Armed Picky - Pin Sorting Dataset
A LeRobot dataset for training a SO-101 robotic arm to sort colored pins into corresponding targets.
Task Description
Objective: Sort 2 colored pins into their matching targets
| Pin Color | Target |
|---|---|
| Blue | Circle (tape) |
| Green | Square (box) |
Language instruction: "Pick up the blue pin and place it in the circle. Pick up the green pin and place it in the square."
Dataset Details
| Property | Value |
|---|---|
| Robot | SO-101 Follower |
| Episodes | 50 |
| Total Frames | 67,085 |
| FPS | 30 |
| Cameras | 2 (front + side) |
| Resolution | 640x480 |
| Video Codec | AV1 |
Data Structure
Actions (6 DOF):
- shoulder_pan, shoulder_lift, elbow_flex
- wrist_flex, wrist_roll, gripper
Observations:
observation.state- 6 joint positionsobservation.images.front- front camera (640x480)observation.images.side- side camera (640x480)
π€ Trained Models (14 Total)
We provide 14 trained models comparing 3 policies (ACT, Diffusion, Smol VLA) with different training configurations:
- From Scratch: Random initialization
- Foundation Models: Pre-trained vision encoders or full models
ACT Models (2)
| Config | Steps | Model Repository | Foundation |
|---|---|---|---|
| Scratch | 60K | epochdev/act-scratch-60k |
- |
| ViT | 60K | epochdev/act-vit-60k |
ImageNet ViT |
Diffusion Models (6)
| Config | Steps | Model Repository | Foundation |
|---|---|---|---|
| Scratch | 20K | epochdev/diffusion-scratch-20k |
- |
| Scratch | 40K | epochdev/diffusion-scratch-40k |
- |
| Scratch | 60K | epochdev/diffusion-scratch-60k |
- |
| R3M | 20K | epochdev/diffusion-r3m-20k |
R3M Vision Encoder |
| R3M | 40K | epochdev/diffusion-r3m-40k |
R3M Vision Encoder |
| R3M | 60K | epochdev/diffusion-r3m-60k |
R3M Vision Encoder |
Smol VLA Models (6)
| Config | Steps | Model Repository | Foundation |
|---|---|---|---|
| Scratch | 20K | epochdev/smolvla-scratch-20k |
- |
| Scratch | 40K | epochdev/smolvla-scratch-40k |
- |
| Scratch | 60K | epochdev/smolvla-scratch-60k |
- |
| OpenVLA | 20K | epochdev/smolvla-openvla-20k |
OpenVLA-7B |
| OpenVLA | 40K | epochdev/smolvla-openvla-40k |
OpenVLA-7B |
| OpenVLA | 60K | epochdev/smolvla-openvla-60k |
OpenVLA-7B |
π Usage
Quick Start - Loading the Dataset
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
dataset = LeRobotDataset("chvainickas/armed-picky-cleaned")
Setup
# Install LeRobot
pip install -q lerobot
# Login to HuggingFace
from huggingface_hub import login
login() # Enter your token
Convert Dataset (First Time Only)
# Convert to LeRobot v3.0 format
rm -rf ~/.cache/huggingface/lerobot/chvainickas/armed-picky-cleaned
python -m lerobot.datasets.v30.convert_dataset_v21_to_v30 --repo-id=chvainickas/armed-picky-cleaned
π Training Models
ACT Policy
From Scratch (60K steps)
lerobot-train \
--dataset.repo_id=chvainickas/armed-picky-cleaned \
--policy=act \
--steps=60000 \
--output_dir=outputs/act-scratch-60k \
--policy.repo_id=epochdev/act-scratch-60k \
--policy.device=cuda \
--wandb.enable=false \
--optimizer.type=adamw \
--optimizer.lr=1e-5 \
--optimizer.weight_decay=0.0001
With ImageNet ViT Foundation (60K steps)
lerobot-train \
--dataset.repo_id=chvainickas/armed-picky-cleaned \
--policy=act \
--policy.use_pretrained_vision=true \
--policy.pretrained_backbone_weights=google/vit-base-patch16-224 \
--steps=60000 \
--output_dir=outputs/act-vit-60k \
--policy.repo_id=epochdev/act-vit-60k \
--policy.device=cuda \
--wandb.enable=false \
--optimizer.type=adamw \
--optimizer.lr=1e-5
Diffusion Policy (Incremental Training)
From Scratch: 0β20Kβ40Kβ60K
# Step 1: Train 0β20K
lerobot-train \
--dataset.repo_id=chvainickas/armed-picky-cleaned \
--policy=diffusion \
--steps=20000 \
--output_dir=outputs/diffusion-scratch-20k \
--policy.repo_id=epochdev/diffusion-scratch-20k \
--policy.device=cuda \
--wandb.enable=false \
--optimizer.lr=1e-4
# Step 2: Resume 20Kβ40K
lerobot-train \
--dataset.repo_id=chvainickas/armed-picky-cleaned \
--policy=diffusion \
--steps=40000 \
--output_dir=outputs/diffusion-scratch-40k \
--policy.repo_id=epochdev/diffusion-scratch-40k \
--policy.device=cuda \
--wandb.enable=false \
--optimizer.lr=1e-4 \
--resume=true \
--pretrained_policy_path=outputs/diffusion-scratch-20k/checkpoints/last/pretrained_model
# Step 3: Resume 40Kβ60K
lerobot-train \
--dataset.repo_id=chvainickas/armed-picky-cleaned \
--policy=diffusion \
--steps=60000 \
--output_dir=outputs/diffusion-scratch-60k \
--policy.repo_id=epochdev/diffusion-scratch-60k \
--policy.device=cuda \
--wandb.enable=false \
--optimizer.lr=1e-4 \
--resume=true \
--pretrained_policy_path=outputs/diffusion-scratch-40k/checkpoints/last/pretrained_model
With R3M Foundation: 0β20Kβ40Kβ60K
# Step 1: Train 0β20K with R3M
lerobot-train \
--dataset.repo_id=chvainickas/armed-picky-cleaned \
--policy=diffusion \
--policy.use_pretrained_vision=true \
--policy.pretrained_backbone=r3m \
--steps=20000 \
--output_dir=outputs/diffusion-r3m-20k \
--policy.repo_id=epochdev/diffusion-r3m-20k \
--policy.device=cuda \
--wandb.enable=false \
--optimizer.lr=5e-5
# Step 2: Resume 20Kβ40K
lerobot-train \
--dataset.repo_id=chvainickas/armed-picky-cleaned \
--policy=diffusion \
--steps=40000 \
--output_dir=outputs/diffusion-r3m-40k \
--policy.repo_id=epochdev/diffusion-r3m-40k \
--policy.device=cuda \
--wandb.enable=false \
--optimizer.lr=5e-5 \
--resume=true \
--pretrained_policy_path=outputs/diffusion-r3m-20k/checkpoints/last/pretrained_model
# Step 3: Resume 40Kβ60K
lerobot-train \
--dataset.repo_id=chvainickas/armed-picky-cleaned \
--policy=diffusion \
--steps=60000 \
--output_dir=outputs/diffusion-r3m-60k \
--policy.repo_id=epochdev/diffusion-r3m-60k \
--policy.device=cuda \
--wandb.enable=false \
--optimizer.lr=5e-5 \
--resume=true \
--pretrained_policy_path=outputs/diffusion-r3m-40k/checkpoints/last/pretrained_model
Smol VLA (Incremental Training)
From Scratch: 0β20Kβ40Kβ60K
# Step 1: Train 0β20K
lerobot-train \
--dataset.repo_id=chvainickas/armed-picky-cleaned \
--policy=vla \
--steps=20000 \
--output_dir=outputs/smolvla-scratch-20k \
--policy.repo_id=epochdev/smolvla-scratch-20k \
--policy.device=cuda \
--wandb.enable=false \
--optimizer.lr=2e-5
# Step 2: Resume 20Kβ40K
lerobot-train \
--dataset.repo_id=chvainickas/armed-picky-cleaned \
--policy=vla \
--steps=40000 \
--output_dir=outputs/smolvla-scratch-40k \
--policy.repo_id=epochdev/smolvla-scratch-40k \
--policy.device=cuda \
--wandb.enable=false \
--optimizer.lr=2e-5 \
--resume=true \
--pretrained_policy_path=outputs/smolvla-scratch-20k/checkpoints/last/pretrained_model
# Step 3: Resume 40Kβ60K
lerobot-train \
--dataset.repo_id=chvainickas/armed-picky-cleaned \
--policy=vla \
--steps=60000 \
--output_dir=outputs/smolvla-scratch-60k \
--policy.repo_id=epochdev/smolvla-scratch-60k \
--policy.device=cuda \
--wandb.enable=false \
--optimizer.lr=2e-5 \
--resume=true \
--pretrained_policy_path=outputs/smolvla-scratch-40k/checkpoints/last/pretrained_model
Fine-tuned from OpenVLA: 0β20Kβ40Kβ60K
# Step 1: Fine-tune 0β20K from OpenVLA
lerobot-train \
--dataset.repo_id=chvainickas/armed-picky-cleaned \
--policy=vla \
--policy.pretrained_model=openvla/openvla-7b \
--steps=20000 \
--output_dir=outputs/smolvla-openvla-20k \
--policy.repo_id=epochdev/smolvla-openvla-20k \
--policy.device=cuda \
--wandb.enable=false \
--optimizer.lr=5e-6
# Step 2: Continue 20Kβ40K
lerobot-train \
--dataset.repo_id=chvainickas/armed-picky-cleaned \
--policy=vla \
--steps=40000 \
--output_dir=outputs/smolvla-openvla-40k \
--policy.repo_id=epochdev/smolvla-openvla-40k \
--policy.device=cuda \
--wandb.enable=false \
--optimizer.lr=5e-6 \
--resume=true \
--pretrained_policy_path=outputs/smolvla-openvla-20k/checkpoints/last/pretrained_model
# Step 3: Continue 40Kβ60K
lerobot-train \
--dataset.repo_id=chvainickas/armed-picky-cleaned \
--policy=vla \
--steps=60000 \
--output_dir=outputs/smolvla-openvla-60k \
--policy.repo_id=epochdev/smolvla-openvla-60k \
--policy.device=cuda \
--wandb.enable=false \
--optimizer.lr=5e-6 \
--resume=true \
--pretrained_policy_path=outputs/smolvla-openvla-40k/checkpoints/last/pretrained_model
π€ Upload Checkpoints
from huggingface_hub import HfApi
api = HfApi()
api.upload_folder(
folder_path="outputs/act-scratch-60k/checkpoints/last/pretrained_model",
repo_id="epochdev/act-scratch-60k",
repo_type="model",
)
π€ Running on Robot
lerobot-record \
--robot.type=so101_follower \
--robot.port=/dev/ttyACM0 \
--robot.cameras="{ front: {type: opencv, index_or_path: 0, width: 640, height: 480, fps: 30}, side: {type: opencv, index_or_path: 1, width: 640, height: 480, fps: 30}}" \
--dataset.single_task="Pick up the blue pin and place it in the circle. Pick up the green pin and place it in the square." \
--policy.path=epochdev/smolvla-openvla-60k
π¬ Model Comparison Study
All 14 models are trained on the same dataset with the same 60K step budget to enable fair comparison:
Research Questions:
- Does using foundation models improve performance?
- Which policy architecture works best for this task?
- How does performance scale with training steps (20K vs 40K vs 60K)?
- When do foundation models help most (early vs late training)?
Foundation Models Used:
- ACT: ImageNet pre-trained Vision Transformer (ViT)
- Diffusion: R3M (robot-specific vision encoder)
- Smol VLA: OpenVLA-7B (full VLA model trained on Open X-Embodiment)
π‘ Training Tips
Google Colab:
- Use T4 GPU (free tier) or A100 (Colab Pro)
- Save outputs to Google Drive to prevent data loss
- Enable mixed precision with
--fp16=truefor faster training
Resume Training:
- All models support checkpoint resumption with
--resume=true - Use
--pretrained_policy_pathto specify checkpoint location - Incremental training (20Kβ40Kβ60K) is more efficient than training from scratch
Experiment Tracking:
- Remove
--wandb.enable=falseand set wandb API key to track experiments - Monitor training curves to detect overfitting or convergence
π Origin
Cleaned version of Amirzon10/armed-picky with 1 bad episode removed and indices renumbered.
π License
MIT
- Downloads last month
- 66