spear-large-speech-audio / spear_model.py
marcoyang's picture
Upload folder using huggingface_hub
04660a7 verified
# Copyright 2025 University of Cambridge (authors: Xiaoyu Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import math
from typing import Optional, Tuple
import random
import numpy as np
import torch
import torchaudio
import torch.nn as nn
from torch.nn.utils.rnn import pad_sequence
from torchaudio.compliance.kaldi import fbank as torch_fbank
from .configuration_spear import SpearConfig
from .zipformer import Zipformer2, Conv2dSubsampling
LOG_EPS=math.log(1e-10)
SAMPLING_RATE=16000
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
"""
Args:
lengths:
A 1-D tensor containing sentence lengths.
max_len:
The length of masks.
Returns:
Return a 2-D bool tensor, where masked positions
are filled with `True` and non-masked positions are
filled with `False`.
This function is borrowed from https://github.com/k2-fsa/icefall
>>> lengths = torch.tensor([1, 3, 2, 5])
>>> make_pad_mask(lengths)
tensor([[False, True, True, True, True],
[False, False, False, True, True],
[False, False, True, True, True],
[False, False, False, False, False]])
"""
assert lengths.ndim == 1, lengths.ndim
max_len = max(max_len, lengths.max())
n = lengths.size(0)
seq_range = torch.arange(0, max_len, device=lengths.device)
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
return expaned_lengths >= lengths.unsqueeze(-1)
def get_model(config: SpearConfig) -> nn.Module:
encoder_embed = get_encoder_embed(config)
encoder = get_encoder_model(config)
model = SpearEncoder(
encoder_embed=encoder_embed,
encoder=encoder,
encoder_dim=max(_to_int_tuple(config.encoder_dim)),
num_codebooks=0, # for inference
)
return model
class SpearModel(nn.Module):
def __init__(
self, config: SpearConfig,
):
super().__init__()
model = get_model(config)
self.config = config
self.model = model
def _load_audio_single(self, audio_path: str) -> Tuple[torch.Tensor, int]:
waveform, sr = torchaudio.load(audio_path) # (channels, num_samples)
if waveform.size(0) > 1:
waveform = waveform.mean(dim=0, keepdim=True) # (1, num_samples)
if sr != SAMPLING_RATE:
transform = torchaudio.transforms.Resample(sr, SAMPLING_RATE)
waveform = transform(waveform)
waveform_len = waveform.shape[-1]
return waveform, waveform_len
def load_audio(self, audio_paths: list[str]) -> Tuple[torch.Tensor, torch.Tensor]:
assert isinstance(audio_paths, list), "Must receive a list of files for reading"
waveforms = []
waveform_lens = []
for audio in audio_paths:
wav, wav_len = self._load_audio_single(audio)
waveforms.append(wav.squeeze())
waveform_lens.append(wav_len)
waveforms = pad_sequence(waveforms, batch_first=True) # (N, T)
waveform_lens = torch.tensor(waveform_lens)
return waveforms, waveform_lens
def compute_fbank(
self, wavs: torch.Tensor, wav_lens: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute fbank features
Args:
wavs (torch.Tensor): the mono-channel input waveform, (N, T)
wav_lens (torch.Tensor): the length of each waveform in samples (N)
Returns:
The fbank features, and their lengths
"""
assert wavs.ndim == 2, wavs.shape
low_freq = 20.0
high_freq=-400.0
dither=0.0
snip_egdes=False
features = []
for i, wav in enumerate(wavs):
feat = torch_fbank(
wav[:wav_lens[i]].unsqueeze(0),
sample_frequency=16000, # this is fixed to 16000
num_mel_bins=128,
low_freq=low_freq,
snip_edges=snip_egdes,
high_freq=high_freq,
dither=dither,
energy_floor=1.0e-10,
)
features.append(feat)
feat_len = torch.tensor([f.shape[0] for f in features]).to(wavs.device)
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS).to(wavs.device)
return features, feat_len
def forward(self, audio: torch.Tensor, audio_lens: torch.Tensor, return_middle_layers: bool = True):
"""Encode a batch of audio
Args:
audio (torch.Tensor): Input audio waveforms (N,L)
audio_lens (torch.Tensor): The length of the audio waveforms (N)
return_middle_layers (bool, optional): Output the intermediate features.
Returns:
The encoded representations, and the length of each representation (N,T,C), (N)
"""
# return the results in the form of a dictionary
# containing final encoder output, the output length, and the intermediate representations
x, x_lens = self.compute_fbank(audio, audio_lens) # fbank features
outputs = self.model.forward_encoder(
x=x,
x_lens=x_lens,
return_middle_out=return_middle_layers,
return_dict=True,
)
return outputs
class SpearEncoder(nn.Module):
def __init__(
self,
encoder_embed: nn.Module,
encoder: nn.Module,
encoder_dim: int,
num_codebooks: int=8,
distillation_layer: int=9,
distillation_delta: int=0,
teacher_frame_ratio: int = 2,
interpolate_teacher: bool = False,
n_mels: int = 128,
mask_mode: str = "w2v2",
mask_prob: float = 0.65,
mask_length: int = 10,
mask_selection: str = "static",
mask_other: float = 0.0,
min_masks: int = 2,
mask_channel_prob: float = 0.0,
mask_channel_length: int = 10,
mask_channel_selection: str = "static",
mask_channel_other: float = 0.0,
loss_only_mask: bool = False,
):
"""A model that performs MVQ KD pre-training .
Args:
encoder_embed:
It is a Convolutional 2D subsampling module. It converts
an input of shape (N, T, idim) to an output of of shape
(N, T', odim), where T' = (T-3)//2-2 = (T-7)//2.
encoder:
It is the transcription network in the paper. Its accepts
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
It returns two tensors: `logits` of shape (N, T, encoder_dim) and
`logit_lens` of shape (N,).
num_codebooks:
The number of codebooks used in the target
distillation_layer:
Use which layer to do MVQ pre-training
distillation_delta:
How many frames to delay the alignment between the model and the target frames.
Should be zero for non-streaming models, and a positive number for streaming models
teacher_frame_ratio:
The frame rate ratio between the target and the model output
mask_mode:
The masking mode.
w2v2: the wav2vec2 style of masking, allows overlap
custom: no overlap, therefore bigger masking ratio
mask_prob:
The probability of selecting choosing one frame as the start index
mask_length:
The length of each mask
mask_selection:
How to determine the length of the mask, see ``compute_mask_indices''
"""
super().__init__()
self.encoder_embed = encoder_embed
self.encoder = encoder
self.encoder_dim = encoder_dim
self.distillation_layer = distillation_layer
# the frame ratio between the teacher and student
# if larger than one, we are basically having more than one set of
# codebooks for each frame
self.num_codebooks= num_codebooks
self.teacher_frame_ratio = teacher_frame_ratio
self.interpolate_teacher = interpolate_teacher
self.distillation_delta = distillation_delta
if num_codebooks > 0:
from .spear_modules import JointCodebookLoss
self.codebook_loss_net = JointCodebookLoss(
input_dim=encoder_dim,
num_codebooks=num_codebooks * self.teacher_frame_ratio,
reduction="none",
)
else:
self.codebook_loss_net = None
# masking related
assert mask_mode in ["w2v2", "block"], f"Unseen mask mode: {mask_mode}"
self.mask_mode = mask_mode
self.mask_emb = nn.Parameter(torch.FloatTensor(n_mels).normal_())
self.mask_prob = mask_prob
self.mask_length = mask_length
self.mask_selection = mask_selection
self.mask_other = mask_other
self.min_masks = min_masks
self.mask_channel_prob = mask_channel_prob
self.mask_channel_length = mask_channel_length
self.mask_channel_selection = mask_channel_selection
self.mask_channel_other = mask_channel_other
self.loss_only_mask = loss_only_mask
def forward_encoder(
self, x: torch.Tensor, x_lens: torch.Tensor, return_middle_out: bool = False, return_dict: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute encoder outputs.
Args:
x:
A 3-D tensor of shape (N, T, C).
x_lens:
A 1-D tensor of shape (N,). It contains the number of frames in `x`
before padding.
Returns:
encoder_out:
Encoder output, of shape (N, T, C).
encoder_out_lens:
Encoder output lengths, of shape (N,).
"""
# logging.info(f"Memory allocated at entry: {torch.cuda.memory_allocated() // 1000000}M")
x, x_lens = self.encoder_embed(x, x_lens)
# logging.info(f"Memory allocated after encoder_embed: {torch.cuda.memory_allocated() // 1000000}M")
src_key_padding_mask = make_pad_mask(x_lens)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
encoder_out, encoder_out_lens, middle_out = self.encoder(x, x_lens, src_key_padding_mask, return_middle_out=True)
middle_out = [feat.permute(1,0,2) for feat in middle_out] # (N, T, C) -> (T, N, C)
encoder_out = encoder_out.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
assert torch.all(encoder_out_lens > 0), (x_lens, encoder_out_lens)
if not return_dict:
return encoder_out, encoder_out_lens, middle_out
else:
outputs = {
"encoder_out": encoder_out,
"encoder_out_lens": encoder_out_lens,
"hidden_states": middle_out,
}
return outputs
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
codebook_indexes: torch.Tensor = None,
mask: bool = True,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Args:
x:
A 3-D tensor of shape (N, T, C).
x_lens:
A 1-D tensor of shape (N,). It contains the number of frames in `x`
before padding.
codebook_indexes:
Codebook indexes of teacher embeddings
mask:
If we perform w2v2 style of masking over the fbank frames
Returns:
Return the codebook loss
"""
assert x.ndim == 3, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert codebook_indexes is not None
# apply masking
if self.training and mask:
padding_mask = make_pad_mask(x_lens)
# apply masking to the fbank features
x, mask_indices = self.apply_mask(
x.clone(),
padding_mask=padding_mask
) # (N,T,C), (N,T)
else:
mask_indices = None
# Compute encoder outputs
encoder_out, encoder_out_lens, _ = self.forward_encoder(x, x_lens)
# compute the codebook loss
if codebook_indexes is not None and self.codebook_loss_net is not None:
codebook_loss = self.forward_codebook_loss(
encoder_out, encoder_out_lens, codebook_indexes, reduction="none"
)
if self.loss_only_mask and mask_indices is not None:
# downsample the mask
mask_indices = nn.functional.avg_pool1d(mask_indices, 4) >= 0.5
assert mask_indices.size(1) >= codebook_loss.size(1)
mask_indices = mask_indices[:, :codebook_loss.size(1)].float()
codebook_loss = codebook_loss * mask_indices
codebook_loss = codebook_loss.sum(dim=1) # (B,)
else:
codebook_loss = None
return codebook_loss
def forward_codebook_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
codebook_indexes: torch.Tensor,
reduction: str = "sum",
):
# align the encoder features with the codebook indexes
if self.interpolate_teacher:
codebook_indexes = self.interpolate_codebook_indexes(
encoder_out, codebook_indexes
)
else:
if codebook_indexes.shape[1] != encoder_out.shape[1]:
# align the codebook indexes to the frame rate of the student encoder out
codebook_indexes = self.concat_successive_codebook_indexes(
encoder_out, codebook_indexes, ratio=self.teacher_frame_ratio
)
# the delta is associated with the frame-rate of the encoder
# so a bigger delta maybe necessary for 50Hz student encoder
if self.distillation_delta > 0:
codebook_indexes = codebook_indexes[:,:-self.distillation_delta, :]
encoder_out = encoder_out[:, self.distillation_delta:, :]
truncated_padding_mask = make_pad_mask(encoder_out_lens - self.distillation_delta)
codebook_indexes = codebook_indexes.masked_fill(truncated_padding_mask.unsqueeze(-1), value=-100)
N,T,_ = encoder_out.shape
codebook_loss = self.codebook_loss_net(encoder_out.float(), codebook_indexes)
codebook_loss = codebook_loss.reshape(N,T,-1)
num_cb = codebook_loss.size(-1)
# normalize the loss by the number of codebooks
if reduction == "sum":
codebook_loss = codebook_loss.sum(dim=(1,2)) / num_cb # (B,)
elif reduction == "none":
codebook_loss = codebook_loss.sum(dim=2) / num_cb # (B,T)
else:
raise NotImplementedError()
return codebook_loss
def apply_mask(
self,
x: torch.Tensor,
padding_mask: torch.Tensor = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Apply mask according to the mask_mode, return the masked features and the masked positions
Args:
x (torch.Tensor): The input fbank features
padding_mask (torch.Tensor, optional): The padding mask
Returns:
The masked fbank feature and the masked_indices, with masked positions as 1
"""
# apply mask to the fbank features, two modes applicable
if self.mask_mode == "w2v2":
x, masked_indices = self.apply_mask_w2v2(x, padding_mask)
elif self.mask_mode == "block":
x, masked_indices = self.apply_mask_block(x, padding_mask)
else:
raise NotImplementedError()
if random.random() > 0.97:
logging.info(f"Apply {self.mask_mode} masking. A proportion of {masked_indices.sum()/masked_indices.numel():.2f} frames are masked")
return x, masked_indices
def apply_mask_block(
self,
x: torch.Tensor,
padding_mask: torch.Tensor = None
):
B,T,C = x.shape
assert self.mask_prob > 0.0
mask_indices = compute_mask_indices_block(
shape=(B,T),
padding_mask=padding_mask,
mask_prob=self.mask_prob,
mask_length=self.mask_length,
min_masks=self.min_masks,
).to(x.device)
x = index_put(x, mask_indices.bool(), self.mask_emb)
return x, mask_indices
def apply_mask_w2v2(
self,
x: torch.Tensor,
padding_mask: torch.Tensor = None
):
# this function is modified from fairseq: https://github.com/facebookresearch/fairseq/blob/bedb259bf34a9fc22073c13a1cee23192fa70ef3/fairseq/models/wav2vec/wav2vec2.py#L429
# The masked indices have value 1
B, T, C = x.shape
# we mask channel first, then mask timestamps
if self.mask_channel_prob > 0:
mask_channel_indices = compute_mask_indices(
(B, C),
None,
self.mask_channel_prob,
self.mask_channel_length,
self.mask_channel_selection,
self.mask_channel_other,
no_overlap=False,
min_space=1,
require_same_masks=False,
)
mask_channel_indices = (
torch.from_numpy(mask_channel_indices)
.to(x.device)
.unsqueeze(1)
.expand(-1, T, -1)
)
if random.random() > 0.98:
logging.info(f"A proportion of {mask_channel_indices.sum()/mask_channel_indices.numel():.2f} feature dims are masked")
x[mask_channel_indices] = 0
if self.mask_prob > 0:
mask_indices = compute_mask_indices(
(B, T),
padding_mask,
self.mask_prob,
self.mask_length,
mask_type=self.mask_selection,
mask_other=self.mask_other,
min_masks=2, # fixed
no_overlap=False, # False
min_space=1, # 1
require_same_masks=False,
)
mask_indices = torch.from_numpy(mask_indices).to(x.device)
x = index_put(x, mask_indices, self.mask_emb)
mask_indices = mask_indices.float()
else:
mask_indices = None
return x, mask_indices
@staticmethod
def interpolate_codebook_indexes(middle_layer_output, codebook_indexes):
# This function addresses the case where the teacher has a lower frame rate
# than the student model
t_expected = middle_layer_output.shape[1]
N, T, C = codebook_indexes.shape # C should be 256
codebook_indexes = codebook_indexes.permute(0,2,1).float() # (N,C,T)
codebook_indexes = torch.nn.functional.interpolate(codebook_indexes, t_expected)
codebook_indexes = codebook_indexes.permute(0,2,1).int() # (N,T,C)
assert codebook_indexes.shape[1] == middle_layer_output.shape[1]
return codebook_indexes
@staticmethod
def concat_successive_codebook_indexes(middle_layer_output, codebook_indexes, ratio=2):
# Output rate of hubert is 50 frames per second,
# while that of current encoder is 25.
# Following code handling two issues:
# 1.
# Roughly speaking, to generate another frame output,
# hubert needes extra two frames,
# while current encoder needs extra four frames.
# Suppose there are only extra three frames provided,
# hubert will generate another frame while current encoder does nothing.
# 2.
# codebook loss is a frame-wise loss, to enalbe 25 frames studnet output
# learns from 50 frames teacher output, two successive frames of teacher model
# output is concatenated together.
t_expected = middle_layer_output.shape[1]
N, T, C = codebook_indexes.shape # C should be 256
# Handling issue 1.
if T >= t_expected * ratio:
codebook_indexes = codebook_indexes[:, : t_expected * ratio, :]
else:
assert t_expected * ratio - T <= 5, (T, t_expected, ratio)
diff = t_expected * ratio - T
codebook_indexes = torch.cat(
[
codebook_indexes,
torch.full((N,diff,C), -100).to(codebook_indexes.device).to(codebook_indexes.dtype)
],
dim=1,
)
assert codebook_indexes.size(1) == middle_layer_output.size(1) * ratio
# Handling issue 2.
codebook_indexes = codebook_indexes.reshape(N, t_expected, C * ratio)
assert middle_layer_output.shape[1] == codebook_indexes.shape[1]
return codebook_indexes
def index_put(tensor, indices, value):
tensor[indices] = value
return tensor
def compute_mask_indices_block(
shape,
padding_mask,
mask_prob: float = 0.5,
mask_length: int = 10,
min_masks: int = 2,
):
# self-implemented mask, no overlap
B,T = shape
mask_indices = []
for i in range(B):
if padding_mask is not None:
num_segments = (T - padding_mask[i].sum()) // mask_length # discard the last few frames
else:
num_segments = T // mask_length
segment_mask = torch.rand(num_segments) < mask_prob
while sum(segment_mask) < min_masks:
segment_mask = torch.rand(num_segments) < mask_prob
segment_mask_expanded = segment_mask.unsqueeze(-1).expand(num_segments, mask_length)
segment_mask_expanded = segment_mask_expanded.reshape(-1).float()
if segment_mask_expanded.size(0) < T:
pad = T - segment_mask_expanded.size(0)
segment_mask_expanded = torch.cat([segment_mask_expanded, torch.zeros(pad)])
mask_indices.append(segment_mask_expanded)
mask_indices = torch.stack(mask_indices)
return mask_indices
def compute_mask_indices(
shape: Tuple[int, int],
padding_mask: Optional[torch.Tensor],
mask_prob: float,
mask_length: int,
mask_type: str = "static",
mask_other: float = 0.0,
min_masks: int = 0,
no_overlap: bool = False,
min_space: int = 0,
require_same_masks: bool = True,
mask_dropout: float = 0.0,
add_masks: bool = False,
seed: Optional[int] = None,
epoch: Optional[int] = None,
indices: Optional[torch.Tensor] = None,
idc_select_ver: int = 1, # 2 to reproduce mask_tokens_dataset
num_mask_ver: int = 2, # 2 to reproduce mask_tokens_dataset
) -> np.ndarray:
"""
Computes random mask spans for a given shape
Args:
shape: the the shape for which to compute masks.
should be of size 2 where first element is batch size and 2nd is timesteps
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
mask_type: how to compute mask lengths
static = fixed size
uniform = sample from uniform distribution [mask_other, mask_length*2]
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
poisson = sample from possion distribution with lambda = mask length
min_masks: minimum number of masked spans
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
require_same_masks: if true, will randomly drop out masks until same amount of masks remains in each sample
mask_dropout: randomly dropout this percentage of masks in each example
"""
bsz, all_sz = shape
mask = np.full((bsz, all_sz), False)
if num_mask_ver == 1:
all_num_mask = int(
# add a random number for probabilistic rounding
mask_prob * all_sz / float(mask_length)
+ np.random.rand()
)
all_num_mask = max(min_masks, all_num_mask)
mask_idcs = []
for i in range(bsz):
if seed is not None and epoch is not None and indices is not None:
seed_i = int(hash((seed, epoch, indices[i].item())) % 1e6)
else:
seed_i = None
rng = np.random.default_rng(seed_i)
if padding_mask is not None:
sz = all_sz - padding_mask[i].long().sum().item()
assert sz >= 0, sz
else:
sz = all_sz
if num_mask_ver == 1:
if padding_mask is not None:
num_mask = int(
# add a random number for probabilistic rounding
mask_prob * sz / float(mask_length)
+ np.random.rand()
)
num_mask = max(min_masks, num_mask)
else:
num_mask = all_num_mask
elif num_mask_ver == 2:
num_mask = int(
# add a random number for probabilistic rounding
mask_prob * sz / float(mask_length)
+ rng.random()
)
num_mask = max(min_masks, num_mask)
hard_max = sz // mask_length
num_mask = min(hard_max, num_mask) # prevent whole sequence being masked
else:
raise ValueError()
if mask_type == "static":
lengths = np.full(num_mask, mask_length)
elif mask_type == "uniform":
lengths = rng.randint(mask_other, mask_length * 2 + 1, size=num_mask)
elif mask_type == "normal":
lengths = rng.normal(mask_length, mask_other, size=num_mask)
lengths = [max(1, int(round(x))) for x in lengths]
elif mask_type == "poisson":
lengths = rng.poisson(mask_length, size=num_mask)
lengths = [int(round(x)) for x in lengths]
else:
raise Exception("unknown mask selection " + mask_type)
if sum(lengths) == 0:
if mask_type == "static":
raise ValueError("this should never happens")
else:
lengths = [min(mask_length, sz - 1)]
if no_overlap:
mask_idc = []
def arrange(s, e, length, keep_length):
span_start = rng.randint(s, e - length)
mask_idc.extend(span_start + i for i in range(length))
new_parts = []
if span_start - s - min_space >= keep_length:
new_parts.append((s, span_start - min_space + 1))
if e - span_start - length - min_space > keep_length:
new_parts.append((span_start + length + min_space, e))
return new_parts
parts = [(0, sz)]
min_length = min(lengths)
for length in sorted(lengths, reverse=True):
lens = np.fromiter(
(e - s if e - s >= length + min_space else 0 for s, e in parts),
np.int,
)
l_sum = np.sum(lens)
if l_sum == 0:
break
probs = lens / np.sum(lens)
c = rng.choice(len(parts), p=probs)
s, e = parts.pop(c)
parts.extend(arrange(s, e, length, min_length))
mask_idc = np.asarray(mask_idc)
else:
if idc_select_ver == 1:
min_len = min(lengths)
if sz - min_len <= num_mask:
min_len = sz - num_mask - 1
mask_idc = rng.choice(sz - min_len, num_mask, replace=False)
elif idc_select_ver == 2:
mask_idc = rng.choice(sz, num_mask, replace=False)
else:
raise ValueError()
mask_idc = np.asarray(
[
mask_idc[j] + offset
for j in range(len(mask_idc))
for offset in range(lengths[j])
]
)
mask_idc = np.unique(mask_idc[mask_idc < sz])
if len(mask_idc) >= sz:
raise ValueError(
(
f"the entire sequence is masked. "
f"sz={sz}; mask_idc[mask_idc]; "
f"index={indices[i] if indices is not None else None}"
)
)
mask_idcs.append(mask_idc)
target_len = None
if require_same_masks:
if add_masks:
target_len = max([len(m) for m in mask_idcs])
else:
target_len = min([len(m) for m in mask_idcs])
for i, mask_idc in enumerate(mask_idcs):
if target_len is not None and len(mask_idc) > target_len:
mask_idc = rng.choice(mask_idc, target_len, replace=False)
mask[i, mask_idc] = True
if target_len is not None and len(mask_idc) < target_len:
unmasked = np.flatnonzero(~mask[i])
to_mask = rng.choice(unmasked, target_len - len(mask_idc), replace=False)
mask[i, to_mask] = True
if mask_dropout > 0:
masked = np.flatnonzero(mask[i])
num_holes = np.rint(len(masked) * mask_dropout).astype(int)
to_drop = rng.choice(masked, num_holes, replace=False)
mask[i, to_drop] = False
return mask
def _to_int_tuple(s: str):
return tuple(map(int, s.split(",")))
def get_encoder_embed(config: SpearConfig) -> nn.Module:
# initialize the convolution subsampling module
encoder_embed = Conv2dSubsampling(
in_channels=config.num_mel_bins,
out_channels=_to_int_tuple(config.encoder_dim)[0],
)
return encoder_embed
def get_encoder_model(config: SpearConfig) -> nn.Module:
# initialize the Zipformer encoder model
encoder = Zipformer2(
output_downsampling_factor=config.output_downsampling_factor,
downsampling_factor=_to_int_tuple(config.downsampling_factor),
num_encoder_layers=_to_int_tuple(config.num_encoder_layers),
encoder_dim=_to_int_tuple(config.encoder_dim),
encoder_unmasked_dim=_to_int_tuple(config.encoder_unmasked_dim),
query_head_dim=_to_int_tuple("32"),
pos_head_dim=_to_int_tuple("4"),
value_head_dim=_to_int_tuple("12"),
pos_dim=config.pos_dim,
num_heads=_to_int_tuple(config.num_heads),
feedforward_dim=_to_int_tuple(config.feedforward_dim),
cnn_module_kernel=_to_int_tuple(config.cnn_module_kernel),
warmup_batches=4000.0,
causal=config.causal,
chunk_size=config.chunk_size,
left_context_frames=config.left_context_frames,
)
return encoder
def _test_w2v2_channel_mask():
x = torch.ones(100, 1000, 128)
B, T, C = x.shape
configs = [(0.25, 15), (0.25, 20), (0.5, 15),]
# configs = [(0.2, 20), (0.3, 20), (0.4, 20),]
for config in configs:
mask_channel_prob, mask_channel_length = config
ratios = []
for i in range(20):
mask_channel_indices = compute_mask_indices(
(B, C),
None,
mask_channel_prob,
mask_channel_length,
"static",
0.0,
no_overlap=False,
min_space=1,
require_same_masks=False,
)
mask_channel_indices = (
torch.from_numpy(mask_channel_indices)
.to(x.device)
.unsqueeze(1)
.expand(-1, T, -1)
)
ratio = mask_channel_indices.sum() / mask_channel_indices.numel()
ratios.append(ratio)
avg_ratio = sum(ratios) / len(ratios)
print(f"Current config: mask_channel_prob = {mask_channel_prob}, mask_channel_length = {mask_channel_length}")
print(f"Averaged masking ratio: {avg_ratio}")
def _test_w2v2_mask():
x = torch.ones(100, 1000, 128)
B, T, C = x.shape
mask_prob = 0.65
mask_length = 10
# configs = [(0.65, 10), (0.01, 40), (0.1, 40), (0.2, 40), (0.2, 20), (0.35, 10), (0.35, 20), (0.25, 20)]
configs = []
for i in range(6):
p = 0.05 + (i+1) * 0.1
for l in [10, 20, 30, 40]:
configs.append((p, l))
configs = [(0.65, 10), (0.02, 40), (0.05, 40), (0.1, 40)]
for config in configs:
mask_prob, mask_length = config
ratios = []
for i in range(20):
mask_indices = compute_mask_indices(
(B, T),
None,
mask_prob,
mask_length,
mask_type="static",
mask_other=0.0,
min_masks=2,
no_overlap=False, # False
min_space=1, # 1
require_same_masks=False,
)
mask_indices = torch.from_numpy(mask_indices)
ratio = mask_indices.sum() / mask_indices.numel()
ratios.append(ratio)
avg_ratio = sum(ratios) / len(ratios)
print(f"Current config: mask_prob = {mask_prob}, mask_length = {mask_length}")
print(f"Averaged masking ratio: {avg_ratio}")
def _test_custom_mask():
x = torch.ones(100, 1000, 128)
B, T, C = x.shape
configs = [(0.5, 20), (0.2, 20), (0.3, 20), (0.4, 20), (0.5, 20)]
for config in configs:
mask_prob, mask_length = config
ratios = []
for i in range(20):
all_possible_mask_lengths = [mask_length + i * 2 for i in range(-5, 6)]
mask_length = random.sample(all_possible_mask_lengths, 1)[0]
assert mask_length > 0, f"Sampled mask_length smaller than 0, {mask_length}"
mask_indices = compute_mask_indices_block(
shape=(B, T),
padding_mask=None,
mask_prob=mask_prob,
mask_length=mask_length,
min_masks=2,
)
ratio = mask_indices.sum() / mask_indices.numel()
ratios.append(ratio)
avg_ratio = sum(ratios) / len(ratios)
print(f"Current config: mask_prob = {mask_prob}, mask_length = {mask_length}")
print(f"Averaged masking ratio: {avg_ratio}")
if __name__=="__main__":
_test_w2v2_channel_mask()
_test_w2v2_mask()
_test_custom_mask()