wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5707
  • Wer: 0.3388

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer
3.5072 1.0 500 1.8786 0.9741
0.8836 2.01 1000 0.5147 0.5317
0.4576 3.01 1500 0.4774 0.4591
0.3056 4.02 2000 0.4393 0.4343
0.2349 5.02 2500 0.4404 0.4022
0.1946 6.02 3000 0.4564 0.3991
0.1624 7.03 3500 0.4428 0.3947
0.1421 8.03 4000 0.4312 0.3878
0.131 9.04 4500 0.4345 0.3853
0.1115 10.04 5000 0.4318 0.3753
0.1024 11.04 5500 0.5053 0.3798
0.0895 12.05 6000 0.5044 0.3782
0.0856 13.05 6500 0.4893 0.3665
0.0755 14.06 7000 0.4868 0.3662
0.0724 15.06 7500 0.5084 0.3681
0.0635 16.06 8000 0.5367 0.3530
0.0603 17.07 8500 0.5255 0.3604
0.0609 18.07 9000 0.5407 0.3678
0.0486 19.08 9500 0.5312 0.3630
0.047 20.08 10000 0.5498 0.3518
0.0437 21.08 10500 0.5326 0.3571
0.0379 22.09 11000 0.5644 0.3608
0.035 23.09 11500 0.5956 0.3539
0.0333 24.1 12000 0.5967 0.3517
0.0289 25.1 12500 0.5274 0.3399
0.0268 26.1 13000 0.5609 0.3406
0.0256 27.11 13500 0.5451 0.3448
0.0249 28.11 14000 0.5804 0.3413
0.0236 29.12 14500 0.5707 0.3388

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.12.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support