lh9171338/FE-LSD
Keypoint Detection
•
Updated
Error code: ConfigNamesError
Exception: RuntimeError
Message: Dataset scripts are no longer supported, but found FE-Wireframe.py
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
config_names = get_dataset_config_names(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
dataset_module = dataset_module_factory(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1031, in dataset_module_factory
raise e1 from None
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 989, in dataset_module_factory
raise RuntimeError(f"Dataset scripts are no longer supported, but found {filename}")
RuntimeError: Dataset scripts are no longer supported, but found FE-Wireframe.pyNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
✏️ Github | 📑 Paper | 🖼️ Viewer
This is the FE-Wireframe dataset, designed for motion-blurred image line segment detection with events.
The FE-Wireframe dataset is constructed to provide synthetic data for motion-blur scenarios without requiring manual line annotations. Starting from the labeled Wireframe dataset, we employ the ESIM simulator to generate event-based synthetic sequences. The overall data generation pipeline is shown as follows.
|-- events_raw
|-- 0000001.npz
|-- 0000002.npz
|-- ...
|-- images-blur
|-- 0000001.png
|-- 0000002.png
|-- ...
|-- images-start
|-- 0000001.png
|-- 0000002.png
|-- ...
|-- images-end
|-- 0000001.png
|-- 0000002.png
|-- ...
|-- train.jsonl
|-- test.jsonl
python3 -m pip install huggingface-hub
huggingface-cli download --repo-type dataset lh9171338/FE-Wireframe --local-dir ./
git lfs install
git clone https://huggingface.co/datasets/lh9171338/FE-Wireframe
from datasets import load_dataset
ds = load_dataset("lh9171338/FE-Wireframe", trust_remote_code=True)
print(ds)
# DatasetDict({
# train: Dataset({
# features: ['blur_image', 'start_image', 'end_image', 'events', 'H', 'image_size', 'junc', 'flow', 'lines', 'edges_positive'],
# num_rows: 5000
# })
# test: Dataset({
# features: ['blur_image', 'start_image', 'end_image', 'events', 'H', 'image_size', 'junc', 'flow', 'lines', 'edges_positive'],
# num_rows: 462
# })
# })
from datasets import load_dataset
ds = load_dataset("FE-Wireframe", trust_remote_code=True)
print(ds)
# DatasetDict({
# train: Dataset({
# features: ['blur_image', 'start_image', 'end_image', 'events', 'H', 'image_size', 'junc', 'flow', 'lines', 'edges_positive'],
# num_rows: 5000
# })
# test: Dataset({
# features: ['blur_image', 'start_image', 'end_image', 'events', 'H', 'image_size', 'junc', 'flow', 'lines', 'edges_positive'],
# num_rows: 462
# })
# })
import jsonlines
with jsonlines.open("test.jsonl") as reader:
infos = list(reader)
print(infos[0].keys())
# dict_keys(['filename', 'image_size', 'H', 'junc', 'flow', 'lines', 'edges_positive'])
@ARTICLE{10323537,
author={Yu, Huai and Li, Hao and Yang, Wen and Yu, Lei and Xia, Gui-Song},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Detecting Line Segments in Motion-Blurred Images With Events},
year={2023},
pages={1-16},
doi={10.1109/TPAMI.2023.3334877}
}