Wuhuwill's picture
Upload ProDiff/train.py with huggingface_hub
2842611 verified
import os
import torch
from torch import nn
import torch.nn.functional as F
import itertools
import numpy as np
from tqdm import tqdm
from torch.utils.data import DataLoader, DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
from torch.utils.data import TensorDataset
from datetime import datetime
from torch.optim.lr_scheduler import LambdaLR
import sys
from utils.logger import Logger
from dataset.data_util import MinMaxScaler, TrajectoryDataset
from utils.utils import IterativeKMeans, assign_labels, get_positive_negative_pairs, mask_data_general, get_data_paths, continuous_mask_data, continuous_time_based_mask, mask_multiple_segments
from diffProModel.loss import ContrastiveLoss
from diffProModel.protoTrans import TrajectoryTransformer
from diffProModel.Diffusion import Diffusion
from test import test_model # Import test_model
def ddp_setup(distributed):
"""Initialize the process group for distributed data parallel if distributed is True."""
if distributed:
if not torch.distributed.is_initialized():
init_process_group(backend="nccl")
torch.cuda.set_device(int(os.environ['LOCAL_RANK']))
def setup_model_save_directory(exp_dir, timestamp):
"""Set up the directory for saving model checkpoints."""
model_save_path = exp_dir / 'models' / (timestamp + '/')
os.makedirs(model_save_path, exist_ok=True)
return model_save_path
def lr_lambda_fn(current_epoch, warmup_epochs, total_epochs):
if current_epoch < warmup_epochs:
return float(current_epoch) / float(max(1, warmup_epochs))
return 0.5 * (1. + torch.cos(torch.tensor(torch.pi * (current_epoch - warmup_epochs) / float(total_epochs - warmup_epochs))))
def train_main(config, logger, exp_dir, timestamp_str):
"""Main function to run the training and testing pipeline for DDPM or DDIM."""
distributed = config.dis_gpu
local_rank = 0 # Default for non-DDP logging/master tasks
#logger.info(config.validation_freq) # 1
if distributed:
ddp_setup(distributed) # This also calls torch.cuda.set_device(os.environ['LOCAL_RANK'])
local_rank = int(os.environ['LOCAL_RANK'])
device = torch.device(f'cuda:{local_rank}')
else:
device_id_to_use = config.device_id
if torch.cuda.is_available():
torch.cuda.set_device(device_id_to_use)
device = torch.device(f'cuda:{device_id_to_use}')
else:
device = torch.device('cpu')
train_file_paths = get_data_paths(config.data, for_train=True)
diffusion_model = Diffusion(loss_type=config.model.loss_type, config=config).to(device)
lr = config.learning_rate
model_save_dir = setup_model_save_directory(exp_dir, timestamp_str)
train_dataset = TrajectoryDataset(train_file_paths, config.data.traj_length)
train_sampler = DistributedSampler(train_dataset, shuffle=True) if distributed else None
train_dataloader = DataLoader(train_dataset,
batch_size=config.batch_size,
shuffle=(train_sampler is None),
num_workers=config.data.num_workers,
drop_last=True,
sampler=train_sampler,
pin_memory=True)
# Create Test DataLoader
test_file_paths = get_data_paths(config.data, for_train=False)
test_dataset = TrajectoryDataset(test_file_paths, config.data.traj_length)
test_dataloader = DataLoader(test_dataset,
batch_size=config.sampling.batch_size, # Use sampling batch_size from config
shuffle=False,
num_workers=config.data.num_workers,
drop_last=False, # Typically False for full test set evaluation
pin_memory=True)
if distributed:
diffusion_model = DDP(diffusion_model, device_ids=[local_rank], find_unused_parameters=False)
short_samples_model = TrajectoryTransformer(
input_dim=config.trans.input_dim,
embed_dim=config.trans.embed_dim,
num_layers=config.trans.num_layers,
num_heads=config.trans.num_heads,
forward_dim=config.trans.forward_dim,
seq_len=config.data.traj_length,
n_cluster=config.trans.N_CLUSTER,
dropout=config.trans.dropout
).to(device)
if distributed:
short_samples_model = DDP(short_samples_model, device_ids=[local_rank], find_unused_parameters=False)
optim = torch.optim.AdamW(itertools.chain(diffusion_model.parameters(), short_samples_model.parameters()), lr=lr, foreach=False)
warmup_epochs = config.warmup_epochs
total_epochs = config.n_epochs
scheduler = LambdaLR(optim, lr_lambda=lambda epoch: lr_lambda_fn(epoch, warmup_epochs, total_epochs))
losses_dict = {}
contrastive_loss_fn = ContrastiveLoss(margin=config.contrastive_margin)
ce_loss_fn = nn.CrossEntropyLoss()
for epoch in range(1, config.n_epochs + 1):
if distributed:
train_sampler.set_epoch(epoch)
epoch_losses = []
previous_features_for_kmeans = []
if local_rank == 0:
logger.info(f"<----Epoch-{epoch}---->")
kmeans = IterativeKMeans(num_clusters=config.trans.N_CLUSTER, device=device)
pbar = tqdm(train_dataloader, desc=f"Epoch {epoch} Training", disable=(local_rank != 0))
for batch_idx, (abs_time, lat, lng) in enumerate(pbar):
trainx_raw = torch.stack([abs_time, lat, lng], dim=-1).to(device)
# Use global normalization parameters to avoid per-batch inconsistency
scaler = MinMaxScaler(global_params_file='./data/robust_normalization_params.json')
scaler.fit(trainx_raw) # This does nothing for global scaler, but maintains interface
trainx_scaled = scaler.transform(trainx_raw)
prototypes_from_transformer, features_for_kmeans_and_contrastive = short_samples_model(trainx_scaled)
if not previous_features_for_kmeans:
current_batch_prototypes_kmeans, _ = kmeans.fit(features_for_kmeans_and_contrastive.detach())
else:
features_memory = torch.cat(previous_features_for_kmeans, dim=0).detach()
current_batch_prototypes_kmeans, _ = kmeans.update(features_for_kmeans_and_contrastive.detach(), features_memory)
if len(previous_features_for_kmeans) < config.kmeans_memory_size:
previous_features_for_kmeans.append(features_for_kmeans_and_contrastive.detach())
elif config.kmeans_memory_size > 0 :
previous_features_for_kmeans.pop(0)
previous_features_for_kmeans.append(features_for_kmeans_and_contrastive.detach())
# Permute the dimensions to match the model's expected input shape
x0_for_diffusion = trainx_scaled.permute(0, 2, 1)
# Apply masking
if config.masking_strategy == 'general':
masked_x0_condition_diffusion = mask_data_general(x0_for_diffusion)
elif config.masking_strategy == 'continuous':
masked_x0_condition_diffusion = continuous_mask_data(x0_for_diffusion, config.mask_ratio)
elif config.masking_strategy == 'time_based':
masked_x0_condition_diffusion = continuous_time_based_mask(x0_for_diffusion, points_to_mask=config.mask_points_per_hour)
elif config.masking_strategy == 'multi_segment':
masked_x0_condition_diffusion = mask_multiple_segments(x0_for_diffusion, points_per_segment=config.mask_segments)
else:
raise ValueError(f"Unknown masking strategy: {config.masking_strategy}")
masked_x0_permuted_for_ssm = masked_x0_condition_diffusion.permute(0, 2, 1)
with torch.no_grad():
_, query_features_from_masked = short_samples_model(masked_x0_permuted_for_ssm)
cos_sim = F.cosine_similarity(query_features_from_masked.unsqueeze(1), prototypes_from_transformer.unsqueeze(0), dim=-1)
d_k = query_features_from_masked.size(-1)
scaled_cos_sim = F.softmax(cos_sim / np.sqrt(d_k), dim=-1)
matched_prototypes_for_diffusion = torch.matmul(scaled_cos_sim, prototypes_from_transformer)
positive_pairs, negative_pairs = get_positive_negative_pairs(prototypes_from_transformer, features_for_kmeans_and_contrastive)
contrastive_loss_val = contrastive_loss_fn(features_for_kmeans_and_contrastive, positive_pairs, negative_pairs)
contrastive_loss_val = contrastive_loss_val * config.contrastive_loss_weight
labels_from_transformer_protos = assign_labels(prototypes_from_transformer.detach(), features_for_kmeans_and_contrastive.detach()).long()
labels_from_kmeans = kmeans.predict(features_for_kmeans_and_contrastive.detach()).long()
ce_loss_val = torch.tensor(0.0, device=device)
if config.ce_loss_weight > 0:
logits_for_ce = features_for_kmeans_and_contrastive @ F.normalize(prototypes_from_transformer.detach(), dim=-1).T
ce_loss_val = ce_loss_fn(logits_for_ce, labels_from_kmeans)
ce_loss_val = ce_loss_val * config.ce_loss_weight
diffusion_model_ref = diffusion_model.module if distributed else diffusion_model
diffusion_loss_val = diffusion_model_ref.trainer(
x0_for_diffusion.float(),
masked_x0_condition_diffusion.float(),
matched_prototypes_for_diffusion.float(),
weights=config.diffusion_loss_weight
)
total_loss = diffusion_loss_val + ce_loss_val + contrastive_loss_val
optim.zero_grad()
total_loss.backward()
torch.nn.utils.clip_grad_norm_(itertools.chain(diffusion_model.parameters(), short_samples_model.parameters()), max_norm=1.0)
optim.step()
epoch_losses.append(total_loss.item())
if local_rank == 0:
pbar.set_postfix({
'Loss': total_loss.item(),
'Diff': diffusion_loss_val.item(),
'Cont': contrastive_loss_val.item(),
'CE': ce_loss_val.item(),
'LR': optim.param_groups[0]['lr']
})
avg_epoch_loss = sum(epoch_losses) / len(epoch_losses) if epoch_losses else 0
losses_dict[epoch] = avg_epoch_loss
scheduler.step()
if local_rank == 0:
logger.info(f"Epoch {epoch} Avg Loss: {avg_epoch_loss:.4f}")
logger.info(f"Current LR: {optim.param_groups[0]['lr']:.6f}")
if epoch % config.validation_freq == 0 and local_rank == 0:
# Save model snapshot
diffusion_state_dict = diffusion_model.module.state_dict() if distributed else diffusion_model.state_dict()
transformer_state_dict = short_samples_model.module.state_dict() if distributed else short_samples_model.state_dict()
torch.save(diffusion_state_dict, model_save_dir / f"diffusion_model_epoch_{epoch}.pt")
torch.save(transformer_state_dict, model_save_dir / f"transformer_epoch_{epoch}.pt")
if 'prototypes_from_transformer' in locals(): # Check if prototypes were generated in this epoch
np.save(model_save_dir / f"prototypes_transformer_epoch_{epoch}.npy", prototypes_from_transformer.detach().cpu().numpy())
all_losses_path = exp_dir / 'results' / 'all_epoch_losses.npy'
current_losses_to_save = {e: l for e, l in losses_dict.items()}
if os.path.exists(all_losses_path):
try:
existing_losses = np.load(all_losses_path, allow_pickle=True).item()
existing_losses.update(current_losses_to_save)
np.save(all_losses_path, existing_losses)
except Exception as e:
if logger: logger.error(f"Error loading/updating losses file: {e}. Saving current losses only.")
np.save(all_losses_path, current_losses_to_save)
else:
np.save(all_losses_path, current_losses_to_save)
if logger: logger.info(f"Saved model and prototypes snapshot at epoch {epoch} to {model_save_dir}")
# Periodic validation call
if logger: logger.info(f"--- Starting validation for epoch {epoch} ---")
diffusion_model_to_test = diffusion_model.module if distributed else diffusion_model
short_samples_model_to_test = short_samples_model.module if distributed else short_samples_model
diffusion_model_to_test.eval()
short_samples_model_to_test.eval()
current_prototypes_for_test = short_samples_model_to_test.prototypes.detach()
with torch.no_grad():
test_model(
test_dataloader=test_dataloader,
diffusion_model=diffusion_model_to_test,
short_samples_model=short_samples_model_to_test,
config=config,
epoch=epoch,
prototypes=current_prototypes_for_test,
device=device,
logger=logger,
exp_dir=exp_dir
)
diffusion_model_to_test.train()
short_samples_model_to_test.train()
if logger: logger.info(f"--- Finished validation for epoch {epoch} ---")
if distributed:
destroy_process_group()
if logger and local_rank == 0: # Ensure logger calls are rank-specific
logger.info("Training finished.")