|
|
--- |
|
|
license: mit |
|
|
tags: |
|
|
- regression |
|
|
- latency |
|
|
- triton |
|
|
- leetcode |
|
|
- kernel |
|
|
- text regression |
|
|
task_categories: |
|
|
- text-generation |
|
|
--- |
|
|
|
|
|
# Code-Regression |
|
|
|
|
|
[Paper](https://huggingface.co/papers/2509.26476) | [GitHub Repository](https://github.com/google-deepmind/regress-lm/tree/main) | [Project Page](https://research.google/blog/simulating-large-systems-with-regression-language-models/) |
|
|
|
|
|
A unified regression dataset collated from three sources (APPS, KBSS, CDSS) along with our own custom profiling for training and evaluating regression models that map code strings to a target metric. This dataset supports "code-to-metric regression," which involves predicting numeric outcomes of code executions using Regression Language Models (RLM), as described in the linked paper. |
|
|
|
|
|
**Link for Graph-Regression dataset**: https://huggingface.co/datasets/akhauriyash/GraphArch-Regression |
|
|
|
|
|
**Link for Base Gemma-Adapted RLM model**: https://huggingface.co/akhauriyash/RLM-GemmaS-Code-v0 |
|
|
|
|
|
## Schema |
|
|
- **identifier** *(string)*: Source key for the example, e.g. `APPS_0`, `KBSS_1`, `CDSS_42`. |
|
|
- **space** *(string)*: Logical dataset split/source (`APPS`, `KBSS`, or `CDSS`). |
|
|
- **input** *(string)*: The input string (`shortest_onnx`). |
|
|
- **target_metric** *(string)*: Always `val_accuracy`. |
|
|
- **val_accuracy** *(number | null)*: The regression target. |
|
|
- **metric_type** *(string)*: Auxiliary metric family for this row: |
|
|
- `memory_bytes` for APPS and CDSS |
|
|
- `latency_ms` for KBSS |
|
|
- **metadata** *(string)*: A Python-dict-like string with source-specific information: |
|
|
- APPS: `problem_metainformation` cast to string. |
|
|
- KBSS: `{'stddev_ms': <value>}`. |
|
|
- CDSS: subset of fields `{s_id, p_id, u_id, date, language, original_language, filename_ext, status, cpu_time, memory, code_size}`. |
|
|
|
|
|
This dataset has 7502559 rows: |
|
|
- APPS: 98932 |
|
|
- CDSS (CodeNets): 7391012 |
|
|
- KBSS (Triton Kernels): 12615 |
|
|
|
|
|
> Tip: turn `metadata` back into a dict with: |
|
|
> ```python |
|
|
> from ast import literal_eval |
|
|
> meta = literal_eval(row["metadata"]) |
|
|
> ``` |
|
|
|
|
|
## How to load with 🤗 Datasets |
|
|
```python |
|
|
from datasets import load_dataset |
|
|
ds = load_dataset("akhauriyash/Code-Regression") |
|
|
``` |
|
|
|
|
|
## Sample Usage with `RegressLM` |
|
|
|
|
|
The `regress_lm` library provides the `RegressLM` class for decoding floating-point predictions from a given input and fine-tuning against new data. Below is an example of how to instantiate `RegressLM` and use it for inference. |
|
|
|
|
|
```python |
|
|
from regress_lm import core |
|
|
from regress_lm import rlm |
|
|
|
|
|
# Create RegressLM from scratch. Optionally, use `from_t5gemma_encoder`. |
|
|
reg_lm = rlm.RegressLM.from_scratch(max_input_len=2048) |
|
|
|
|
|
# Example (x,y) pairs, which can be fine-tuned against. |
|
|
examples = [core.Example(x='hello', y=0.3), core.Example(x='world', y=-0.3)] |
|
|
reg_lm.fine_tune(examples) |
|
|
|
|
|
# Query inputs. |
|
|
query1, query2 = core.ExampleInput(x='hi'), core.ExampleInput(x='bye') |
|
|
samples1, samples2 = reg_lm.sample([query1, query2], num_samples=128) |
|
|
``` |
|
|
|
|
|
## Testing Code-Regression with a basic Gemma RLM model |
|
|
|
|
|
Use the code below as reference for evaluating a basic RegressLM model ( better, more models to come! :) ) |
|
|
|
|
|
``` |
|
|
import torch |
|
|
import numpy as np |
|
|
from datasets import load_dataset |
|
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
from scipy.stats import spearmanr |
|
|
from tqdm import tqdm |
|
|
|
|
|
REPO_ID = "akhauriyash/RLM-GemmaS-Code-v0" |
|
|
DATASET = "akhauriyash/Code-Regression" |
|
|
dataset = load_dataset(DATASET, split="train") |
|
|
tok = AutoTokenizer.from_pretrained(REPO_ID, trust_remote_code=True) |
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(REPO_ID, trust_remote_code=True).to(device).eval() |
|
|
MAX_ITEMS, BATCH_SIZE, spaces, results = 512, 16, ["KBSS", "CDSS", "APPS"], {} |
|
|
language = None # Specify language for CDSS, e.g. "python" |
|
|
n_out_tokens = getattr(model.config, "num_tokens_per_obj", 8) * getattr(model.config, "max_num_objs", 1) |
|
|
n_out_tokens = model.config.num_tokens_per_obj * model.config.max_num_objs |
|
|
|
|
|
for SPACE in spaces: |
|
|
inputs, targets = [], [] |
|
|
for row in tqdm(dataset, desc=f"Processing {SPACE} till {MAX_ITEMS} items"): |
|
|
if row.get("space") == SPACE and "input" in row and "target" in row: |
|
|
try: |
|
|
lang = eval(row['metadata'])['language'] if SPACE == "CDSS" else None |
|
|
if SPACE != "CDSS" or language is None or lang == language: |
|
|
targets.append(float(row["target"])) |
|
|
if SPACE == "CDSS": |
|
|
inputs.append(f"# {SPACE} |
|
|
# Language: {lang} |
|
|
{row['input']}") |
|
|
else: |
|
|
inputs.append(f"{SPACE} |
|
|
{row['input']}") |
|
|
except: continue |
|
|
if len(inputs) >= MAX_ITEMS: break |
|
|
preds = [] |
|
|
for i in tqdm(range(0, len(inputs), BATCH_SIZE)): |
|
|
enc = tok(inputs[i:i+BATCH_SIZE], return_tensors="pt", truncation=True, padding=True, max_length=2048).to(device) |
|
|
batch_preds = [] |
|
|
for _ in range(8): |
|
|
out = model.generate(**enc, max_new_tokens=n_out_tokens, min_new_tokens=n_out_tokens, do_sample=True, top_p=0.95, temperature=1.0) |
|
|
decoded = [tok.token_ids_to_floats(seq.tolist()) for seq in out] |
|
|
decoded = [d[0] if isinstance(d, list) and d else float("nan") for d in decoded] |
|
|
batch_preds.append(decoded) |
|
|
preds.extend(torch.tensor(batch_preds).median(dim=0).values.tolist()) |
|
|
spear, _ = spearmanr(np.array(targets), np.array(preds)) |
|
|
results[SPACE] = spear; print(f"Spearman ρ for {SPACE}: {spear:.3f}") |
|
|
|
|
|
print("Spearman ρ | KBSS | CDSS | APPS") |
|
|
print(f"{REPO_ID} | " + " | ".join(f"{results[s]:.3f}" for s in spaces)) |
|
|
|
|
|
``` |
|
|
|
|
|
|
|
|
We got the following results when testing on a random subset of the Code-Regression dataset. |
|
|
|
|
|
``` |
|
|
Model ID | KBSS | CDSS | APPS |
|
|
akhauriyash/RegressLM-gemma-s-RLM-table3 | 0.527 | 0.787 | 0.926 |
|
|
``` |
|
|
|
|
|
# Credits |
|
|
|
|
|
This dataset was collated from several sources, along with our own latency and memory profiling. We thank the authors for their efforts. |
|
|
|
|
|
APPS: |
|
|
Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora, A., Guo, E., Burns, C., Puranik, S., He, H., Song, D., & Steinhardt, J. (2021). Measuring Coding Challenge Competence With APPS. NeurIPS. |
|
|
|
|
|
CDSS (CodeNet): |
|
|
Puri, R., Kung, D. S., Janssen, G., Zhang, W., Domeniconi, G., Zolotov, V., Dolby, J., Chen, J., Choudhury, M., Decker, L., & others. (2021). Codenet: A large-scale ai for code dataset for learning a diversity of coding tasks. |
|
|
|
|
|
KBSS (KernelBook): |
|
|
Paliskara, S., & Saroufim, M. (2025). KernelBook. https://huggingface.co/datasets/GPUMODE/KernelBook |
|
|
|
|
|
## Citations |
|
|
|
|
|
If you found this dataset useful for your research, please cite the original sources above as well as: |
|
|
|
|
|
```bibtex |
|
|
@article{akhauri2025regressionlanguagemodelscode, |
|
|
title={Regression Language Models for Code}, |
|
|
author={Yash Akhauri and Xingyou Song and Arissa Wongpanich and Bryan Lewandowski and Mohamed S. Abdelfattah}, |
|
|
journal={arXiv preprint arXiv:2509.26476}, |
|
|
year={2025} |
|
|
} |
|
|
|
|
|
@article{akhauri2025performance, |
|
|
title={Performance Prediction for Large Systems via Text-to-Text Regression}, |
|
|
author={Akhauri, Yash and Lewandowski, Bryan and Lin, Cheng-Hsi and Reyes, Adrian N and Forbes, Grant C and Wongpanich, Arissa and Yang, Bangding and Abdelfattah, Mohamed S and Perel, Sagi and Song, Xingyou}, |
|
|
journal={arXiv preprint arXiv:2506.21718}, |
|
|
year={2025} |
|
|
} |
|
|
``` |