Dataset Viewer
Auto-converted to Parquet Duplicate
sample_id
stringlengths
15
15
population
stringclasses
7 values
region
stringclasses
5 values
is_SSA
bool
2 classes
is_reference_panel
bool
2 classes
sex
stringclasses
1 value
age
int64
18
80
bmi
float64
15.3
44.6
bmi_category
stringclasses
4 values
whr
float64
0.61
1.09
whr_category
stringclasses
2 values
body_fat_percent
float64
10.4
57.8
body_fat_category
stringclasses
4 values
breast_density_birads
stringclasses
4 values
breast_density_is_dense
bool
2 classes
BC_SAMPLE_00001
SSA_West
West
true
false
Female
49
28.348685
overweight
0.751664
normal
32.288211
overweight
C
true
BC_SAMPLE_00002
SSA_West
West
true
false
Female
33
19.163338
normal
0.7386
normal
36.618119
overweight
C
true
BC_SAMPLE_00003
SSA_West
West
true
false
Female
54
18.245207
underweight
0.791168
normal
31.75891
overweight
B
false
BC_SAMPLE_00004
SSA_West
West
true
false
Female
56
26.703079
overweight
0.825346
normal
38.507755
obese
D
true
BC_SAMPLE_00005
SSA_West
West
true
false
Female
22
31.382228
obese
0.822474
normal
20.451014
lean
C
true
BC_SAMPLE_00006
SSA_West
West
true
false
Female
29
23.079131
normal
0.873059
high
42.526284
obese
D
true
BC_SAMPLE_00007
SSA_West
West
true
false
Female
47
25.944522
overweight
0.78154
normal
34.561965
overweight
B
false
BC_SAMPLE_00008
SSA_West
West
true
false
Female
41
19.641272
underweight
0.818618
normal
24.204886
average
D
true
BC_SAMPLE_00009
SSA_West
West
true
false
Female
45
22.936202
normal
0.833857
normal
32.854283
overweight
C
true
BC_SAMPLE_00010
SSA_West
West
true
false
Female
35
22.035942
normal
0.790186
normal
24.514769
average
C
true
BC_SAMPLE_00011
SSA_West
West
true
false
Female
56
27.768822
overweight
0.79197
normal
22.735443
average
C
true
BC_SAMPLE_00012
SSA_West
West
true
false
Female
54
28.033594
overweight
0.794633
normal
30.072597
overweight
A
false
BC_SAMPLE_00013
SSA_West
West
true
false
Female
46
27.204329
overweight
0.861531
high
23.493305
average
D
true
BC_SAMPLE_00014
SSA_West
West
true
false
Female
59
29.291079
overweight
0.863569
high
36.810691
overweight
B
false
BC_SAMPLE_00015
SSA_West
West
true
false
Female
51
33.394248
obese
0.806121
normal
25.451576
average
C
true
BC_SAMPLE_00016
SSA_West
West
true
false
Female
35
20.336322
normal
0.763348
normal
31.209539
overweight
D
true
BC_SAMPLE_00017
SSA_West
West
true
false
Female
49
27.118203
overweight
0.903739
high
31.856836
overweight
D
true
BC_SAMPLE_00018
SSA_West
West
true
false
Female
33
20.152659
normal
0.827344
normal
21.682783
lean
D
true
BC_SAMPLE_00019
SSA_West
West
true
false
Female
56
19.567747
normal
0.817122
normal
39.627242
obese
D
true
BC_SAMPLE_00020
SSA_West
West
true
false
Female
44
20.697234
normal
0.787808
normal
29.71016
average
C
true
BC_SAMPLE_00021
SSA_West
West
true
false
Female
43
22.748763
normal
0.779399
normal
31.799769
overweight
C
true
BC_SAMPLE_00022
SSA_West
West
true
false
Female
37
19.586288
normal
0.804507
normal
36.097681
overweight
D
true
BC_SAMPLE_00023
SSA_West
West
true
false
Female
60
21.850799
normal
0.887678
high
31.132996
overweight
B
false
BC_SAMPLE_00024
SSA_West
West
true
false
Female
43
26.90204
overweight
0.847178
normal
35.488717
overweight
B
false
BC_SAMPLE_00025
SSA_West
West
true
false
Female
40
17.057985
underweight
0.846466
normal
30.422737
overweight
C
true
BC_SAMPLE_00026
SSA_West
West
true
false
Female
41
22.810441
normal
0.797671
normal
40.12044
obese
C
true
BC_SAMPLE_00027
SSA_West
West
true
false
Female
51
28.551285
overweight
0.916301
high
37.698594
overweight
B
false
BC_SAMPLE_00028
SSA_West
West
true
false
Female
49
30.846119
obese
0.836802
normal
23.551858
average
C
true
BC_SAMPLE_00029
SSA_West
West
true
false
Female
50
25.555629
overweight
0.811711
normal
34.720322
overweight
A
false
BC_SAMPLE_00030
SSA_West
West
true
false
Female
50
21.89267
normal
0.813178
normal
31.360833
overweight
A
false
BC_SAMPLE_00031
SSA_West
West
true
false
Female
71
17.031101
underweight
0.865127
high
29.274243
average
A
false
BC_SAMPLE_00032
SSA_West
West
true
false
Female
40
27.498277
overweight
0.768991
normal
31.07514
overweight
C
true
BC_SAMPLE_00033
SSA_West
West
true
false
Female
39
17.49088
underweight
0.816853
normal
48.174511
obese
D
true
BC_SAMPLE_00034
SSA_West
West
true
false
Female
35
20.620658
normal
0.871665
high
37.224726
overweight
C
true
BC_SAMPLE_00035
SSA_West
West
true
false
Female
52
29.566789
obese
0.902208
high
32.675994
overweight
A
false
BC_SAMPLE_00036
SSA_West
West
true
false
Female
59
17.253627
underweight
0.938454
high
35.149547
overweight
A
false
BC_SAMPLE_00037
SSA_West
West
true
false
Female
44
21.700505
normal
0.861769
high
35.833152
overweight
C
true
BC_SAMPLE_00038
SSA_West
West
true
false
Female
35
34.380501
obese
0.849684
normal
43.841965
obese
D
true
BC_SAMPLE_00039
SSA_West
West
true
false
Female
35
21.40996
normal
0.866082
high
32.161352
overweight
C
true
BC_SAMPLE_00040
SSA_West
West
true
false
Female
53
29.074672
overweight
0.844761
normal
40.879784
obese
B
false
BC_SAMPLE_00041
SSA_West
West
true
false
Female
54
22.351555
normal
0.912424
high
39.179343
obese
B
false
BC_SAMPLE_00042
SSA_West
West
true
false
Female
52
21.786291
normal
0.83692
normal
43.00775
obese
B
false
BC_SAMPLE_00043
SSA_West
West
true
false
Female
37
19.531298
normal
0.880306
high
27.652999
average
B
false
BC_SAMPLE_00044
SSA_West
West
true
false
Female
48
23.034076
normal
0.862847
high
33.01192
overweight
C
true
BC_SAMPLE_00045
SSA_West
West
true
false
Female
46
19.479816
normal
0.87401
high
33.664785
overweight
C
true
BC_SAMPLE_00046
SSA_West
West
true
false
Female
48
18.030665
underweight
0.866504
high
30.350416
overweight
C
true
BC_SAMPLE_00047
SSA_West
West
true
false
Female
55
31.403186
obese
0.907858
high
34.316566
overweight
B
false
BC_SAMPLE_00048
SSA_West
West
true
false
Female
48
24.237014
obese
0.902671
high
31.948169
overweight
D
true
BC_SAMPLE_00049
SSA_West
West
true
false
Female
53
28.94579
overweight
0.849595
normal
43.701592
obese
C
true
BC_SAMPLE_00050
SSA_West
West
true
false
Female
46
27.842413
overweight
0.889226
high
39.980756
obese
B
false
BC_SAMPLE_00051
SSA_West
West
true
false
Female
48
31.848105
obese
0.771904
normal
29.162374
average
A
false
BC_SAMPLE_00052
SSA_West
West
true
false
Female
53
28.931858
obese
0.804159
normal
33.852825
overweight
B
false
BC_SAMPLE_00053
SSA_West
West
true
false
Female
28
19.458413
normal
0.869004
high
29.031606
average
B
false
BC_SAMPLE_00054
SSA_West
West
true
false
Female
41
20.191204
normal
0.7895
normal
41.513515
obese
D
true
BC_SAMPLE_00055
SSA_West
West
true
false
Female
39
21.936398
normal
0.819102
normal
36.989348
overweight
B
false
BC_SAMPLE_00056
SSA_West
West
true
false
Female
37
36.914733
obese
0.818524
normal
27.469823
average
D
true
BC_SAMPLE_00057
SSA_West
West
true
false
Female
42
26.61692
overweight
0.89026
high
34.839163
overweight
D
true
BC_SAMPLE_00058
SSA_West
West
true
false
Female
63
21.851468
normal
0.75747
normal
43.082969
obese
B
false
BC_SAMPLE_00059
SSA_West
West
true
false
Female
35
32.457874
obese
0.798001
normal
26.147465
average
B
false
BC_SAMPLE_00060
SSA_West
West
true
false
Female
57
20.574926
normal
0.730282
normal
25.671825
average
A
false
BC_SAMPLE_00061
SSA_West
West
true
false
Female
25
26.183449
obese
0.834499
normal
36.166379
overweight
C
true
BC_SAMPLE_00062
SSA_West
West
true
false
Female
41
30.437298
obese
0.848743
normal
26.681365
average
D
true
BC_SAMPLE_00063
SSA_West
West
true
false
Female
47
24.866885
normal
0.839037
normal
36.40182
overweight
B
false
BC_SAMPLE_00064
SSA_West
West
true
false
Female
52
30.280464
overweight
0.877981
high
37.647209
overweight
B
false
BC_SAMPLE_00065
SSA_West
West
true
false
Female
54
24.649415
overweight
0.806467
normal
47.726945
obese
A
false
BC_SAMPLE_00066
SSA_West
West
true
false
Female
55
19.047348
normal
0.844682
normal
36.972077
overweight
D
true
BC_SAMPLE_00067
SSA_West
West
true
false
Female
41
34.668084
obese
0.797962
normal
37.222255
overweight
B
false
BC_SAMPLE_00068
SSA_West
West
true
false
Female
39
33.206411
obese
0.887672
high
22.577606
average
A
false
BC_SAMPLE_00069
SSA_West
West
true
false
Female
55
21.267644
normal
0.817522
normal
43.858103
obese
C
true
BC_SAMPLE_00070
SSA_West
West
true
false
Female
43
21.035799
normal
0.848023
normal
38.376558
obese
C
true
BC_SAMPLE_00071
SSA_West
West
true
false
Female
30
24.423297
overweight
0.820415
normal
17.972591
lean
C
true
BC_SAMPLE_00072
SSA_West
West
true
false
Female
31
16.390352
underweight
0.901687
high
25.318177
average
A
false
BC_SAMPLE_00073
SSA_West
West
true
false
Female
34
27.931196
overweight
0.91156
high
38.269828
obese
A
false
BC_SAMPLE_00074
SSA_West
West
true
false
Female
51
18.722441
normal
0.799732
normal
31.162437
overweight
B
false
BC_SAMPLE_00075
SSA_West
West
true
false
Female
47
27.930026
overweight
0.942915
high
23.647921
average
B
false
BC_SAMPLE_00076
SSA_West
West
true
false
Female
53
25.812831
overweight
0.885945
high
34.770315
overweight
C
true
BC_SAMPLE_00077
SSA_West
West
true
false
Female
40
26.97186
overweight
0.791027
normal
35.621677
overweight
C
true
BC_SAMPLE_00078
SSA_West
West
true
false
Female
47
28.387475
overweight
0.854993
high
40.214205
obese
C
true
BC_SAMPLE_00079
SSA_West
West
true
false
Female
53
28.560489
overweight
0.86794
high
51.620207
obese
C
true
BC_SAMPLE_00080
SSA_West
West
true
false
Female
41
21.821623
normal
0.824473
normal
35.765463
overweight
C
true
BC_SAMPLE_00081
SSA_West
West
true
false
Female
50
21.166799
normal
0.820389
normal
28.062378
average
B
false
BC_SAMPLE_00082
SSA_West
West
true
false
Female
37
27.414826
overweight
0.858224
high
31.295313
overweight
D
true
BC_SAMPLE_00083
SSA_West
West
true
false
Female
41
33.341883
obese
0.907516
high
42.309442
obese
D
true
BC_SAMPLE_00084
SSA_West
West
true
false
Female
40
19.917015
normal
0.828871
normal
37.52504
overweight
B
false
BC_SAMPLE_00085
SSA_West
West
true
false
Female
31
30.167294
overweight
0.729957
normal
35.00986
overweight
C
true
BC_SAMPLE_00086
SSA_West
West
true
false
Female
51
23.201277
normal
0.883471
high
37.116103
overweight
B
false
BC_SAMPLE_00087
SSA_West
West
true
false
Female
39
21.016854
normal
0.869666
high
34.995204
overweight
C
true
BC_SAMPLE_00088
SSA_West
West
true
false
Female
45
33.209566
obese
0.857882
high
26.909311
average
D
true
BC_SAMPLE_00089
SSA_West
West
true
false
Female
51
27.555804
overweight
0.77602
normal
38.749687
obese
A
false
BC_SAMPLE_00090
SSA_West
West
true
false
Female
50
22.180533
normal
0.779949
normal
42.725326
obese
B
false
BC_SAMPLE_00091
SSA_West
West
true
false
Female
53
27.202193
overweight
0.925764
high
30.658174
overweight
C
true
BC_SAMPLE_00092
SSA_West
West
true
false
Female
44
22.440321
normal
0.762275
normal
33.334187
overweight
A
false
BC_SAMPLE_00093
SSA_West
West
true
false
Female
40
28.545278
overweight
0.883815
high
27.752877
average
A
false
BC_SAMPLE_00094
SSA_West
West
true
false
Female
44
19.613002
normal
0.872716
high
35.653437
overweight
C
true
BC_SAMPLE_00095
SSA_West
West
true
false
Female
25
23.653924
normal
0.806793
normal
31.119288
overweight
C
true
BC_SAMPLE_00096
SSA_West
West
true
false
Female
28
25.925588
overweight
0.88887
high
16.013882
lean
C
true
BC_SAMPLE_00097
SSA_West
West
true
false
Female
29
19.895687
normal
0.88026
high
36.341591
overweight
C
true
BC_SAMPLE_00098
SSA_West
West
true
false
Female
33
24.777773
overweight
0.812694
normal
39.656672
obese
D
true
BC_SAMPLE_00099
SSA_West
West
true
false
Female
50
18.080905
underweight
0.886345
high
32.661515
overweight
C
true
BC_SAMPLE_00100
SSA_West
West
true
false
Female
34
25.73556
overweight
0.778787
normal
30.040377
overweight
C
true
End of preview. Expand in Data Studio

SSA Body Composition Dataset (Women, Multi-ancestry, Synthetic)

Dataset summary

This dataset provides a synthetic body composition cohort of 10,000 women across multiple ancestry groups with a focus on sub-Saharan Africa (SSA). It includes:

  • Body mass index (BMI) and BMI categories.
  • Waist-to-hip ratio (WHR) and high-risk WHR categories.
  • Body fat percentage and body fat categories.
  • Mammographic breast density (BI-RADS A–D) and dense/non-dense flags.

All individuals are fully synthetic. Distributions are informed by DHS/SSA data, WHO/obesity statistics, NHANES body composition data, and breast density references (BI-RADS) but do not represent real patients.

Cohort design

Sample size and populations

  • Total N: 10,000 synthetic women.

  • Populations:

    • SSA_West: 2,000
    • SSA_East: 2,000
    • SSA_Central: 1,500
    • SSA_Southern: 1,500
    • AAW (African American women, admixed): 1,500
    • EUR (European reference): 1,000
    • EAS (East Asian reference): 500
  • Sex: all Female.

  • Age: 18–80 years; age distributions differ modestly by population (e.g. slightly older EUR/AAW on average) but remain realistic for an adult screening/clinical cohort.

These population labels align with other Electric Sheep Africa synthetic datasets to enable cross-dataset analyses (e.g., linking body composition with genomic or pharmacogenomic features).

Body composition features

Body mass index (BMI)

  • Continuous bmi in kg/mΒ².
  • Categorical bmi_category using standard cut points:
    • underweight – BMI < 18.5.
    • normal – 18.5 ≀ BMI < 25.
    • overweight – 25 ≀ BMI < 30.
    • obese – BMI β‰₯ 30.

Per-population BMI category prevalences are tuned to reflect:

  • Elevated overweight/obesity in SSA women in some regions (DHS/SSA analyses).
  • High overweight and obesity prevalence globally (WHO fact sheet, ~43% adults overweight, rising obesity).
  • Differences between SSA, AAW, EUR, EAS reference groups.

Waist-to-hip ratio (WHR)

  • Continuous whr (waist circumference / hip circumference).
  • Categorical whr_category:
    • high – WHR β‰₯ 0.85 (WHO high-risk cutoff for women).
    • normal – WHR < 0.85.

Target high WHR prevalence by population is specified so that SSA and AAW groups carry a higher central-obesity burden, while EUR/EAS groups maintain substantial but somewhat lower high-WHR fractions, reflecting global cardiovascular risk literature.

Body fat percentage

  • Continuous body_fat_percent, modeled as a function of age.
  • Categorical body_fat_category:
    • lean
    • average
    • overweight
    • obese

Age bands and mean values draw on NHANES DXA data (Borrud et al.), where mean female body fat percentage increases with age:

  • 18–29 years: ~30%.
  • 30–39 years: ~32%.
  • 40–49 years: ~34%.
  • 50–59 years: ~36%.
  • 60–80 years: ~38%.

A modest standard deviation introduces inter-individual variability while preserving realistic age trends.

Breast density (BI-RADS)

  • breast_density_birads – BI-RADS density category:

    • A – almost entirely fatty.
    • B – scattered fibroglandular densities.
    • C – heterogeneously dense.
    • D – extremely dense.
  • breast_density_is_dense – boolean flag for dense breasts (C or D).

The age- and ancestry-specific dense breast fractions are informed by:

  • SBI white paper on breast density and supplemental screening (~40% of women over 40 have dense breasts overall).
  • BI-RADS atlas definitions and qualitative patterns:
    • Higher density in younger women.
    • Decreasing density with age across all groups.

The configuration sets dense fractions by group and age band (SSA+AAW, EUR, EAS), with SSA/AAW generally showing slightly higher dense fractions at younger ages than EUR, while EAS sits between or near EUR.

File and schema

body_composition_data.parquet / body_composition_data.csv

One row per synthetic individual with:

  • Demographics / ancestry

    • sample_id – synthetic ID.
    • population – SSA_West, SSA_East, SSA_Central, SSA_Southern, AAW, EUR, EAS.
    • region – SSA subregion name or Non_SSA.
    • is_SSA – boolean.
    • is_reference_panel – True for AAW/EUR/EAS.
    • sex – Female.
    • age – integer years (18–80).
  • BMI

    • bmi – continuous BMI.
    • bmi_category – underweight, normal, overweight, obese.
  • WHR

    • whr – continuous waist-to-hip ratio.
    • whr_category – high (β‰₯0.85) or normal.
  • Body fat

    • body_fat_percent – continuous body fat percentage.
    • body_fat_category – lean, average, overweight, obese.
  • Breast density

    • breast_density_birads – A, B, C, or D.
    • breast_density_is_dense – True for C/D, False for A/B.

Generation

The dataset is generated with:

  • body_composition/scripts/generate_body_composition.py

using configuration in:

  • body_composition/configs/body_composition_config.yaml

and literature curated in:

  • body_composition/docs/LITERATURE_INVENTORY.csv

Key modeling choices:

  1. Age sampled from population-specific normal distributions and truncated to 18–80 years.
  2. BMI
    • BMI category sampled according to population-specific prevalences.
    • Continuous BMI sampled from category-specific means/SDs, with global min/max bounds.
  3. WHR
    • WHR sampled from population-specific normal distributions, with plausible hard limits.
    • high assigned using the WHO cutoff 0.85.
  4. Body fat %
    • Age band determined from age, then percentage sampled around age-band means.
    • Category derived from percentage using fixed cutpoints.
  5. Breast density
    • Age band and population group (SSA+AAW, EUR, EAS) used to determine dense fraction.
    • Dense vs non-dense assigned probabilistically, followed by specific BI-RADS A–D category.

Validation

Validation follows the GENOMICS Synthetic Data Playbook and is performed by:

  • body_composition/scripts/validate_body_composition.py

Key checks:

  • C01–C02 – Sample size and population counts
    • Confirms N = 10,000 and population counts match the configuration within Β±10% relative deviation.
  • C03 – BMI category distributions
    • Compares observed BMI category fractions by population to the configured targets.
  • C04 – WHR high-risk prevalence
    • Compares observed high-WHR prevalence (WHR β‰₯ 0.85) by population to configuration.
  • C05 – Body fat mean percent by age band
    • Compares observed age-band means to NHANES-inspired config values.
  • C06 – Breast density dense fractions
    • Compares observed dense (C/D) fractions by group and age band to config.
  • C07 – Missingness in key variables
    • Ensures negligible missingness in demographics and body composition measures.

The validator outputs:

  • body_composition/output/validation_report.md

For the released version, all checks have an overall status of PASS (with at most minor WARN-level deviations acceptable for synthetic data).

Intended use

This dataset is intended for:

  • Methods development in epidemiology and risk modeling that require realistic but non-identifiable body composition data.
  • Teaching and demonstrations of:
    • BMI/WHR/body fat distributions by age and region.
    • The impact of dense breasts on screening strategies.
  • Benchmarking of risk-scoring pipelines that incorporate anthropometric and breast density features.

It is not suitable for:

  • Clinical decision-making.
  • Estimating real-world prevalence or trends.
  • Individual-level inference.

Ethical considerations

  • No real patient data are used; all individuals are synthetic.
  • Population labels are for simulation and methodologic realism only.
  • Users should avoid over-interpreting results as statements about specific countries or real-world groups.

License

  • License: CC BY-NC 4.0.
  • Free to use for non-commercial research, teaching, and methods development with attribution.

Citation

If you use this dataset, please cite:

Electric Sheep Africa. "SSA Body Composition Dataset (Women, Multi-ancestry, Synthetic)." Hugging Face Datasets.

and, where appropriate, relevant underlying body composition and breast density literature (DHS/SSA analyses, WHO obesity fact sheets, NHANES body composition publications, BI-RADS atlas, and SBI breast density white paper).

Downloads last month
21