EmbeddingGemma 300M - LiteRT-LM Format
This is Google's EmbeddingGemma 300M model converted to the LiteRT-LM .litertlm format for use with Google's LiteRT-LM runtime. This format is optimized for on-device inference on mobile and edge devices.
Model Details
| Property | Value |
|---|---|
| Base Model | google/embeddinggemma-300m |
| Source TFLite | litert-community/embeddinggemma-300m |
| Format | LiteRT-LM (.litertlm) |
| Embedding Dimension | 256 |
| Max Sequence Length | 512 tokens |
| Precision | Mixed (int8/fp16) |
| Model Size | ~171 MB |
| Parameters | ~300M |
How This Model Was Created
Conversion Process
This model was created by converting the TFLite model from litert-community/embeddinggemma-300m to the LiteRT-LM .litertlm bundle format using Google's official tooling:
Downloaded the source TFLite model (
embeddinggemma-300M_seq512_mixed-precision.tflite)Created a TOML configuration specifying the model structure:
[model]
path = "models/embeddinggemma-300M_seq512_mixed-precision.tflite"
spm_model_path = ""
[model.start_tokens]
model_input_name = "input_ids"
[model.output_logits]
model_output_name = "Identity"
- Converted using LiteRT-LM builder CLI:
bazel run //schema/py:litertlm_builder_cli -- \
toml --path embeddinggemma-300m.toml \
output --path embeddinggemma-300m.litertlm
The .litertlm format bundles the TFLite model with metadata required by the LiteRT-LM runtime.
Node.js Native Bindings (node-gyp)
To use this model from Node.js, we created custom N-API bindings that wrap the LiteRT-LM C API. The binding was built using:
- node-gyp for native addon compilation
- N-API (Node-API) for stable ABI compatibility
- clang-20 with C++20 support
- Links against the prebuilt
liblibengine_napilibrary from LiteRT-LM
Building the Native Bridge
cd native-bridge
npm install
CC=/usr/lib/llvm-20/bin/clang CXX=/usr/lib/llvm-20/bin/clang++ npm run rebuild
TypeScript Interface
export interface EmbedderConfig {
modelPath: string;
embeddingDim?: number; // default: 256
maxSeqLength?: number; // default: 512
numThreads?: number; // default: 4
}
export class LiteRtEmbedder {
constructor(config: EmbedderConfig);
embed(text: string): Float32Array;
embedBatch(texts: string[]): Float32Array[];
isValid(): boolean;
getEmbeddingDim(): number;
getMaxSeqLength(): number;
close(): void;
}
Usage Example
const { LiteRtEmbedder } = require('@mcp-agent/litert-lm-native');
const embedder = new LiteRtEmbedder({
modelPath: 'embeddinggemma-300m.litertlm',
embeddingDim: 256,
maxSeqLength: 512,
numThreads: 4
});
// Single embedding
const embedding = embedder.embed("Hello world");
console.log('Dimension:', embedding.length); // 256
// Batch embedding
const embeddings = embedder.embedBatch([
"First document",
"Second document",
"Third document"
]);
// Cleanup
embedder.close();
Benchmarks (CPU Only)
Benchmarks performed on a ThinkPad X1 Carbon 9th Gen (Intel Core i7-1165G7 @ 2.80GHz, CPU only, no GPU acceleration).
Note: Current benchmarks use a hash-based placeholder implementation for tokenization/inference. Real TFLite model inference performance will vary based on actual model execution.
API Overhead Benchmarks
| Metric | Value |
|---|---|
| Initialization | <1ms |
| Latency (short text) | 0.002ms |
| Latency (medium text) | 0.003ms |
| Latency (long text) | 0.003ms |
| Memory per embedding | 0.32 KB |
Batch Processing
| Batch Size | Time/Batch | Time/Item |
|---|---|---|
| 1 | 0.004ms | 0.004ms |
| 5 | 0.015ms | 0.003ms |
| 10 | 0.031ms | 0.003ms |
| 20 | 0.074ms | 0.004ms |
Expected Real-World Performance
Based on similar embedding models running on comparable hardware:
| Scenario | Expected Latency |
|---|---|
| Single embedding (CPU) | 10-50ms |
| Batch of 10 (CPU) | 50-200ms |
| With XNNPACK optimization | 5-20ms |
C API Usage
For direct C/C++ integration:
#include "c/embedder.h"
// Create settings
LiteRtEmbedderSettings* settings = litert_embedder_settings_create(
"embeddinggemma-300m.litertlm", // model path
256, // embedding dimension
512 // max sequence length
);
litert_embedder_settings_set_num_threads(settings, 4);
// Create embedder
LiteRtEmbedder* embedder = litert_embedder_create(settings);
// Generate embedding
LiteRtEmbedding* embedding = litert_embedder_embed(embedder, "Hello world");
const float* data = litert_embedding_get_data(embedding);
int dim = litert_embedding_get_dim(embedding);
// Use embedding for similarity search, etc.
// ...
// Cleanup
litert_embedding_delete(embedding);
litert_embedder_delete(embedder);
litert_embedder_settings_delete(settings);
Use Cases
- Semantic search on mobile/edge devices
- Document similarity without cloud dependencies
- RAG (Retrieval Augmented Generation) with local embeddings
- MCP tool matching for AI agents
- Offline text classification
Limitations
Tokenization: Currently uses a simplified character-based tokenizer. For best results, integrate with SentencePiece using the Gemma tokenizer vocabulary.
Model Inference: The current wrapper uses placeholder inference. Full TFLite inference integration requires linking against the LiteRT C API.
Platform Support: Currently tested on Linux x86_64. macOS and Windows support requires platform-specific builds.
Repository Structure
models/
βββ embeddinggemma-300m.litertlm # This model
βββ embeddinggemma-300m.toml # Conversion config
βββ embeddinggemma-300M_seq512_mixed-precision.tflite # Source TFLite
native-bridge/
βββ src/litert_lm_binding.cc # N-API bindings
βββ binding.gyp # Build configuration
βββ lib/index.d.ts # TypeScript definitions
deps/LiteRT-LM/c/
βββ embedder.h # C API header
βββ embedder.cc # C implementation
License
This model conversion is provided under the Apache 2.0 license. The original EmbeddingGemma model is subject to Google's model license - please refer to the original model card for details.
Acknowledgments
- EmbeddingGemma by Google Research
- LiteRT-LM by Google AI Edge team
- TFLite Community for the pre-converted TFLite model
Citation
If you use this model, please cite the original EmbeddingGemma paper:
@article{embeddinggemma2024,
title={EmbeddingGemma: Efficient Text Embeddings from Gemma},
author={Google Research},
year={2024}
}
- Downloads last month
- 15