AI & ML interests
Multimodal AI for Hospitality | Siamese Networks for Image & Text Similarity | DINOv2-based Multi-head Classification | Spectral Clustering | KLUE BERT Fine-tuning | Production ML Deployment (ONNX, SageMaker) | Computer Vision + NLP Integration | Korean Language Processing
Recent Activity
ONDA - AI-Powered Hospitality Technology
π’ About Us
ONDA is a hospitality technology company based in Seoul, applying machine learning to solve real-world challenges in hotel content management. We serve 10,000+ properties across Asia-Pacific, processing 5.4M+ annual bookings.
π€ Open Source ML Research
We're developing multimodal AI systems for automated hospitality content organization and classification.
Multimodal Room Clustering
Automatically grouping hotel room images and text descriptions using vision and language models.
Image Similarity
- Siamese network with EfficientNetV2-S backbone
- Trained on 2M+ image pairs
- Spectral clustering for automated grouping
- Deployed via ONNX for production inference
Text Similarity
- KLUE BERT-based Siamese network for Korean room names
- Fine-tuned on 31,452 training pairs
- Handles Korean-English multilingual text
DINOv2 Multi-head Classification
Scene classification system for hotel images achieving 85.6% accuracy.
Architecture
- Vision Transformer (DINOv2) backbone
- Three classification heads: Scene (6 classes), Concept (3 classes), Object (12 classes)
- Trained on 33,762 images from 127 properties
Performance
- Scene: 85.2% | Concept: 92.8% | Object: 78.9%
Production ML Pipeline
- Model Optimization: PyTorch β ONNX conversion
- Deployment: AWS SageMaker for scalable inference
- Frameworks: PyTorch, Transformers (Hugging Face), timm, scikit-learn
π¬ Research Interests
- Contrastive learning for visual similarity
- Self-supervised vision models (DINO, DINOv2)
- Multilingual NLP (Korean, English, Japanese)
- Efficient model deployment for production systems
π Learn More
Website: global.onda.me
ONDA - AI κΈ°λ° μλ° κΈ°μ
π’ μκ°
ONDAλ μμΈ κΈ°λ°μ μλ° κΈ°μ νμ¬λ‘, νΈν μ½ν μΈ κ΄λ¦¬μ μ€μ§μ μΈ λ¬Έμ λ₯Ό λ¨Έμ λ¬λμΌλ‘ ν΄κ²°νκ³ μμ΅λλ€. μμμ ννμ μ§μ 10,000κ° μ΄μμ μμμμ μ°κ° 540λ§ κ±΄ μ΄μμ μμ½μ μ²λ¦¬ν©λλ€.
π€ μ€νμμ€ ML μ°κ΅¬
μλ°μ μ½ν μΈ μ μλ κ΅¬μ± λ° λΆλ₯λ₯Ό μν λ©ν°λͺ¨λ¬ AI μμ€ν μ κ°λ°νκ³ μμ΅λλ€.
λ©ν°λͺ¨λ¬ κ°μ€ ν΄λ¬μ€ν°λ§
λΉμ λ° μΈμ΄ λͺ¨λΈμ νμ©νμ¬ νΈν κ°μ€ μ΄λ―Έμ§μ ν μ€νΈ μ€λͺ μ μλμΌλ‘ κ·Έλ£Ήνν©λλ€.
μ΄λ―Έμ§ μ μ¬λ
- EfficientNetV2-S λ°±λ³Έ κΈ°λ° Siamese λ€νΈμν¬
- 200λ§ κ° μ΄μμ μ΄λ―Έμ§ μμΌλ‘ νμ΅
- μ€ννΈλ΄ ν΄λ¬μ€ν°λ§μ ν΅ν μλ κ·Έλ£Ήν
- ONNXλ₯Ό ν΅ν νλ‘λμ λ°°ν¬
ν μ€νΈ μ μ¬λ
- νκ΅μ΄ κ°μ€λͺ μ²λ¦¬λ₯Ό μν KLUE BERT κΈ°λ° Siamese λ€νΈμν¬
- 31,452κ° νμ΅ μμΌλ‘ νμΈνλ
- νκ΅μ΄-μμ΄ λ€κ΅μ΄ ν μ€νΈ μ²λ¦¬
DINOv2 λ©ν°ν€λ λΆλ₯
85.6% μ νλλ₯Ό λ¬μ±ν νΈν μ΄λ―Έμ§ μ₯λ©΄ λΆλ₯ μμ€ν μ λλ€.
μν€ν μ²
- Vision Transformer (DINOv2) λ°±λ³Έ
- 3κ° λΆλ₯ ν€λ: Scene (6 ν΄λμ€), Concept (3 ν΄λμ€), Object (12 ν΄λμ€)
- 127κ° μμμ 33,762κ° μ΄λ―Έμ§λ‘ νμ΅
μ±λ₯
- Scene: 85.2% | Concept: 92.8% | Object: 78.9%
νλ‘λμ ML νμ΄νλΌμΈ
- λͺ¨λΈ μ΅μ ν: PyTorch β ONNX λ³ν
- λ°°ν¬: AWS SageMakerλ₯Ό ν΅ν νμ₯ κ°λ₯ν μΆλ‘
- νλ μμν¬: PyTorch, Transformers (Hugging Face), timm, scikit-learn
π¬ μ°κ΅¬ κ΄μ¬μ¬
- μκ°μ μ μ¬λλ₯Ό μν λμ‘° νμ΅
- μκΈ° μ§λ νμ΅ λΉμ λͺ¨λΈ (DINO, DINOv2)
- λ€κ΅μ΄ NLP (νκ΅μ΄, μμ΄, μΌλ³Έμ΄)
- νλ‘λμ μμ€ν μ μν ν¨μ¨μ μΈ λͺ¨λΈ λ°°ν¬
π λ μμ보기
ννμ΄μ§: www.onda.me