideNet attr)
prototype=matched_prototypes_for_diffusion, # Matched prototypes for GuideNet
sampling_type=sampling_type,
ddim_num_steps=ddim_steps,
ddim_eta=ddim_eta
)
if torch.isnan(pred_x0_scaled).any():
if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected in Diffusion model output!")
continue
except Exception as e:
if logger and local_rank == 0: logger.error(f"Exception during Diffusion model sampling: {str(e)}")
import traceback
if logger and local_rank == 0: logger.error(traceback.format_exc())
continue
# pred_x0_scaled is (batch_size, num_features, traj_length)
pred_x0_scaled_unpermuted = pred_x0_scaled.permute(0, 2, 1)
if debug_mode and logger and local_rank == 0:
logger.info(f"pred_x0_scaled_unpermuted stats before inverse_transform: min={pred_x0_scaled_unpermuted.min().item():.4f}, max={pred_x0_scaled_unpermuted.max().item():.4f}")
if (pred_x0_scaled_unpermuted < 0).any() or (pred_x0_scaled_unpermuted > 1).any():
if logger and local_rank == 0:
logger.warning(f"Batch {batch_idx} - Values outside [0,1] in pred_x0_scaled: min={pred_x0_scaled_unpermuted.min().item():.4f}, max={pred_x0_scaled_unpermuted.max().item():.4f}. Clamping.")
pred_x0_scaled_unpermuted = torch.clamp(pred_x0_scaled_unpermuted, 0, 1)
# Inverse transform to original data scale - ensure this happens on the correct device
pred_x0_final = scaler.inverse_transform(pred_x0_scaled_unpermuted)
ground_truth_final = testx_raw.cpu()
if torch.isnan(pred_x0_final).any() or torch.isnan(ground_truth_final).any():
if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected after inverse transform!")
continue
# Move to CPU before converting to NumPy for metric calculation
pred_x0_np = pred_x0_final.cpu().numpy()
ground_truth_np = ground_truth_final.numpy()
if debug_mode and logger and local_rank == 0:
logger.info(f"Shapes for metrics: pred_x0_np {pred_x0_np.shape}, ground_truth_np {ground_truth_np.shape}")
logger.info(f"pred_x0_np stats: min={np.min(pred_x0_np):.4f}, max={np.max(pred_x0_np):.4f}")
logger.info(f"ground_truth_np stats: min={np.min(ground_truth_np):.4f}, max={np.max(ground_truth_np):.4f}")
try:
mtd_list.append(mean_trajectory_deviation(pred_x0_np, ground_truth_np))
mppe_list.append(mean_point_to_point_error(pred_x0_np, ground_truth_np))
maepp_list.append(mean_absolute_error_per_point(pred_x0_np[:, :, 0], ground_truth_np[:, :, 0]))
maeps_list.append(mean_absolute_error_per_sample(pred_x0_np[:, :, 0], ground_truth_np[:, :, 0]))
aptc_result, avg_aptc_result = trajectory_coverage(pred_x0_np, ground_truth_np, thresholds)
aptc_list.append(aptc_result)
avg_aptc_list.append(avg_aptc_result)
max_td_list.append(max_trajectory_deviation(pred_x0_np, ground_truth_np))
except Exception as e:
if logger and local_rank == 0: logger.error(f"Exception during metric calculation in batch {batch_idx}: {str(e)}")
if debug_mode and logger and local_rank == 0: import traceback; logger.error(traceback.format_exc())
continue
if debug_mode and batch_idx == 0 and os.environ.get('PROJECT_DEBUG_MODE', '0') == '1': # Use a distinct env var for this specific break
if logger and local_rank == 0: logger.info("Project debug mode: Breaking after first test batch")
break
# Aggregate and log metrics (only on rank 0 if distributed)
if local_rank == 0:
mean_mtd = np.mean(mtd_list) if mtd_list else float('nan')
mean_mppe = np.mean(mppe_list) if mppe_list else float('nan')
mean_maepp = np.mean(maepp_list) if maepp_list else float('nan')
mean_maeps = np.mean(maeps_list) if maeps_list else float('nan')
mean_avg_aptc = np.mean(avg_aptc_list) if avg_aptc_list else float('nan')
mean_max_td = np.max(max_td_list) if max_td_list else float('nan') # MaxTD is max over all samples
mean_aptc_thresholds = {k: np.mean([d[k] for d in aptc_list if k in d]) for k in aptc_list[0]} if aptc_list else {f'TC@{thr}': float('nan') for thr in thresholds}
if logger:
logger.info(f"--- Test Results for Epoch {epoch} ({sampling_type.upper()}) ---")
logger.info(f"Mean MTD: {mean_mtd:.4f}")
logger.info(f"Mean MPPE: {mean_mppe:.4f}")
logger.info(f"Mean MAEPP (time): {mean_maepp:.4f}")
logger.info(f"Mean MAEPS (time): {mean_maeps:.4f}")
logger.info(f"Mean AVG_TC: {mean_avg_aptc:.4f}")
logger.info(f"Overall MaxTD: {mean_max_td:.4f}")
for threshold_val, tc_val in mean_aptc_thresholds.items():
logger.info(f"Mean {threshold_val}: {tc_val:.4f}")
if sampling_type == 'ddim':
logger.info(f"DDIM sampling with {ddim_steps} steps, eta: {ddim_eta:.2f}")
else:
logger.info(f"DDPM sampling with {config.diffusion.num_diffusion_timesteps} steps")
# Save results to .npy files
results_dir = exp_dir / 'results'
os.makedirs(results_dir, exist_ok=True)
sampling_prefix = f"{sampling_type.upper()}_"
def save_metric_npy(metric_name, value, current_epoch):
file_path = results_dir / f"{sampling_prefix}Test_mean_{metric_name}.npy"
if np.isnan(value): return # Don't save if NaN
if os.path.exists(file_path):
try:
existing_data = np.load(file_path, allow_pickle=True).item()
except: # Handle empty or corrupted file
existing_data = {}
existing_data[current_epoch] = value
else:
existing_data = {current_epoch: value}
np.save(file_path, existing_data)
save_metric_npy('mtd', mean_mtd, epoch)
save_metric_npy('mppe', mean_mppe, epoch)
save_metric_npy('maepp', mean_maepp, epoch)
save_metric_npy('maeps', mean_maeps, epoch)
save_metric_npy('avg_aptc', mean_avg_aptc, epoch)
save_metric_npy('max_td', mean_max_td, epoch)
for threshold_key, tc_value in mean_aptc_thresholds.items():
metric_key_name = threshold_key.replace('@', '_at_') # Sanitize for filename
save_metric_npy(f"tc_{metric_key_name}", tc_value, epoch)
if logger: logger.info(f"Saved test metrics to {results_dir}")
# Ensure all processes finish if in DDP, though testing is usually single-process or rank 0 handles results
if torch.distributed.is_initialized():
torch.distributed.barrier() # Wait for all processes if any were involved
return { # Return main metrics, could be useful for main script
"mean_mtd": mean_mtd,
"mean_mppe": mean_mppe
} if local_rank == 0 else {}