Datasets:
sample_id
stringlengths 15
15
| population
stringclasses 7
values | region
stringclasses 5
values | is_SSA
bool 2
classes | is_reference_panel
bool 2
classes | sex
stringclasses 1
value | age
int64 18
80
| bmi
float64 15.3
44.6
| bmi_category
stringclasses 4
values | whr
float64 0.61
1.09
| whr_category
stringclasses 2
values | body_fat_percent
float64 10.4
57.8
| body_fat_category
stringclasses 4
values | breast_density_birads
stringclasses 4
values | breast_density_is_dense
bool 2
classes |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BC_SAMPLE_00001
|
SSA_West
|
West
| true
| false
|
Female
| 49
| 28.348685
|
overweight
| 0.751664
|
normal
| 32.288211
|
overweight
|
C
| true
|
BC_SAMPLE_00002
|
SSA_West
|
West
| true
| false
|
Female
| 33
| 19.163338
|
normal
| 0.7386
|
normal
| 36.618119
|
overweight
|
C
| true
|
BC_SAMPLE_00003
|
SSA_West
|
West
| true
| false
|
Female
| 54
| 18.245207
|
underweight
| 0.791168
|
normal
| 31.75891
|
overweight
|
B
| false
|
BC_SAMPLE_00004
|
SSA_West
|
West
| true
| false
|
Female
| 56
| 26.703079
|
overweight
| 0.825346
|
normal
| 38.507755
|
obese
|
D
| true
|
BC_SAMPLE_00005
|
SSA_West
|
West
| true
| false
|
Female
| 22
| 31.382228
|
obese
| 0.822474
|
normal
| 20.451014
|
lean
|
C
| true
|
BC_SAMPLE_00006
|
SSA_West
|
West
| true
| false
|
Female
| 29
| 23.079131
|
normal
| 0.873059
|
high
| 42.526284
|
obese
|
D
| true
|
BC_SAMPLE_00007
|
SSA_West
|
West
| true
| false
|
Female
| 47
| 25.944522
|
overweight
| 0.78154
|
normal
| 34.561965
|
overweight
|
B
| false
|
BC_SAMPLE_00008
|
SSA_West
|
West
| true
| false
|
Female
| 41
| 19.641272
|
underweight
| 0.818618
|
normal
| 24.204886
|
average
|
D
| true
|
BC_SAMPLE_00009
|
SSA_West
|
West
| true
| false
|
Female
| 45
| 22.936202
|
normal
| 0.833857
|
normal
| 32.854283
|
overweight
|
C
| true
|
BC_SAMPLE_00010
|
SSA_West
|
West
| true
| false
|
Female
| 35
| 22.035942
|
normal
| 0.790186
|
normal
| 24.514769
|
average
|
C
| true
|
BC_SAMPLE_00011
|
SSA_West
|
West
| true
| false
|
Female
| 56
| 27.768822
|
overweight
| 0.79197
|
normal
| 22.735443
|
average
|
C
| true
|
BC_SAMPLE_00012
|
SSA_West
|
West
| true
| false
|
Female
| 54
| 28.033594
|
overweight
| 0.794633
|
normal
| 30.072597
|
overweight
|
A
| false
|
BC_SAMPLE_00013
|
SSA_West
|
West
| true
| false
|
Female
| 46
| 27.204329
|
overweight
| 0.861531
|
high
| 23.493305
|
average
|
D
| true
|
BC_SAMPLE_00014
|
SSA_West
|
West
| true
| false
|
Female
| 59
| 29.291079
|
overweight
| 0.863569
|
high
| 36.810691
|
overweight
|
B
| false
|
BC_SAMPLE_00015
|
SSA_West
|
West
| true
| false
|
Female
| 51
| 33.394248
|
obese
| 0.806121
|
normal
| 25.451576
|
average
|
C
| true
|
BC_SAMPLE_00016
|
SSA_West
|
West
| true
| false
|
Female
| 35
| 20.336322
|
normal
| 0.763348
|
normal
| 31.209539
|
overweight
|
D
| true
|
BC_SAMPLE_00017
|
SSA_West
|
West
| true
| false
|
Female
| 49
| 27.118203
|
overweight
| 0.903739
|
high
| 31.856836
|
overweight
|
D
| true
|
BC_SAMPLE_00018
|
SSA_West
|
West
| true
| false
|
Female
| 33
| 20.152659
|
normal
| 0.827344
|
normal
| 21.682783
|
lean
|
D
| true
|
BC_SAMPLE_00019
|
SSA_West
|
West
| true
| false
|
Female
| 56
| 19.567747
|
normal
| 0.817122
|
normal
| 39.627242
|
obese
|
D
| true
|
BC_SAMPLE_00020
|
SSA_West
|
West
| true
| false
|
Female
| 44
| 20.697234
|
normal
| 0.787808
|
normal
| 29.71016
|
average
|
C
| true
|
BC_SAMPLE_00021
|
SSA_West
|
West
| true
| false
|
Female
| 43
| 22.748763
|
normal
| 0.779399
|
normal
| 31.799769
|
overweight
|
C
| true
|
BC_SAMPLE_00022
|
SSA_West
|
West
| true
| false
|
Female
| 37
| 19.586288
|
normal
| 0.804507
|
normal
| 36.097681
|
overweight
|
D
| true
|
BC_SAMPLE_00023
|
SSA_West
|
West
| true
| false
|
Female
| 60
| 21.850799
|
normal
| 0.887678
|
high
| 31.132996
|
overweight
|
B
| false
|
BC_SAMPLE_00024
|
SSA_West
|
West
| true
| false
|
Female
| 43
| 26.90204
|
overweight
| 0.847178
|
normal
| 35.488717
|
overweight
|
B
| false
|
BC_SAMPLE_00025
|
SSA_West
|
West
| true
| false
|
Female
| 40
| 17.057985
|
underweight
| 0.846466
|
normal
| 30.422737
|
overweight
|
C
| true
|
BC_SAMPLE_00026
|
SSA_West
|
West
| true
| false
|
Female
| 41
| 22.810441
|
normal
| 0.797671
|
normal
| 40.12044
|
obese
|
C
| true
|
BC_SAMPLE_00027
|
SSA_West
|
West
| true
| false
|
Female
| 51
| 28.551285
|
overweight
| 0.916301
|
high
| 37.698594
|
overweight
|
B
| false
|
BC_SAMPLE_00028
|
SSA_West
|
West
| true
| false
|
Female
| 49
| 30.846119
|
obese
| 0.836802
|
normal
| 23.551858
|
average
|
C
| true
|
BC_SAMPLE_00029
|
SSA_West
|
West
| true
| false
|
Female
| 50
| 25.555629
|
overweight
| 0.811711
|
normal
| 34.720322
|
overweight
|
A
| false
|
BC_SAMPLE_00030
|
SSA_West
|
West
| true
| false
|
Female
| 50
| 21.89267
|
normal
| 0.813178
|
normal
| 31.360833
|
overweight
|
A
| false
|
BC_SAMPLE_00031
|
SSA_West
|
West
| true
| false
|
Female
| 71
| 17.031101
|
underweight
| 0.865127
|
high
| 29.274243
|
average
|
A
| false
|
BC_SAMPLE_00032
|
SSA_West
|
West
| true
| false
|
Female
| 40
| 27.498277
|
overweight
| 0.768991
|
normal
| 31.07514
|
overweight
|
C
| true
|
BC_SAMPLE_00033
|
SSA_West
|
West
| true
| false
|
Female
| 39
| 17.49088
|
underweight
| 0.816853
|
normal
| 48.174511
|
obese
|
D
| true
|
BC_SAMPLE_00034
|
SSA_West
|
West
| true
| false
|
Female
| 35
| 20.620658
|
normal
| 0.871665
|
high
| 37.224726
|
overweight
|
C
| true
|
BC_SAMPLE_00035
|
SSA_West
|
West
| true
| false
|
Female
| 52
| 29.566789
|
obese
| 0.902208
|
high
| 32.675994
|
overweight
|
A
| false
|
BC_SAMPLE_00036
|
SSA_West
|
West
| true
| false
|
Female
| 59
| 17.253627
|
underweight
| 0.938454
|
high
| 35.149547
|
overweight
|
A
| false
|
BC_SAMPLE_00037
|
SSA_West
|
West
| true
| false
|
Female
| 44
| 21.700505
|
normal
| 0.861769
|
high
| 35.833152
|
overweight
|
C
| true
|
BC_SAMPLE_00038
|
SSA_West
|
West
| true
| false
|
Female
| 35
| 34.380501
|
obese
| 0.849684
|
normal
| 43.841965
|
obese
|
D
| true
|
BC_SAMPLE_00039
|
SSA_West
|
West
| true
| false
|
Female
| 35
| 21.40996
|
normal
| 0.866082
|
high
| 32.161352
|
overweight
|
C
| true
|
BC_SAMPLE_00040
|
SSA_West
|
West
| true
| false
|
Female
| 53
| 29.074672
|
overweight
| 0.844761
|
normal
| 40.879784
|
obese
|
B
| false
|
BC_SAMPLE_00041
|
SSA_West
|
West
| true
| false
|
Female
| 54
| 22.351555
|
normal
| 0.912424
|
high
| 39.179343
|
obese
|
B
| false
|
BC_SAMPLE_00042
|
SSA_West
|
West
| true
| false
|
Female
| 52
| 21.786291
|
normal
| 0.83692
|
normal
| 43.00775
|
obese
|
B
| false
|
BC_SAMPLE_00043
|
SSA_West
|
West
| true
| false
|
Female
| 37
| 19.531298
|
normal
| 0.880306
|
high
| 27.652999
|
average
|
B
| false
|
BC_SAMPLE_00044
|
SSA_West
|
West
| true
| false
|
Female
| 48
| 23.034076
|
normal
| 0.862847
|
high
| 33.01192
|
overweight
|
C
| true
|
BC_SAMPLE_00045
|
SSA_West
|
West
| true
| false
|
Female
| 46
| 19.479816
|
normal
| 0.87401
|
high
| 33.664785
|
overweight
|
C
| true
|
BC_SAMPLE_00046
|
SSA_West
|
West
| true
| false
|
Female
| 48
| 18.030665
|
underweight
| 0.866504
|
high
| 30.350416
|
overweight
|
C
| true
|
BC_SAMPLE_00047
|
SSA_West
|
West
| true
| false
|
Female
| 55
| 31.403186
|
obese
| 0.907858
|
high
| 34.316566
|
overweight
|
B
| false
|
BC_SAMPLE_00048
|
SSA_West
|
West
| true
| false
|
Female
| 48
| 24.237014
|
obese
| 0.902671
|
high
| 31.948169
|
overweight
|
D
| true
|
BC_SAMPLE_00049
|
SSA_West
|
West
| true
| false
|
Female
| 53
| 28.94579
|
overweight
| 0.849595
|
normal
| 43.701592
|
obese
|
C
| true
|
BC_SAMPLE_00050
|
SSA_West
|
West
| true
| false
|
Female
| 46
| 27.842413
|
overweight
| 0.889226
|
high
| 39.980756
|
obese
|
B
| false
|
BC_SAMPLE_00051
|
SSA_West
|
West
| true
| false
|
Female
| 48
| 31.848105
|
obese
| 0.771904
|
normal
| 29.162374
|
average
|
A
| false
|
BC_SAMPLE_00052
|
SSA_West
|
West
| true
| false
|
Female
| 53
| 28.931858
|
obese
| 0.804159
|
normal
| 33.852825
|
overweight
|
B
| false
|
BC_SAMPLE_00053
|
SSA_West
|
West
| true
| false
|
Female
| 28
| 19.458413
|
normal
| 0.869004
|
high
| 29.031606
|
average
|
B
| false
|
BC_SAMPLE_00054
|
SSA_West
|
West
| true
| false
|
Female
| 41
| 20.191204
|
normal
| 0.7895
|
normal
| 41.513515
|
obese
|
D
| true
|
BC_SAMPLE_00055
|
SSA_West
|
West
| true
| false
|
Female
| 39
| 21.936398
|
normal
| 0.819102
|
normal
| 36.989348
|
overweight
|
B
| false
|
BC_SAMPLE_00056
|
SSA_West
|
West
| true
| false
|
Female
| 37
| 36.914733
|
obese
| 0.818524
|
normal
| 27.469823
|
average
|
D
| true
|
BC_SAMPLE_00057
|
SSA_West
|
West
| true
| false
|
Female
| 42
| 26.61692
|
overweight
| 0.89026
|
high
| 34.839163
|
overweight
|
D
| true
|
BC_SAMPLE_00058
|
SSA_West
|
West
| true
| false
|
Female
| 63
| 21.851468
|
normal
| 0.75747
|
normal
| 43.082969
|
obese
|
B
| false
|
BC_SAMPLE_00059
|
SSA_West
|
West
| true
| false
|
Female
| 35
| 32.457874
|
obese
| 0.798001
|
normal
| 26.147465
|
average
|
B
| false
|
BC_SAMPLE_00060
|
SSA_West
|
West
| true
| false
|
Female
| 57
| 20.574926
|
normal
| 0.730282
|
normal
| 25.671825
|
average
|
A
| false
|
BC_SAMPLE_00061
|
SSA_West
|
West
| true
| false
|
Female
| 25
| 26.183449
|
obese
| 0.834499
|
normal
| 36.166379
|
overweight
|
C
| true
|
BC_SAMPLE_00062
|
SSA_West
|
West
| true
| false
|
Female
| 41
| 30.437298
|
obese
| 0.848743
|
normal
| 26.681365
|
average
|
D
| true
|
BC_SAMPLE_00063
|
SSA_West
|
West
| true
| false
|
Female
| 47
| 24.866885
|
normal
| 0.839037
|
normal
| 36.40182
|
overweight
|
B
| false
|
BC_SAMPLE_00064
|
SSA_West
|
West
| true
| false
|
Female
| 52
| 30.280464
|
overweight
| 0.877981
|
high
| 37.647209
|
overweight
|
B
| false
|
BC_SAMPLE_00065
|
SSA_West
|
West
| true
| false
|
Female
| 54
| 24.649415
|
overweight
| 0.806467
|
normal
| 47.726945
|
obese
|
A
| false
|
BC_SAMPLE_00066
|
SSA_West
|
West
| true
| false
|
Female
| 55
| 19.047348
|
normal
| 0.844682
|
normal
| 36.972077
|
overweight
|
D
| true
|
BC_SAMPLE_00067
|
SSA_West
|
West
| true
| false
|
Female
| 41
| 34.668084
|
obese
| 0.797962
|
normal
| 37.222255
|
overweight
|
B
| false
|
BC_SAMPLE_00068
|
SSA_West
|
West
| true
| false
|
Female
| 39
| 33.206411
|
obese
| 0.887672
|
high
| 22.577606
|
average
|
A
| false
|
BC_SAMPLE_00069
|
SSA_West
|
West
| true
| false
|
Female
| 55
| 21.267644
|
normal
| 0.817522
|
normal
| 43.858103
|
obese
|
C
| true
|
BC_SAMPLE_00070
|
SSA_West
|
West
| true
| false
|
Female
| 43
| 21.035799
|
normal
| 0.848023
|
normal
| 38.376558
|
obese
|
C
| true
|
BC_SAMPLE_00071
|
SSA_West
|
West
| true
| false
|
Female
| 30
| 24.423297
|
overweight
| 0.820415
|
normal
| 17.972591
|
lean
|
C
| true
|
BC_SAMPLE_00072
|
SSA_West
|
West
| true
| false
|
Female
| 31
| 16.390352
|
underweight
| 0.901687
|
high
| 25.318177
|
average
|
A
| false
|
BC_SAMPLE_00073
|
SSA_West
|
West
| true
| false
|
Female
| 34
| 27.931196
|
overweight
| 0.91156
|
high
| 38.269828
|
obese
|
A
| false
|
BC_SAMPLE_00074
|
SSA_West
|
West
| true
| false
|
Female
| 51
| 18.722441
|
normal
| 0.799732
|
normal
| 31.162437
|
overweight
|
B
| false
|
BC_SAMPLE_00075
|
SSA_West
|
West
| true
| false
|
Female
| 47
| 27.930026
|
overweight
| 0.942915
|
high
| 23.647921
|
average
|
B
| false
|
BC_SAMPLE_00076
|
SSA_West
|
West
| true
| false
|
Female
| 53
| 25.812831
|
overweight
| 0.885945
|
high
| 34.770315
|
overweight
|
C
| true
|
BC_SAMPLE_00077
|
SSA_West
|
West
| true
| false
|
Female
| 40
| 26.97186
|
overweight
| 0.791027
|
normal
| 35.621677
|
overweight
|
C
| true
|
BC_SAMPLE_00078
|
SSA_West
|
West
| true
| false
|
Female
| 47
| 28.387475
|
overweight
| 0.854993
|
high
| 40.214205
|
obese
|
C
| true
|
BC_SAMPLE_00079
|
SSA_West
|
West
| true
| false
|
Female
| 53
| 28.560489
|
overweight
| 0.86794
|
high
| 51.620207
|
obese
|
C
| true
|
BC_SAMPLE_00080
|
SSA_West
|
West
| true
| false
|
Female
| 41
| 21.821623
|
normal
| 0.824473
|
normal
| 35.765463
|
overweight
|
C
| true
|
BC_SAMPLE_00081
|
SSA_West
|
West
| true
| false
|
Female
| 50
| 21.166799
|
normal
| 0.820389
|
normal
| 28.062378
|
average
|
B
| false
|
BC_SAMPLE_00082
|
SSA_West
|
West
| true
| false
|
Female
| 37
| 27.414826
|
overweight
| 0.858224
|
high
| 31.295313
|
overweight
|
D
| true
|
BC_SAMPLE_00083
|
SSA_West
|
West
| true
| false
|
Female
| 41
| 33.341883
|
obese
| 0.907516
|
high
| 42.309442
|
obese
|
D
| true
|
BC_SAMPLE_00084
|
SSA_West
|
West
| true
| false
|
Female
| 40
| 19.917015
|
normal
| 0.828871
|
normal
| 37.52504
|
overweight
|
B
| false
|
BC_SAMPLE_00085
|
SSA_West
|
West
| true
| false
|
Female
| 31
| 30.167294
|
overweight
| 0.729957
|
normal
| 35.00986
|
overweight
|
C
| true
|
BC_SAMPLE_00086
|
SSA_West
|
West
| true
| false
|
Female
| 51
| 23.201277
|
normal
| 0.883471
|
high
| 37.116103
|
overweight
|
B
| false
|
BC_SAMPLE_00087
|
SSA_West
|
West
| true
| false
|
Female
| 39
| 21.016854
|
normal
| 0.869666
|
high
| 34.995204
|
overweight
|
C
| true
|
BC_SAMPLE_00088
|
SSA_West
|
West
| true
| false
|
Female
| 45
| 33.209566
|
obese
| 0.857882
|
high
| 26.909311
|
average
|
D
| true
|
BC_SAMPLE_00089
|
SSA_West
|
West
| true
| false
|
Female
| 51
| 27.555804
|
overweight
| 0.77602
|
normal
| 38.749687
|
obese
|
A
| false
|
BC_SAMPLE_00090
|
SSA_West
|
West
| true
| false
|
Female
| 50
| 22.180533
|
normal
| 0.779949
|
normal
| 42.725326
|
obese
|
B
| false
|
BC_SAMPLE_00091
|
SSA_West
|
West
| true
| false
|
Female
| 53
| 27.202193
|
overweight
| 0.925764
|
high
| 30.658174
|
overweight
|
C
| true
|
BC_SAMPLE_00092
|
SSA_West
|
West
| true
| false
|
Female
| 44
| 22.440321
|
normal
| 0.762275
|
normal
| 33.334187
|
overweight
|
A
| false
|
BC_SAMPLE_00093
|
SSA_West
|
West
| true
| false
|
Female
| 40
| 28.545278
|
overweight
| 0.883815
|
high
| 27.752877
|
average
|
A
| false
|
BC_SAMPLE_00094
|
SSA_West
|
West
| true
| false
|
Female
| 44
| 19.613002
|
normal
| 0.872716
|
high
| 35.653437
|
overweight
|
C
| true
|
BC_SAMPLE_00095
|
SSA_West
|
West
| true
| false
|
Female
| 25
| 23.653924
|
normal
| 0.806793
|
normal
| 31.119288
|
overweight
|
C
| true
|
BC_SAMPLE_00096
|
SSA_West
|
West
| true
| false
|
Female
| 28
| 25.925588
|
overweight
| 0.88887
|
high
| 16.013882
|
lean
|
C
| true
|
BC_SAMPLE_00097
|
SSA_West
|
West
| true
| false
|
Female
| 29
| 19.895687
|
normal
| 0.88026
|
high
| 36.341591
|
overweight
|
C
| true
|
BC_SAMPLE_00098
|
SSA_West
|
West
| true
| false
|
Female
| 33
| 24.777773
|
overweight
| 0.812694
|
normal
| 39.656672
|
obese
|
D
| true
|
BC_SAMPLE_00099
|
SSA_West
|
West
| true
| false
|
Female
| 50
| 18.080905
|
underweight
| 0.886345
|
high
| 32.661515
|
overweight
|
C
| true
|
BC_SAMPLE_00100
|
SSA_West
|
West
| true
| false
|
Female
| 34
| 25.73556
|
overweight
| 0.778787
|
normal
| 30.040377
|
overweight
|
C
| true
|
SSA Body Composition Dataset (Women, Multi-ancestry, Synthetic)
Dataset summary
This dataset provides a synthetic body composition cohort of 10,000 women across multiple ancestry groups with a focus on sub-Saharan Africa (SSA). It includes:
- Body mass index (BMI) and BMI categories.
- Waist-to-hip ratio (WHR) and high-risk WHR categories.
- Body fat percentage and body fat categories.
- Mammographic breast density (BI-RADS AβD) and dense/non-dense flags.
All individuals are fully synthetic. Distributions are informed by DHS/SSA data, WHO/obesity statistics, NHANES body composition data, and breast density references (BI-RADS) but do not represent real patients.
Cohort design
Sample size and populations
Total N: 10,000 synthetic women.
Populations:
SSA_West: 2,000SSA_East: 2,000SSA_Central: 1,500SSA_Southern: 1,500AAW(African American women, admixed): 1,500EUR(European reference): 1,000EAS(East Asian reference): 500
Sex: all
Female.Age: 18β80 years; age distributions differ modestly by population (e.g. slightly older EUR/AAW on average) but remain realistic for an adult screening/clinical cohort.
These population labels align with other Electric Sheep Africa synthetic datasets to enable cross-dataset analyses (e.g., linking body composition with genomic or pharmacogenomic features).
Body composition features
Body mass index (BMI)
- Continuous
bmiin kg/mΒ². - Categorical
bmi_categoryusing standard cut points:underweightβ BMI < 18.5.normalβ 18.5 β€ BMI < 25.overweightβ 25 β€ BMI < 30.obeseβ BMI β₯ 30.
Per-population BMI category prevalences are tuned to reflect:
- Elevated overweight/obesity in SSA women in some regions (DHS/SSA analyses).
- High overweight and obesity prevalence globally (WHO fact sheet, ~43% adults overweight, rising obesity).
- Differences between SSA, AAW, EUR, EAS reference groups.
Waist-to-hip ratio (WHR)
- Continuous
whr(waist circumference / hip circumference). - Categorical
whr_category:highβ WHR β₯ 0.85 (WHO high-risk cutoff for women).normalβ WHR < 0.85.
Target high WHR prevalence by population is specified so that SSA and AAW groups carry a higher central-obesity burden, while EUR/EAS groups maintain substantial but somewhat lower high-WHR fractions, reflecting global cardiovascular risk literature.
Body fat percentage
- Continuous
body_fat_percent, modeled as a function of age. - Categorical
body_fat_category:leanaverageoverweightobese
Age bands and mean values draw on NHANES DXA data (Borrud et al.), where mean female body fat percentage increases with age:
- 18β29 years: ~30%.
- 30β39 years: ~32%.
- 40β49 years: ~34%.
- 50β59 years: ~36%.
- 60β80 years: ~38%.
A modest standard deviation introduces inter-individual variability while preserving realistic age trends.
Breast density (BI-RADS)
breast_density_biradsβ BI-RADS density category:Aβ almost entirely fatty.Bβ scattered fibroglandular densities.Cβ heterogeneously dense.Dβ extremely dense.
breast_density_is_denseβ boolean flag for dense breasts (CorD).
The age- and ancestry-specific dense breast fractions are informed by:
- SBI white paper on breast density and supplemental screening (~40% of women over 40 have dense breasts overall).
- BI-RADS atlas definitions and qualitative patterns:
- Higher density in younger women.
- Decreasing density with age across all groups.
The configuration sets dense fractions by group and age band (SSA+AAW, EUR, EAS), with SSA/AAW generally showing slightly higher dense fractions at younger ages than EUR, while EAS sits between or near EUR.
File and schema
body_composition_data.parquet / body_composition_data.csv
One row per synthetic individual with:
Demographics / ancestry
sample_idβ synthetic ID.populationβSSA_West,SSA_East,SSA_Central,SSA_Southern,AAW,EUR,EAS.regionβ SSA subregion name orNon_SSA.is_SSAβ boolean.is_reference_panelβTruefor AAW/EUR/EAS.sexβFemale.ageβ integer years (18β80).
BMI
bmiβ continuous BMI.bmi_categoryβunderweight,normal,overweight,obese.
WHR
whrβ continuous waist-to-hip ratio.whr_categoryβhigh(β₯0.85) ornormal.
Body fat
body_fat_percentβ continuous body fat percentage.body_fat_categoryβlean,average,overweight,obese.
Breast density
breast_density_biradsβA,B,C, orD.breast_density_is_denseβTrueforC/D,FalseforA/B.
Generation
The dataset is generated with:
body_composition/scripts/generate_body_composition.py
using configuration in:
body_composition/configs/body_composition_config.yaml
and literature curated in:
body_composition/docs/LITERATURE_INVENTORY.csv
Key modeling choices:
- Age sampled from population-specific normal distributions and truncated to 18β80 years.
- BMI
- BMI category sampled according to population-specific prevalences.
- Continuous BMI sampled from category-specific means/SDs, with global min/max bounds.
- WHR
- WHR sampled from population-specific normal distributions, with plausible hard limits.
highassigned using the WHO cutoff 0.85.
- Body fat %
- Age band determined from age, then percentage sampled around age-band means.
- Category derived from percentage using fixed cutpoints.
- Breast density
- Age band and population group (SSA+AAW, EUR, EAS) used to determine dense fraction.
- Dense vs non-dense assigned probabilistically, followed by specific BI-RADS AβD category.
Validation
Validation follows the GENOMICS Synthetic Data Playbook and is performed by:
body_composition/scripts/validate_body_composition.py
Key checks:
- C01βC02 β Sample size and population counts
- Confirms N = 10,000 and population counts match the configuration within Β±10% relative deviation.
- C03 β BMI category distributions
- Compares observed BMI category fractions by population to the configured targets.
- C04 β WHR high-risk prevalence
- Compares observed high-WHR prevalence (WHR β₯ 0.85) by population to configuration.
- C05 β Body fat mean percent by age band
- Compares observed age-band means to NHANES-inspired config values.
- C06 β Breast density dense fractions
- Compares observed dense (C/D) fractions by group and age band to config.
- C07 β Missingness in key variables
- Ensures negligible missingness in demographics and body composition measures.
The validator outputs:
body_composition/output/validation_report.md
For the released version, all checks have an overall status of PASS (with at most minor WARN-level deviations acceptable for synthetic data).
Intended use
This dataset is intended for:
- Methods development in epidemiology and risk modeling that require realistic but non-identifiable body composition data.
- Teaching and demonstrations of:
- BMI/WHR/body fat distributions by age and region.
- The impact of dense breasts on screening strategies.
- Benchmarking of risk-scoring pipelines that incorporate anthropometric and breast density features.
It is not suitable for:
- Clinical decision-making.
- Estimating real-world prevalence or trends.
- Individual-level inference.
Ethical considerations
- No real patient data are used; all individuals are synthetic.
- Population labels are for simulation and methodologic realism only.
- Users should avoid over-interpreting results as statements about specific countries or real-world groups.
License
- License: CC BY-NC 4.0.
- Free to use for non-commercial research, teaching, and methods development with attribution.
Citation
If you use this dataset, please cite:
Electric Sheep Africa. "SSA Body Composition Dataset (Women, Multi-ancestry, Synthetic)." Hugging Face Datasets.
and, where appropriate, relevant underlying body composition and breast density literature (DHS/SSA analyses, WHO obesity fact sheets, NHANES body composition publications, BI-RADS atlas, and SBI breast density white paper).
- Downloads last month
- 21