Configuration Parsing
Warning:
In adapter_config.json: "peft.task_type" must be a string
SmolVLM-256M-ScreenTask
This model is a fine-tuned version of HuggingFaceTB/SmolVLM-256M-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8402
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 0.35
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 2.857 | 0.0599 | 20 | 2.7762 |
| 1.8633 | 0.1199 | 40 | 1.8233 |
| 1.1164 | 0.1798 | 60 | 1.0640 |
| 0.8947 | 0.2397 | 80 | 0.8909 |
| 0.8471 | 0.2996 | 100 | 0.8402 |
Framework versions
- PEFT 0.18.0
- Transformers 4.57.3
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 23
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for itsnotacreativeuser/SmolVLM-256M-ScreenTask
Base model
HuggingFaceTB/SmolLM2-135M
Quantized
HuggingFaceTB/SmolLM2-135M-Instruct
Quantized
HuggingFaceTB/SmolVLM-256M-Instruct