training_script / train.py
Ern You
initial commit
131e609
MODEL = "bigcode/starcoderbase-1b" # Model checkpoint on the Hugging Face Hub
DATASET = "smangrul/hf-stack-v1" # Dataset on the Hugging Face Hub
DATA_COLUMN = "content" # Column name containing the code content
SEQ_LENGTH = 2048 # Sequence length
MAX_STEPS = 2000 # max_steps
BATCH_SIZE = 8 # batch_size
GR_ACC_STEPS = 1 # gradient_accumulation_steps
LR = 5e-4 # learning_rate
LR_SCHEDULER_TYPE = "cosine" # lr_scheduler_type
WEIGHT_DECAY = 0.01 # weight_decay
NUM_WARMUP_STEPS = 30 # num_warmup_steps
EVAL_FREQ = 100 # eval_freq
SAVE_FREQ = 100 # save_freq
LOG_FREQ = 25 # log_freq
OUTPUT_DIR = "peft-starcoder-lora-a100" # output_dir
BF16 = False # bf16
FP16 = False # no_fp16
# FIM trasformations arguments
FIM_RATE = 0.5 # fim_rate
FIM_SPM_RATE = 0.5 # fim_spm_rate
# LORA
LORA_R = 8 # lora_r
LORA_ALPHA = 32 # lora_alpha
LORA_DROPOUT = 0.0 # lora_dropout
LORA_TARGET_MODULES = "c_proj,c_attn,q_attn,c_fc,c_proj" # lora_target_modules
# bitsandbytes config
#USE_NESTED_QUANT = True # use_nested_quant
#BNB_4BIT_COMPUTE_DTYPE = "bfloat16" # bnb_4bit_compute_dtype
SEED = 0
from huggingface_hub import login
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
Trainer,
TrainingArguments,
logging,
set_seed,
BitsAndBytesConfig,
)
from datasets import load_dataset
import torch
from tqdm import tqdm
#Prepare Data
dataset = load_dataset(
DATASET,
data_dir="data",
split="train",
streaming=True,
)
valid_data = dataset.take(4000)
train_data = dataset.skip(4000)
train_data = train_data.shuffle(buffer_size=5000, seed=SEED)
set_seed(SEED)
tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
def chars_token_ratio(dataset, tokenizer, data_column, nb_examples=400):
"""
Estimate the average number of characters per token in the dataset.
"""
total_characters, total_tokens = 0, 0
for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):
total_characters += len(example[data_column])
total_tokens += len(tokenizer(example[data_column]).tokens())
return total_characters / total_tokens
chars_per_token = chars_token_ratio(train_data, tokenizer, DATA_COLUMN)
print(f"The character to token ratio of the dataset is: {chars_per_token:.2f}")
import functools
import numpy as np
# Helper function to get token ids of the special tokens for prefix, suffix and middle for FIM transformations.
@functools.lru_cache(maxsize=None)
def get_fim_token_ids(tokenizer):
try:
FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX, FIM_PAD = tokenizer.special_tokens_map["additional_special_tokens"][1:5]
suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id = (
tokenizer.vocab[tok] for tok in [FIM_SUFFIX, FIM_PREFIX, FIM_MIDDLE, FIM_PAD]
)
except KeyError:
suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id = None, None, None, None
return suffix_tok_id, prefix_tok_id, middle_tok_id, pad_tok_id
## Adapted from https://github.com/bigcode-project/Megatron-LM/blob/6c4bf908df8fd86b4977f54bf5b8bd4b521003d1/megatron/data/gpt_dataset.py
def permute(
sample,
np_rng,
suffix_tok_id,
prefix_tok_id,
middle_tok_id,
pad_tok_id,
fim_rate=0.5,
fim_spm_rate=0.5,
truncate_or_pad=False,
):
"""
Take in a sample (list of tokens) and perform a FIM transformation on it with a probability of fim_rate, using two FIM modes:
PSM and SPM (with a probability of fim_spm_rate).
"""
# The if condition will trigger with the probability of fim_rate
# This means FIM transformations will apply to samples with a probability of fim_rate
if np_rng.binomial(1, fim_rate):
# Split the sample into prefix, middle, and suffix, based on randomly generated indices stored in the boundaries list.
boundaries = list(np_rng.randint(low=0, high=len(sample) + 1, size=2))
boundaries.sort()
prefix = np.array(sample[: boundaries[0]], dtype=np.int64)
middle = np.array(sample[boundaries[0] : boundaries[1]], dtype=np.int64)
suffix = np.array(sample[boundaries[1] :], dtype=np.int64)
if truncate_or_pad:
# calculate the new total length of the sample, taking into account tokens indicating prefix, middle, and suffix
new_length = suffix.shape[0] + prefix.shape[0] + middle.shape[0] + 3
diff = new_length - len(sample)
# trancate or pad if there's a difference in length between the new length and the original
if diff > 0:
if suffix.shape[0] <= diff:
return sample, np_rng
suffix = suffix[: suffix.shape[0] - diff]
elif diff < 0:
suffix = np.concatenate([suffix, np.full((-1 * diff), pad_tok_id)])
# With the probability of fim_spm_rateapply SPM variant of FIM transformations
# SPM: suffix, prefix, middle
if np_rng.binomial(1, fim_spm_rate):
new_sample = np.concatenate(
[
[prefix_tok_id, suffix_tok_id],
suffix,
[middle_tok_id],
prefix,
middle,
]
)
# Otherwise, apply the PSM variant of FIM transformations
# PSM: prefix, suffix, middle
else:
new_sample = np.concatenate(
[
[prefix_tok_id],
prefix,
[suffix_tok_id],
suffix,
[middle_tok_id],
middle,
]
)
else:
# don't apply FIM transformations
new_sample = sample
return list(new_sample), np_rng
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
import random
# Create an Iterable dataset that returns constant-length chunks of tokens from a stream of text files.
class ConstantLengthDataset(IterableDataset):
"""
Iterable dataset that returns constant length chunks of tokens from stream of text files.
Args:
tokenizer (Tokenizer): The processor used for proccessing the data.
dataset (dataset.Dataset): Dataset with text files.
infinite (bool): If True the iterator is reset after dataset reaches end else stops.
seq_length (int): Length of token sequences to return.
num_of_sequences (int): Number of token sequences to keep in buffer.
chars_per_token (int): Number of characters per token used to estimate number of tokens in text buffer.
fim_rate (float): Rate (0.0 to 1.0) that sample will be permuted with FIM.
fim_spm_rate (float): Rate (0.0 to 1.0) of FIM permuations that will use SPM.
seed (int): Seed for random number generator.
"""
def __init__(
self,
tokenizer,
dataset,
infinite=False,
seq_length=1024,
num_of_sequences=1024,
chars_per_token=3.6,
content_field="content",
fim_rate=0.5,
fim_spm_rate=0.5,
seed=0,
):
self.tokenizer = tokenizer
self.concat_token_id = tokenizer.eos_token_id
self.dataset = dataset
self.seq_length = seq_length
self.infinite = infinite
self.current_size = 0
self.max_buffer_size = seq_length * chars_per_token * num_of_sequences
self.content_field = content_field
self.fim_rate = fim_rate
self.fim_spm_rate = fim_spm_rate
self.seed = seed
(
self.suffix_tok_id,
self.prefix_tok_id,
self.middle_tok_id,
self.pad_tok_id,
) = get_fim_token_ids(self.tokenizer)
if not self.suffix_tok_id and self.fim_rate > 0:
print("FIM is not supported by tokenizer, disabling FIM")
self.fim_rate = 0
def __iter__(self):
iterator = iter(self.dataset)
more_examples = True
np_rng = np.random.RandomState(seed=self.seed)
while more_examples:
buffer, buffer_len = [], 0
while True:
if buffer_len >= self.max_buffer_size:
break
try:
buffer.append(next(iterator)[self.content_field])
buffer_len += len(buffer[-1])
except StopIteration:
if self.infinite:
iterator = iter(self.dataset)
else:
more_examples = False
break
tokenized_inputs = self.tokenizer(buffer, truncation=False)["input_ids"]
all_token_ids = []
for tokenized_input in tokenized_inputs:
# optionally do FIM permutations
if self.fim_rate > 0:
tokenized_input, np_rng = permute(
tokenized_input,
np_rng,
self.suffix_tok_id,
self.prefix_tok_id,
self.middle_tok_id,
self.pad_tok_id,
fim_rate=self.fim_rate,
fim_spm_rate=self.fim_spm_rate,
truncate_or_pad=False,
)
all_token_ids.extend(tokenized_input + [self.concat_token_id])
examples = []
for i in range(0, len(all_token_ids), self.seq_length):
input_ids = all_token_ids[i : i + self.seq_length]
if len(input_ids) == self.seq_length:
examples.append(input_ids)
random.shuffle(examples)
for example in examples:
self.current_size += 1
yield {
"input_ids": torch.LongTensor(example),
"labels": torch.LongTensor(example),
}
train_dataset = ConstantLengthDataset(
tokenizer,
train_data,
infinite=True,
seq_length=SEQ_LENGTH,
chars_per_token=chars_per_token,
content_field=DATA_COLUMN,
fim_rate=FIM_RATE,
fim_spm_rate=FIM_SPM_RATE,
seed=SEED,
)
eval_dataset = ConstantLengthDataset(
tokenizer,
valid_data,
infinite=False,
seq_length=SEQ_LENGTH,
chars_per_token=chars_per_token,
content_field=DATA_COLUMN,
fim_rate=FIM_RATE,
fim_spm_rate=FIM_SPM_RATE,
seed=SEED,
)
import torch
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from peft.tuners.lora import LoraLayer
#load_in_8bit = False
# 4-bit quantization
#compute_dtype = getattr(torch, BNB_4BIT_COMPUTE_DTYPE)
#compute_float32 = torch.float32
#bnb_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_quant_type="nf4",
# bnb_4bit_compute_dtype=compute_float32,
# bnb_4bit_use_double_quant=USE_NESTED_QUANT,
# bnb_4bit_quant_storage=compute_float32
#)
#import os
#device_map = int(os.environ.get("LOCAL_RANK", -1))
model = AutoModelForCausalLM.from_pretrained(
MODEL,
#quantization_config=bnb_config,
device_map=None,
use_cache=False, # We will be using gradient checkpointing
trust_remote_code=True,
torch_dtype = torch.float32,
)
#from collections import Counter
#print(Counter(p.dtype for p in model.parameters()))
#model = prepare_model_for_kbit_training(model)
#from collections import Counter
#print("after prepare_model_for_kbit_training ", Counter(p.dtype for p in model.parameters()))
peft_config = LoraConfig(
lora_alpha=LORA_ALPHA,
lora_dropout=LORA_DROPOUT,
r=LORA_R,
bias="none",
task_type="CAUSAL_LM",
target_modules=LORA_TARGET_MODULES.split(","),
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
#from collections import Counter
#print("after get_peft_model ", Counter(p.dtype for p in model.parameters()))
train_data.start_iteration = 0
training_args = TrainingArguments(
output_dir=f"limernyou/{OUTPUT_DIR}",
dataloader_drop_last=True,
eval_strategy="steps",
save_strategy="steps",
max_steps=MAX_STEPS,
eval_steps=EVAL_FREQ,
save_steps=SAVE_FREQ,
logging_steps=LOG_FREQ,
per_device_train_batch_size=BATCH_SIZE,
per_device_eval_batch_size=BATCH_SIZE,
learning_rate=LR,
lr_scheduler_type=LR_SCHEDULER_TYPE,
warmup_steps=NUM_WARMUP_STEPS,
gradient_accumulation_steps=GR_ACC_STEPS,
gradient_checkpointing_kwargs={"use_reentrant": False},
gradient_checkpointing=True,
fp16=FP16,
bf16=BF16,
weight_decay=WEIGHT_DECAY,
push_to_hub=True,
include_tokens_per_second=True,
)
#from trl import SFTConfig, SFTTrainer
trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset)
print("Training...")
trainer.train()
trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT")
trainer.save_model()
trainer.push_to_hub()