Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeScaleCUA: Scaling Open-Source Computer Use Agents with Cross-Platform Data
Vision-Language Models (VLMs) have enabled computer use agents (CUAs) that operate GUIs autonomously, showing great potential, yet progress is limited by the lack of large-scale, open-source computer use data and foundation models. In this work, we introduce ScaleCUA, a step toward scaling open-source CUAs. It offers a large-scale dataset spanning 6 operating systems and 3 task domains, built via a closed-loop pipeline uniting automated agents with human experts. Trained on this scaled-up data, ScaleCUA can operate seamlessly across platforms. Specifically, it delivers strong gains over baselines (+26.6 on WebArena-Lite-v2, +10.7 on ScreenSpot-Pro) and sets new state-of-the-art results (94.4% on MMBench-GUI L1-Hard, 60.6% on OSWorld-G, 47.4% on WebArena-Lite-v2). These findings underscore the power of data-driven scaling for general-purpose computer use agents. We will release data, models, and code to advance future research: https://github.com/OpenGVLab/ScaleCUA.
From Off-Policy to On-Policy: Enhancing GUI Agents via Bi-level Expert-to-Policy Assimilation
Vision-language models are increasingly deployed as computer-use agents (CUAs) that operate desktops and browsers. Top-performing CUAs are framework-based systems that decompose planning and execution, while end-to-end screenshot-to-action policies are easier to deploy but lag behind on benchmarks such as OSWorld-Verified. GUI datasets like OSWorld pose two bottlenecks: they expose only a few hundred interactive, verifiable tasks and environments, and expert trajectories must be gathered by interacting with these environments, making such data hard to scale. We therefore ask how reinforcement learning from verifiable rewards (RLVR) can best exploit a small pool of exist expert trajectories to train end-to-end policies. Naively mixing these off-policy traces into on-policy RLVR is brittle: even after format conversion, expert trajectories exhibit structural mismatch and distribution shift from the learner. We propose BEPA (Bi-Level Expert-to-Policy Assimilation), which turns static expert traces into policy-aligned guidance via self-rolled reachable trajectories under the base policy (LEVEL-1) and a per-task, dynamically updated cache used in RLVR (LEVEL-2). On OSWorld-Verified, BEPA improves UITARS1.5-7B success from 22.87% to 32.13% and raises a held-out split from 5.74% to 10.30%, with consistent gains on MMBench-GUI and Online-Mind2Web. Our code and data are available at: https://github.com/LEON-gittech/Verl_GUI.git
Code Agent can be an End-to-end System Hacker: Benchmarking Real-world Threats of Computer-use Agent
Computer-use agent (CUA) frameworks, powered by large language models (LLMs) or multimodal LLMs (MLLMs), are rapidly maturing as assistants that can perceive context, reason, and act directly within software environments. Among their most critical applications is operating system (OS) control. As CUAs in the OS domain become increasingly embedded in daily operations, it is imperative to examine their real-world security implications, specifically whether CUAs can be misused to perform realistic, security-relevant attacks. Existing works exhibit four major limitations: Missing attacker-knowledge model on tactics, techniques, and procedures (TTP), Incomplete coverage for end-to-end kill chains, unrealistic environment without multi-host and encrypted user credentials, and unreliable judgment dependent on LLM-as-a-Judge. To address these gaps, we propose AdvCUA, the first benchmark aligned with real-world TTPs in MITRE ATT&CK Enterprise Matrix, which comprises 140 tasks, including 40 direct malicious tasks, 74 TTP-based malicious tasks, and 26 end-to-end kill chains, systematically evaluates CUAs under a realistic enterprise OS security threat in a multi-host environment sandbox by hard-coded evaluation. We evaluate the existing five mainstream CUAs, including ReAct, AutoGPT, Gemini CLI, Cursor CLI, and Cursor IDE based on 8 foundation LLMs. The results demonstrate that current frontier CUAs do not adequately cover OS security-centric threats. These capabilities of CUAs reduce dependence on custom malware and deep domain expertise, enabling even inexperienced attackers to mount complex enterprise intrusions, which raises social concern about the responsibility and security of CUAs.
OpenCUA: Open Foundations for Computer-Use Agents
Vision-language models have demonstrated impressive capabilities as computer-use agents (CUAs) capable of automating diverse computer tasks. As their commercial potential grows, critical details of the most capable CUA systems remain closed. As these agents will increasingly mediate digital interactions and execute consequential decisions on our behalf, the research community needs access to open CUA frameworks to study their capabilities, limitations, and risks. To bridge this gap, we propose OpenCUA, a comprehensive open-source framework for scaling CUA data and foundation models. Our framework consists of: (1) an annotation infrastructure that seamlessly captures human computer-use demonstrations; (2) AgentNet, the first large-scale computer-use task dataset spanning 3 operating systems and 200+ applications and websites; (3) a scalable pipeline that transforms demonstrations into state-action pairs with reflective long Chain-of-Thought reasoning that sustain robust performance gains as data scales. Our end-to-end agent models demonstrate strong performance across CUA benchmarks. In particular, OpenCUA-32B achieves an average success rate of 34.8% on OSWorld-Verified, establishing a new state-of-the-art (SOTA) among open-source models and surpassing OpenAI CUA (GPT-4o). Further analysis confirms that our approach generalizes well across domains and benefits significantly from increased test-time computation. We release our annotation tool, datasets, code, and models to build open foundations for further CUA research.
RedTeamCUA: Realistic Adversarial Testing of Computer-Use Agents in Hybrid Web-OS Environments
Computer-use agents (CUAs) promise to automate complex tasks across operating systems (OS) and the web, but remain vulnerable to indirect prompt injection. Current evaluations of this threat either lack support realistic but controlled environments or ignore hybrid web-OS attack scenarios involving both interfaces. To address this, we propose RedTeamCUA, an adversarial testing framework featuring a novel hybrid sandbox that integrates a VM-based OS environment with Docker-based web platforms. Our sandbox supports key features tailored for red teaming, such as flexible adversarial scenario configuration, and a setting that decouples adversarial evaluation from navigational limitations of CUAs by initializing tests directly at the point of an adversarial injection. Using RedTeamCUA, we develop RTC-Bench, a comprehensive benchmark with 864 examples that investigate realistic, hybrid web-OS attack scenarios and fundamental security vulnerabilities. Benchmarking current frontier CUAs identifies significant vulnerabilities: Claude 3.7 Sonnet | CUA demonstrates an ASR of 42.9%, while Operator, the most secure CUA evaluated, still exhibits an ASR of 7.6%. Notably, CUAs often attempt to execute adversarial tasks with an Attempt Rate as high as 92.5%, although failing to complete them due to capability limitations. Nevertheless, we observe concerning ASRs of up to 50% in realistic end-to-end settings, with the recently released frontier Claude 4 Opus | CUA showing an alarming ASR of 48%, demonstrating that indirect prompt injection presents tangible risks for even advanced CUAs despite their capabilities and safeguards. Overall, RedTeamCUA provides an essential framework for advancing realistic, controlled, and systematic analysis of CUA vulnerabilities, highlighting the urgent need for robust defenses to indirect prompt injection prior to real-world deployment.
UFO2: The Desktop AgentOS
Recent Computer-Using Agents (CUAs), powered by multimodal large language models (LLMs), offer a promising direction for automating complex desktop workflows through natural language. However, most existing CUAs remain conceptual prototypes, hindered by shallow OS integration, fragile screenshot-based interaction, and disruptive execution. We present UFO2, a multiagent AgentOS for Windows desktops that elevates CUAs into practical, system-level automation. UFO2 features a centralized HostAgent for task decomposition and coordination, alongside a collection of application-specialized AppAgent equipped with native APIs, domain-specific knowledge, and a unified GUI--API action layer. This architecture enables robust task execution while preserving modularity and extensibility. A hybrid control detection pipeline fuses Windows UI Automation (UIA) with vision-based parsing to support diverse interface styles. Runtime efficiency is further enhanced through speculative multi-action planning, reducing per-step LLM overhead. Finally, a Picture-in-Picture (PiP) interface enables automation within an isolated virtual desktop, allowing agents and users to operate concurrently without interference. We evaluate UFO2 across over 20 real-world Windows applications, demonstrating substantial improvements in robustness and execution accuracy over prior CUAs. Our results show that deep OS integration unlocks a scalable path toward reliable, user-aligned desktop automation.
Scalable Data Synthesis for Computer Use Agents with Step-Level Filtering
Computer use agents (CUAs) can operate real-world digital interfaces but remain difficult to train due to the high cost of graphical user interface (GUI) interaction and the scarcity of high-quality trajectory data. Existing datasets rely on human demonstrations, limiting scalability. A natural alternative is to synthesize data from strong CUAs, yet their rollouts are highly noisy, with incorrect or suboptimal actions consisting a large proportion of the steps, making naive imitation ineffective. To tackle this challenge, we introduce a scalable data synthesis pipeline that transforms noisy rollouts into reliable supervision without human annotation. The core idea is step-level filtering, which evaluates actions individually to retain only correct steps, complemented by reasoning augmentation for improved planning. Using this pipeline, we construct WebSTAR, a dataset of 13.3K trajectories and 100K graded, reasoning-rich steps synthesized from OpenAI's computer-use-preview model. We train Qwen-2.5-VL-Instruct models (7B and 32B) on WebSTAR. On WebVoyager, our 7B model surpasses SoTA open-source CUA model UI-TARS-1.5-7B by more than 15% with only supervised finetuning. Building on step-level grading, we further create WebSCORE, a dataset of graded step-level actions, and train StepRM, a 7B multimodal reward model distilled from o4-mini, which matches its grading quality while being far more efficient to deploy at scale. Our results establish step-level filtering as a key principle for scalable CUA training and construct two new datasets (WebSTAR, WebSCORE) and a lightweight reward model (StepRM) as practical tools to advance robust and efficient CUAs.
UltraCUA: A Foundation Model for Computer Use Agents with Hybrid Action
Multimodal agents for computer use rely exclusively on primitive actions (click, type, scroll) that require accurate visual grounding and lengthy execution chains, leading to cascading failures and performance bottlenecks. While other agents leverage rich programmatic interfaces (APIs, MCP servers, tools), computer-use agents (CUAs) remain isolated from these capabilities. We present UltraCUA, a foundation model that bridges this gap through hybrid action -- seamlessly integrating GUI primitives with high-level programmatic tool calls. To achieve this, our approach comprises four key components: (1) an automated pipeline that scales programmatic tools from software documentation, open-source repositories, and code generation; (2) a synthetic data engine producing over 17,000 verifiable tasks spanning real-world computer-use scenarios; (3) a large-scale high-quality hybrid action trajectory collection with both low-level GUI actions and high-level programmatic tool calls; and (4) a two-stage training pipeline combining supervised fine-tuning with online reinforcement learning, enabling strategic alternation between low-level and high-level actions. Experiments with our 7B and 32B models demonstrate substantial improvements over state-of-the-art agents. On OSWorld, UltraCUA models achieve an average 22% relative improvement over base models, while being 11% faster in terms of steps. Out-of-domain evaluation on WindowsAgentArena shows our model reaches 21.7% success rate, outperforming baselines trained on Windows data. The hybrid action mechanism proves critical, reducing error propagation while maintaining execution efficiency.
Phi-Ground Tech Report: Advancing Perception in GUI Grounding
With the development of multimodal reasoning models, Computer Use Agents (CUAs), akin to Jarvis from "Iron Man", are becoming a reality. GUI grounding is a core component for CUAs to execute actual actions, similar to mechanical control in robotics, and it directly leads to the success or failure of the system. It determines actions such as clicking and typing, as well as related parameters like the coordinates for clicks. Current end-to-end grounding models still achieve less than 65\% accuracy on challenging benchmarks like ScreenSpot-pro and UI-Vision, indicating they are far from being ready for deployment. % , as a single misclick can result in unacceptable consequences. In this work, we conduct an empirical study on the training of grounding models, examining details from data collection to model training. Ultimately, we developed the Phi-Ground model family, which achieves state-of-the-art performance across all five grounding benchmarks for models under 10B parameters in agent settings. In the end-to-end model setting, our model still achieves SOTA results with scores of \textbf{43.2} on ScreenSpot-pro and \textbf{27.2} on UI-Vision. We believe that the various details discussed in this paper, along with our successes and failures, not only clarify the construction of grounding models but also benefit other perception tasks. Project homepage: https://zhangmiaosen2000.github.io/Phi-Ground/{https://zhangmiaosen2000.github.io/Phi-Ground/}
MCP Safety Audit: LLMs with the Model Context Protocol Allow Major Security Exploits
To reduce development overhead and enable seamless integration between potential components comprising any given generative AI application, the Model Context Protocol (MCP) (Anthropic, 2024) has recently been released and subsequently widely adopted. The MCP is an open protocol that standardizes API calls to large language models (LLMs), data sources, and agentic tools. By connecting multiple MCP servers, each defined with a set of tools, resources, and prompts, users are able to define automated workflows fully driven by LLMs. However, we show that the current MCP design carries a wide range of security risks for end users. In particular, we demonstrate that industry-leading LLMs may be coerced into using MCP tools to compromise an AI developer's system through various attacks, such as malicious code execution, remote access control, and credential theft. To proactively mitigate these and related attacks, we introduce a safety auditing tool, MCPSafetyScanner, the first agentic tool to assess the security of an arbitrary MCP server. MCPScanner uses several agents to (a) automatically determine adversarial samples given an MCP server's tools and resources; (b) search for related vulnerabilities and remediations based on those samples; and (c) generate a security report detailing all findings. Our work highlights serious security issues with general-purpose agentic workflows while also providing a proactive tool to audit MCP server safety and address detected vulnerabilities before deployment. The described MCP server auditing tool, MCPSafetyScanner, is freely available at: https://github.com/johnhalloran321/mcpSafetyScanner
MCPSecBench: A Systematic Security Benchmark and Playground for Testing Model Context Protocols
Large Language Models (LLMs) are increasingly integrated into real-world applications via the Model Context Protocol (MCP), a universal, open standard for connecting AI agents with data sources and external tools. While MCP enhances the capabilities of LLM-based agents, it also introduces new security risks and expands their attack surfaces. In this paper, we present the first systematic taxonomy of MCP security, identifying 17 attack types across 4 primary attack surfaces. We introduce MCPSecBench, a comprehensive security benchmark and playground that integrates prompt datasets, MCP servers, MCP clients, attack scripts, and protection mechanisms to evaluate these attacks across three major MCP providers. Our benchmark is modular and extensible, allowing researchers to incorporate custom implementations of clients, servers, and transport protocols for systematic security assessment. Experimental results show that over 85% of the identified attacks successfully compromise at least one platform, with core vulnerabilities universally affecting Claude, OpenAI, and Cursor, while prompt-based and tool-centric attacks exhibit considerable variability across different hosts and models. In addition, current protection mechanisms have little effect against these attacks. Overall, MCPSecBench standardizes the evaluation of MCP security and enables rigorous testing across all MCP layers.
Beyond the Protocol: Unveiling Attack Vectors in the Model Context Protocol Ecosystem
The Model Context Protocol (MCP) is an emerging standard designed to enable seamless interaction between Large Language Model (LLM) applications and external tools or resources. Within a short period, thousands of MCP services have already been developed and deployed. However, the client-server integration architecture inherent in MCP may expand the attack surface against LLM Agent systems, introducing new vulnerabilities that allow attackers to exploit by designing malicious MCP servers. In this paper, we present the first systematic study of attack vectors targeting the MCP ecosystem. Our analysis identifies four categories of attacks, i.e., Tool Poisoning Attacks, Puppet Attacks, Rug Pull Attacks, and Exploitation via Malicious External Resources. To evaluate the feasibility of these attacks, we conduct experiments following the typical steps of launching an attack through malicious MCP servers: upload-download-attack. Specifically, we first construct malicious MCP servers and successfully upload them to three widely used MCP aggregation platforms. The results indicate that current audit mechanisms are insufficient to identify and prevent the proposed attack methods. Next, through a user study and interview with 20 participants, we demonstrate that users struggle to identify malicious MCP servers and often unknowingly install them from aggregator platforms. Finally, we demonstrate that these attacks can trigger harmful behaviors within the user's local environment-such as accessing private files or controlling devices to transfer digital assets-by deploying a proof-of-concept (PoC) framework against five leading LLMs. Additionally, based on interview results, we discuss four key challenges faced by the current security ecosystem surrounding MCP servers. These findings underscore the urgent need for robust security mechanisms to defend against malicious MCP servers.
Just Do It!? Computer-Use Agents Exhibit Blind Goal-Directedness
Computer-Use Agents (CUAs) are an increasingly deployed class of agents that take actions on GUIs to accomplish user goals. In this paper, we show that CUAs consistently exhibit Blind Goal-Directedness (BGD): a bias to pursue goals regardless of feasibility, safety, reliability, or context. We characterize three prevalent patterns of BGD: (i) lack of contextual reasoning, (ii) assumptions and decisions under ambiguity, and (iii) contradictory or infeasible goals. We develop BLIND-ACT, a benchmark of 90 tasks capturing these three patterns. Built on OSWorld, BLIND-ACT provides realistic environments and employs LLM-based judges to evaluate agent behavior, achieving 93.75% agreement with human annotations. We use BLIND-ACT to evaluate nine frontier models, including Claude Sonnet and Opus 4, Computer-Use-Preview, and GPT-5, observing high average BGD rates (80.8%) across them. We show that BGD exposes subtle risks that arise even when inputs are not directly harmful. While prompting-based interventions lower BGD levels, substantial risk persists, highlighting the need for stronger training- or inference-time interventions. Qualitative analysis reveals observed failure modes: execution-first bias (focusing on how to act over whether to act), thought-action disconnect (execution diverging from reasoning), and request-primacy (justifying actions due to user request). Identifying BGD and introducing BLIND-ACT establishes a foundation for future research on studying and mitigating this fundamental risk and ensuring safe CUA deployment.
Measuring Harmfulness of Computer-Using Agents
Computer-using agents (CUAs), which autonomously control computers to perform multi-step actions, might pose significant safety risks if misused. Existing benchmarks mostly evaluate language models' (LMs) safety risks in chatbots or simple tool-usage scenarios, without granting full computer access. To better evaluate CUAs' misuse risks, we introduce a new benchmark: CUAHarm. CUAHarm consists of 104 expert-written realistic misuse risks, such as disabling firewalls, leaking confidential information, launching denial-of-service attacks, or installing backdoors. We provide a sandbox environment and rule-based verifiable rewards to measure CUAs' success rates in executing these tasks (e.g., whether the firewall is indeed disabled), not just refusal. We evaluate multiple frontier open-source and proprietary LMs, such as Claude Sonnet, GPT-4o, Gemini Pro 1.5, Llama-3.3-70B, and Mistral Large 2. Surprisingly, even without carefully designed jailbreaking prompts, these frontier LMs comply with executing these malicious tasks at a high success rate (e.g., 59% for Claude 3.7 Sonnet). Newer models show higher misuse rates: Claude 3.7 Sonnet succeeds on 15% more tasks than Claude 3.5. While these models are robust to common malicious prompts (e.g., creating a bomb) in chatbot settings, they behave unsafely as CUAs. We further evaluate a leading agentic framework (UI-TARS-1.5) and find that while it improves performance, it also amplifies misuse risks. Benign variants reveal refusals stem from alignment, not capability limits. To mitigate risks, we explore using LMs to monitor CUAs' actions and chain-of-thoughts (CoTs). Monitoring CUAs is significantly harder than chatbot outputs. Monitoring CoTs yields modest gains, with average detection accuracy at only 72%. Even with hierarchical summarization, improvement is limited to 4%. CUAHarm will be released at https://github.com/db-ol/CUAHarm.
LiveMCPBench: Can Agents Navigate an Ocean of MCP Tools?
With the rapid development of Model Context Protocol (MCP), the number of MCP servers has surpassed 10,000. However, existing MCP benchmarks are limited to single-server settings with only a few tools, hindering effective evaluation of agent capabilities in large-scale, real-world scenarios. To address this limitation, we present LiveMCPBench, the first comprehensive benchmark comprising 95 real-world tasks grounded in the MCP ecosystem, designed to evaluate LLM agents at scale across diverse servers. To support a scalable and reproducible evaluation pipeline in large-scale MCP environments, we curate LiveMCPTool, a diverse and readily deployable collection of 70 MCP servers and 527 tools. Furthermore, we introduce LiveMCPEval, an LLM-as-a-Judge framework that enables automated and adaptive evaluation in dynamic, time-varying task environments, achieving 81% agreement with human reviewers. Finally, we propose the MCP Copilot Agent, a multi-step agent that routes tools for dynamic planning and executes tools for API interaction across the entire LiveMCPTool suite. Our evaluation covers 10 leading models, with the best-performing model (Claude-Sonnet-4) reaching a 78.95% success rate. However, we observe large performance variance across models, and several widely-used models perform poorly in LiveMCPBench's complex, tool-rich environments. Overall, LiveMCPBench offers the first unified framework for benchmarking LLM agents in realistic, tool-rich, and dynamic MCP environments, laying a solid foundation for scalable and reproducible research on agent capabilities. Our code and data will be publicly available at https://icip-cas.github.io/LiveMCPBench.
Systematic Analysis of MCP Security
The Model Context Protocol (MCP) has emerged as a universal standard that enables AI agents to seamlessly connect with external tools, significantly enhancing their functionality. However, while MCP brings notable benefits, it also introduces significant vulnerabilities, such as Tool Poisoning Attacks (TPA), where hidden malicious instructions exploit the sycophancy of large language models (LLMs) to manipulate agent behavior. Despite these risks, current academic research on MCP security remains limited, with most studies focusing on narrow or qualitative analyses that fail to capture the diversity of real-world threats. To address this gap, we present the MCP Attack Library (MCPLIB), which categorizes and implements 31 distinct attack methods under four key classifications: direct tool injection, indirect tool injection, malicious user attacks, and LLM inherent attack. We further conduct a quantitative analysis of the efficacy of each attack. Our experiments reveal key insights into MCP vulnerabilities, including agents' blind reliance on tool descriptions, sensitivity to file-based attacks, chain attacks exploiting shared context, and difficulty distinguishing external data from executable commands. These insights, validated through attack experiments, underscore the urgency for robust defense strategies and informed MCP design. Our contributions include 1) constructing a comprehensive MCP attack taxonomy, 2) introducing a unified attack framework MCPLIB, and 3) conducting empirical vulnerability analysis to enhance MCP security mechanisms. This work provides a foundational framework, supporting the secure evolution of MCP ecosystems.
Unconstrained Stochastic CCA: Unifying Multiview and Self-Supervised Learning
The Canonical Correlation Analysis (CCA) family of methods is foundational in multiview learning. Regularised linear CCA methods can be seen to generalise Partial Least Squares (PLS) and be unified with a Generalized Eigenvalue Problem (GEP) framework. However, classical algorithms for these linear methods are computationally infeasible for large-scale data. Extensions to Deep CCA show great promise, but current training procedures are slow and complicated. First we propose a novel unconstrained objective that characterizes the top subspace of GEPs. Our core contribution is a family of fast algorithms for stochastic PLS, stochastic CCA, and Deep CCA, simply obtained by applying stochastic gradient descent (SGD) to the corresponding CCA objectives. Our algorithms show far faster convergence and recover higher correlations than the previous state-of-the-art on all standard CCA and Deep CCA benchmarks. These improvements allow us to perform a first-of-its-kind PLS analysis of an extremely large biomedical dataset from the UK Biobank, with over 33,000 individuals and 500,000 features. Finally, we apply our algorithms to match the performance of `CCA-family' Self-Supervised Learning (SSL) methods on CIFAR-10 and CIFAR-100 with minimal hyper-parameter tuning, and also present theory to clarify the links between these methods and classical CCA, laying the groundwork for future insights.
TreeCUA: Efficiently Scaling GUI Automation with Tree-Structured Verifiable Evolution
Effectively scaling GUI automation is essential for computer-use agents (CUAs); however, existing work primarily focuses on scaling GUI grounding rather than the more crucial GUI planning, which requires more sophisticated data collection. In reality, the exploration process of a CUA across apps/desktops/web pages typically follows a tree structure, with earlier functional entry points often being explored more frequently. Thus, organizing large-scale trajectories into tree structures can reduce data cost and streamline the data scaling of GUI planning. In this work, we propose TreeCUA to efficiently scale GUI automation with tree-structured verifiable evolution. We propose a multi-agent collaborative framework to explore the environment, verify actions, summarize trajectories, and evaluate quality to generate high-quality and scalable GUI trajectories. To improve efficiency, we devise a novel tree-based topology to store and replay duplicate exploration nodes, and design an adaptive exploration algorithm to balance the depth (i.e., trajectory difficulty) and breadth (i.e., trajectory diversity). Moreover, we develop world knowledge guidance and global memory backtracking to avoid low-quality generation. Finally, we naturally extend and propose the TreeCUA-DPO method from abundant tree node information, improving GUI planning capability by referring to the branch information of adjacent trajectories. Experimental results show that TreeCUA and TreeCUA-DPO offer significant improvements, and out-of-domain (OOD) studies further demonstrate strong generalization. All trajectory node information and code will be available at https://github.com/UITron-hub/TreeCUA.
DPO Learning with LLMs-Judge Signal for Computer Use Agents
Computer use agents (CUA) are systems that automatically interact with graphical user interfaces (GUIs) to complete tasks. CUA have made significant progress with the advent of large vision-language models (VLMs). However, these agents typically rely on cloud-based inference with substantial compute demands, raising critical privacy and scalability concerns, especially when operating on personal devices. In this work, we take a step toward privacy-preserving and resource-efficient agents by developing a lightweight vision-language model that runs entirely on local machines. To train this compact agent, we introduce an LLM-as-Judge framework that automatically evaluates and filters synthetic interaction trajectories, producing high-quality data for reinforcement learning without human annotation. Experiments on the OS-World benchmark demonstrate that our fine-tuned local model outperforms existing baselines, highlighting a promising path toward private, efficient, and generalizable GUI agents.
GUI-360: A Comprehensive Dataset and Benchmark for Computer-Using Agents
We introduce GUI-360^circ, a large-scale, comprehensive dataset and benchmark suite designed to advance computer-using agents (CUAs). CUAs present unique challenges and is constrained by three persistent gaps: a scarcity of real-world CUA tasks, the lack of automated collection-and-annotation pipelines for multi-modal trajectories, and the absence of a unified benchmark that jointly evaluates GUI grounding, screen parsing, and action prediction. GUI-360^circ addresses these gaps with an LLM-augmented, largely automated pipeline for query sourcing, environment-template construction, task instantiation, batched execution, and LLM-driven quality filtering. The released corpus contains over 1.2M executed action steps across thousands of trajectories in popular Windows office applications, and includes full-resolution screenshots, accessibility metadata when available, instantiated goals, intermediate reasoning traces, and both successful and failed action trajectories. The dataset supports three canonical tasks, GUI grounding, screen parsing, and action prediction, and a hybrid GUI+API action space that reflects modern agent designs. Benchmarking state-of-the-art vision--language models on GUI-360^circ reveals substantial out-of-the-box shortcomings in grounding and action prediction; supervised fine-tuning and reinforcement learning yield significant gains but do not close the gap to human-level reliability. We release GUI-360^circ and accompanying code to facilitate reproducible research and accelerate progress on robust desktop CUAs. The full dataset has been made public on https://huggingface.co/datasets/vyokky/GUI-360.
CuAsmRL: Optimizing GPU SASS Schedules via Deep Reinforcement Learning
Large language models (LLMs) are remarked by their substantial computational requirements. To mitigate the cost, researchers develop specialized CUDA kernels, which often fuse several tensor operations to maximize the utilization of GPUs as much as possible. However, those specialized kernels may still leave performance on the table as CUDA assembly experts show that manual optimization of GPU SASS schedules can lead to better performance, and trial-and-error is largely employed to manually find the best GPU SASS schedules. In this work, we employ an automatic approach to optimize GPU SASS schedules, which thus can be integrated into existing compiler frameworks. The key to automatic optimization is training an RL agent to mimic how human experts perform manual scheduling. To this end, we formulate an assembly game, where RL agents can play to find the best GPU SASS schedules. The assembly game starts from a -O3 optimized SASS schedule, and the RL agents can iteratively apply actions to mutate the current schedules. Positive rewards are generated if the mutated schedules get higher throughput by executing on GPUs. Experiments show that CuAsmRL can further improve the performance of existing specialized CUDA kernels transparently by up to 26%, and on average 9%. Moreover, it is used as a tool to reveal potential optimization moves learned automatically.
LiveMCP-101: Stress Testing and Diagnosing MCP-enabled Agents on Challenging Queries
Tool calling has emerged as a critical capability for AI agents to interact with the real world and solve complex tasks. While the Model Context Protocol (MCP) provides a powerful standardized framework for tool integration, there is a significant gap in benchmarking how well AI agents can effectively solve multi-step tasks using diverse MCP tools in realistic, dynamic scenarios. In this work, we present LiveMCP-101, a benchmark of 101 carefully curated real-world queries, refined through iterative LLM rewriting and manual review, that require coordinated use of multiple MCP tools including web search, file operations, mathematical reasoning, and data analysis. Moreover, we introduce a novel evaluation approach that leverages ground-truth execution plans rather than raw API outputs, better reflecting the evolving nature of real-world environments. Experiments show that even frontier LLMs achieve a success rate below 60\%, highlighting major challenges in tool orchestration. Detailed ablations and error analysis further reveal distinct failure modes and inefficiencies in token usage, pointing to concrete directions for advancing current models. LiveMCP-101 sets a rigorous standard for evaluating real-world agent capabilities, advancing toward autonomous AI systems that reliably execute complex tasks through tool use.
Model Context Protocol for Vision Systems: Audit, Security, and Protocol Extensions
The Model Context Protocol (MCP) defines a schema bound execution model for agent-tool interaction, enabling modular computer vision workflows without retraining. To our knowledge, this is the first protocol level, deployment scale audit of MCP in vision systems, identifying systemic weaknesses in schema semantics, interoperability, and runtime coordination. We analyze 91 publicly registered vision centric MCP servers, annotated along nine dimensions of compositional fidelity, and develop an executable benchmark with validators to detect and categorize protocol violations. The audit reveals high prevalence of schema format divergence, missing runtime schema validation, undeclared coordinate conventions, and reliance on untracked bridging scripts. Validator based testing quantifies these failures, with schema format checks flagging misalignments in 78.0 percent of systems, coordinate convention checks detecting spatial reference errors in 24.6 percent, and memory scope checks issuing an average of 33.8 warnings per 100 executions. Security probes show that dynamic and multi agent workflows exhibit elevated risks of privilege escalation and untyped tool connections. The proposed benchmark and validator suite, implemented in a controlled testbed and to be released on GitHub, establishes a reproducible framework for measuring and improving the reliability and security of compositional vision workflows.
CaMeLs Can Use Computers Too: System-level Security for Computer Use Agents
AI agents are vulnerable to prompt injection attacks, where malicious content hijacks agent behavior to steal credentials or cause financial loss. The only known robust defense is architectural isolation that strictly separates trusted task planning from untrusted environment observations. However, applying this design to Computer Use Agents (CUAs) -- systems that automate tasks by viewing screens and executing actions -- presents a fundamental challenge: current agents require continuous observation of UI state to determine each action, conflicting with the isolation required for security. We resolve this tension by demonstrating that UI workflows, while dynamic, are structurally predictable. We introduce Single-Shot Planning for CUAs, where a trusted planner generates a complete execution graph with conditional branches before any observation of potentially malicious content, providing provable control flow integrity guarantees against arbitrary instruction injections. Although this architectural isolation successfully prevents instruction injections, we show that additional measures are needed to prevent Branch Steering attacks, which manipulate UI elements to trigger unintended valid paths within the plan. We evaluate our design on OSWorld, and retain up to 57% of the performance of frontier models while improving performance for smaller open-source models by up to 19%, demonstrating that rigorous security and utility can coexist in CUAs.
When MCP Servers Attack: Taxonomy, Feasibility, and Mitigation
Model Context Protocol (MCP) servers enable AI applications to connect to external systems in a plug-and-play manner, but their rapid proliferation also introduces severe security risks. Unlike mature software ecosystems with rigorous vetting, MCP servers still lack standardized review mechanisms, giving adversaries opportunities to distribute malicious implementations. Despite this pressing risk, the security implications of MCP servers remain underexplored. To address this gap, we present the first systematic study that treats MCP servers as active threat actors and decomposes them into core components to examine how adversarial developers can implant malicious intent. Specifically, we investigate three research questions: (i) what types of attacks malicious MCP servers can launch, (ii) how vulnerable MCP hosts and Large Language Models (LLMs) are to these attacks, and (iii) how feasible it is to carry out MCP server attacks in practice. Our study proposes a component-based taxonomy comprising twelve attack categories. For each category, we develop Proof-of-Concept (PoC) servers and demonstrate their effectiveness across diverse real-world host-LLM settings. We further show that attackers can generate large numbers of malicious servers at virtually no cost. We then test state-of-the-art scanners on the generated servers and found that existing detection approaches are insufficient. These findings highlight that malicious MCP servers are easy to implement, difficult to detect with current tools, and capable of causing concrete damage to AI agent systems. Addressing this threat requires coordinated efforts among protocol designers, host developers, LLM providers, and end users to build a more secure and resilient MCP ecosystem.
UI-CUBE: Enterprise-Grade Computer Use Agent Benchmarking Beyond Task Accuracy to Operational Reliability
While current Computer Use Agent (CUA) benchmarks measure task completion effectively, they provide limited assessment of enterprise deployment readiness, emphasizing functional correctness over the operational reliability required for production systems. We present UI-CUBE (UiPath Computer Use BEnchmark), a systematic benchmark comprising 226 tasks across two difficulty tiers designed to expose fundamental architectural limitations in current CUAs. Our evaluation covers simple UI interactions (136 tasks) and complex workflows including copy-paste tasks (50 tasks) and enterprise application scenarios (40 tasks), with systematic interface variation coverage, multi-resolution testing and automated validation of task success through the application state. Evaluation of five state-of-the-art models reveals a sharp capability cliff rather than gradual performance degradation. Simple UI interactions achieve 67-85% success rates (compared to 97.9% human performance), but complex workflows drop precipitously to 9-19%. Human evaluators with no prior application experience achieve only 61.2% on complex tasks despite near-perfect performance on simple tasks, establishing realistic performance ceilings. This discontinuous performance pattern -- where agents achieve 68-87% of human performance on simple tasks but only 15-32% on complex workflows -- indicates fundamental architectural limitations in memory management, hierarchical planning, and state coordination rather than incremental capability gaps addressable through better training or prompting. UI-CUBE functions as an enterprise-readiness diagnostic, revealing that while current CUAs can manipulate individual interface elements, they cannot yet function as reliable workflow automation tools. These findings provide architectural insights essential for developing production-ready CUAs capable of managing complex, multi-step enterprise processes.
SEAgent: Self-Evolving Computer Use Agent with Autonomous Learning from Experience
Repurposing large vision-language models (LVLMs) as computer use agents (CUAs) has led to substantial breakthroughs, primarily driven by human-labeled data. However, these models often struggle with novel and specialized software, particularly in scenarios lacking human annotations. To address this challenge, we propose SEAgent, an agentic self-evolving framework enabling CUAs to autonomously evolve through interactions with unfamiliar software. Specifically, SEAgent empowers computer-use agents to autonomously master novel software environments via experiential learning, where agents explore new software, learn through iterative trial-and-error, and progressively tackle auto-generated tasks organized from simple to complex. To achieve this goal, we design a World State Model for step-wise trajectory assessment, along with a Curriculum Generator that generates increasingly diverse and challenging tasks. The agent's policy is updated through experiential learning, comprised of adversarial imitation of failure actions and Group Relative Policy Optimization (GRPO) on successful ones. Furthermore, we introduce a specialist-to-generalist training strategy that integrates individual experiential insights from specialist agents, facilitating the development of a stronger generalist CUA capable of continuous autonomous evolution. This unified agent ultimately achieves performance surpassing ensembles of individual specialist agents on their specialized software. We validate the effectiveness of SEAgent across five novel software environments within OS-World. Our approach achieves a significant improvement of 23.2% in success rate, from 11.3% to 34.5%, over a competitive open-source CUA, i.e., UI-TARS.
MCP-Universe: Benchmarking Large Language Models with Real-World Model Context Protocol Servers
The Model Context Protocol has emerged as a transformative standard for connecting large language models to external data sources and tools, rapidly gaining adoption across major AI providers and development platforms. However, existing benchmarks are overly simplistic and fail to capture real application challenges such as long-horizon reasoning and large, unfamiliar tool spaces. To address this critical gap, we introduce MCP-Universe, the first comprehensive benchmark specifically designed to evaluate LLMs in realistic and hard tasks through interaction with real-world MCP servers. Our benchmark encompasses 6 core domains spanning 11 different MCP servers: Location Navigation, Repository Management, Financial Analysis, 3D Design, Browser Automation, and Web Searching. To ensure rigorous evaluation, we implement execution-based evaluators, including format evaluators for agent format compliance, static evaluators for time-invariant content matching, and dynamic evaluators that automatically retrieve real-time ground truth for temporally sensitive tasks. Through extensive evaluation of leading LLMs, we find that even SOTA models such as GPT-5 (43.72%), Grok-4 (33.33%) and Claude-4.0-Sonnet (29.44%) exhibit significant performance limitations. In addition, our benchmark poses a significant long-context challenge for LLM agents, as the number of input tokens increases rapidly with the number of interaction steps. Moreover, it introduces an unknown-tools challenge, as LLM agents often lack familiarity with the precise usage of the MCP servers. Notably, enterprise-level agents like Cursor cannot achieve better performance than standard ReAct frameworks. Beyond evaluation, we open-source our extensible evaluation framework with UI support, enabling researchers and practitioners to seamlessly integrate new agents and MCP servers while fostering innovation in the rapidly evolving MCP ecosystem.
MCP-AgentBench: Evaluating Real-World Language Agent Performance with MCP-Mediated Tools
The Model Context Protocol (MCP) is rapidly emerging as a pivotal open standard, designed to enhance agent-tool integration and interoperability, and is positioned to unlock a new era of powerful, interconnected, and genuinely utilitarian agentic AI. However, despite MCP's growing adoption, existing benchmarks often fail to capture real-world agent performance within this new paradigm, leading to a distorted perception of their true operational value and an inability to reliably differentiate proficiencies. To bridge this critical evaluation gap, we introduce MCP-AgentBench -- a comprehensive benchmark specifically engineered to rigorously assess language agent capabilities in MCP-mediated tool interactions. Core contributions of MCP-AgentBench include: the establishment of a robust MCP testbed comprising 33 operational servers with 188 distinct tools; the development of a benchmark featuring 600 systematically designed queries distributed across 6 distinct categories of varying interaction complexity; and the introduction of MCP-Eval, a novel outcome-oriented evaluation methodology prioritizing real-world task success. Through extensive empirical evaluation of leading language agents, we provide foundational insights. MCP-AgentBench aims to equip the research community with a standardized and reliable framework to build, validate, and advance agents capable of fully leveraging MCP's transformative benefits, thereby accelerating progress toward truly capable and interoperable AI systems.
IoT-MCP: Bridging LLMs and IoT Systems Through Model Context Protocol
The integration of Large Language Models (LLMs) with Internet-of-Things (IoT) systems faces significant challenges in hardware heterogeneity and control complexity. The Model Context Protocol (MCP) emerges as a critical enabler, providing standardized communication between LLMs and physical devices. We propose IoT-MCP, a novel framework that implements MCP through edge-deployed servers to bridge LLMs and IoT ecosystems. To support rigorous evaluation, we introduce IoT-MCP Bench, the first benchmark containing 114 Basic Tasks (e.g., ``What is the current temperature?'') and 1,140 Complex Tasks (e.g., ``I feel so hot, do you have any ideas?'') for IoT-enabled LLMs. Experimental validation across 22 sensor types and 6 microcontroller units demonstrates IoT-MCP's 100% task success rate to generate tool calls that fully meet expectations and obtain completely accurate results, 205ms average response time, and 74KB peak memory footprint. This work delivers both an open-source integration framework (https://github.com/Duke-CEI-Center/IoT-MCP-Servers) and a standardized evaluation methodology for LLM-IoT systems.
A Large-Scale Evolvable Dataset for Model Context Protocol Ecosystem and Security Analysis
The Model Context Protocol (MCP) has recently emerged as a standardized interface for connecting language models with external tools and data. As the ecosystem rapidly expands, the lack of a structured, comprehensive view of existing MCP artifacts presents challenges for research. To bridge this gap, we introduce MCPCorpus, a large-scale dataset containing around 14K MCP servers and 300 MCP clients. Each artifact is annotated with 20+ normalized attributes capturing its identity, interface configuration, GitHub activity, and metadata. MCPCorpus provides a reproducible snapshot of the real-world MCP ecosystem, enabling studies of adoption trends, ecosystem health, and implementation diversity. To keep pace with the rapid evolution of the MCP ecosystem, we provide utility tools for automated data synchronization, normalization, and inspection. Furthermore, to support efficient exploration and exploitation, we release a lightweight web-based search interface. MCPCorpus is publicly available at: https://github.com/Snakinya/MCPCorpus.
MCPToolBench++: A Large Scale AI Agent Model Context Protocol MCP Tool Use Benchmark
LLMs' capabilities are enhanced by using function calls to integrate various data sources or API results into the context window. Typical tools include search, web crawlers, maps, financial data, file systems, and browser usage, etc. Integrating these data sources or functions requires a standardized method. The Model Context Protocol (MCP) provides a standardized way to supply context to LLMs. However, the evaluation of LLMs and AI Agents' MCP tool use abilities suffer from several issues. First, there's a lack of comprehensive datasets or benchmarks to evaluate various MCP tools. Second, the diverse formats of response from MCP tool call execution further increase the difficulty of evaluation. Additionally, unlike existing tool-use benchmarks with high success rates in functions like programming and math functions, the success rate of real-world MCP tool is not guaranteed and varies across different MCP servers. Furthermore, the LLMs' context window also limits the number of available tools that can be called in a single run, because the textual descriptions of tool and the parameters have long token length for an LLM to process all at once. To help address the challenges of evaluating LLMs' performance on calling MCP tools, we propose MCPToolBench++, a large-scale, multi-domain AI Agent tool use benchmark. As of July 2025, this benchmark is build upon marketplace of over 4k MCP servers from more than 40 categories, collected from the MCP marketplaces and GitHub communities. The datasets consist of both single-step and multi-step tool calls across different categories. We evaluated SOTA LLMs with agentic abilities on this benchmark and reported the results.
Multi-context principal component analysis
Principal component analysis (PCA) is a tool to capture factors that explain variation in data. Across domains, data are now collected across multiple contexts (for example, individuals with different diseases, cells of different types, or words across texts). While the factors explaining variation in data are undoubtedly shared across subsets of contexts, no tools currently exist to systematically recover such factors. We develop multi-context principal component analysis (MCPCA), a theoretical and algorithmic framework that decomposes data into factors shared across subsets of contexts. Applied to gene expression, MCPCA reveals axes of variation shared across subsets of cancer types and an axis whose variability in tumor cells, but not mean, is associated with lung cancer progression. Applied to contextualized word embeddings from language models, MCPCA maps stages of a debate on human nature, revealing a discussion between science and fiction over decades. These axes are not found by combining data across contexts or by restricting to individual contexts. MCPCA is a principled generalization of PCA to address the challenge of understanding factors underlying data across contexts.
LiteCUA: Computer as MCP Server for Computer-Use Agent on AIOS
We present AIOS 1.0, a novel platform designed to advance computer-use agent (CUA) capabilities through environmental contextualization. While existing approaches primarily focus on building more powerful agent frameworks or enhancing agent models, we identify a fundamental limitation: the semantic disconnect between how language models understand the world and how computer interfaces are structured. AIOS 1.0 addresses this challenge by transforming computers into contextual environments that language models can natively comprehend, implementing a Model Context Protocol (MCP) server architecture to abstract computer states and actions. This approach effectively decouples interface complexity from decision complexity, enabling agents to reason more effectively about computing environments. To demonstrate our platform's effectiveness, we introduce LiteCUA, a lightweight computer-use agent built on AIOS 1.0 that achieves a 14.66% success rate on the OSWorld benchmark, outperforming several specialized agent frameworks despite its simple architecture. Our results suggest that contextualizing computer environments for language models represents a promising direction for developing more capable computer-use agents and advancing toward AI that can interact with digital systems. The source code of LiteCUA is available at https://github.com/agiresearch/LiteCUA, and it is also integrated into the AIOS main branch as part of AIOS at https://github.com/agiresearch/AIOS.
Model Context Protocol (MCP): Landscape, Security Threats, and Future Research Directions
The Model Context Protocol (MCP) is a standardized interface designed to enable seamless interaction between AI models and external tools and resources, breaking down data silos and facilitating interoperability across diverse systems. This paper provides a comprehensive overview of MCP, focusing on its core components, workflow, and the lifecycle of MCP servers, which consists of three key phases: creation, operation, and update. We analyze the security and privacy risks associated with each phase and propose strategies to mitigate potential threats. The paper also examines the current MCP landscape, including its adoption by industry leaders and various use cases, as well as the tools and platforms supporting its integration. We explore future directions for MCP, highlighting the challenges and opportunities that will influence its adoption and evolution within the broader AI ecosystem. Finally, we offer recommendations for MCP stakeholders to ensure its secure and sustainable development as the AI landscape continues to evolve.
Enterprise-Grade Security for the Model Context Protocol (MCP): Frameworks and Mitigation Strategies
The Model Context Protocol (MCP), introduced by Anthropic, provides a standardized framework for artificial intelligence (AI) systems to interact with external data sources and tools in real-time. While MCP offers significant advantages for AI integration and capability extension, it introduces novel security challenges that demand rigorous analysis and mitigation. This paper builds upon foundational research into MCP architecture and preliminary security assessments to deliver enterprise-grade mitigation frameworks and detailed technical implementation strategies. Through systematic threat modeling and analysis of MCP implementations and analysis of potential attack vectors, including sophisticated threats like tool poisoning, we present actionable security patterns tailored for MCP implementers and adopters. The primary contribution of this research lies in translating theoretical security concerns into a practical, implementable framework with actionable controls, thereby providing essential guidance for the secure enterprise adoption and governance of integrated AI systems.
Computer-Use Agents as Judges for Generative User Interface
Computer-Use Agents (CUA) are becoming increasingly capable of autonomously operating digital environments through Graphical User Interfaces (GUI). Yet, most GUI remain designed primarily for humans--prioritizing aesthetics and usability--forcing agents to adopt human-oriented behaviors that are unnecessary for efficient task execution. At the same time, rapid advances in coding-oriented language models (Coder) have transformed automatic GUI design. This raises a fundamental question: Can CUA as judges to assist Coder for automatic GUI design? To investigate, we introduce AUI-Gym, a benchmark for Automatic GUI development spanning 52 applications across diverse domains. Using language models, we synthesize 1560 tasks that simulate real-world scenarios. To ensure task reliability, we further develop a verifier that programmatically checks whether each task is executable within its environment. Building on this, we propose a Coder-CUA in Collaboration framework: the Coder acts as Designer, generating and revising websites, while the CUA serves as Judge, evaluating functionality and refining designs. Success is measured not by visual appearance, but by task solvability and CUA navigation success rate. To turn CUA feedback into usable guidance, we design a CUA Dashboard that compresses multi-step navigation histories into concise visual summaries, offering interpretable guidance for iterative redesign. By positioning agents as both designers and judges, our framework shifts interface design toward agent-native efficiency and reliability. Our work takes a step toward shifting agents from passive use toward active participation in digital environments. Our code and dataset are available at https://github.com/showlab/AUI.
Experiences with Model Context Protocol Servers for Science and High Performance Computing
Large language model (LLM)-powered agents are increasingly used to plan and execute scientific workflows, yet most research cyberinfrastructure (CI) exposes heterogeneous APIs and implements security models that present barriers for use by agents. We report on our experience using the Model Context Protocol (MCP) as a unifying interface that makes research capabilities discoverable, invokable, and composable. Our approach is pragmatic: we implement thin MCP servers over mature services, including Globus Transfer, Compute, and Search; status APIs exposed by computing facilities; Octopus event fabric; and domain-specific tools such as Garden and Galaxy. We use case studies in computational chemistry, bioinformatics, quantum chemistry, and filesystem monitoring to illustrate how this MCP-oriented architecture can be used in practice. We distill lessons learned and outline open challenges in evaluation and trust for agent-led science.
MCPMark: A Benchmark for Stress-Testing Realistic and Comprehensive MCP Use
MCP standardizes how LLMs interact with external systems, forming the foundation for general agents. However, existing MCP benchmarks remain narrow in scope: they focus on read-heavy tasks or tasks with limited interaction depth, and fail to capture the complexity and realism of real-world workflows. To address this gap, we propose MCPMark, a benchmark designed to evaluate MCP use in a more realistic and comprehensive manner. It consists of 127 high-quality tasks collaboratively created by domain experts and AI agents. Each task begins with a curated initial state and includes a programmatic script for automatic verification. These tasks demand richer and more diverse interactions with the environment, involving a broad range of create, read, update, and delete (CRUD) operations. We conduct a comprehensive evaluation of cutting-edge LLMs using a minimal agent framework that operates in a tool-calling loop. Empirical results show that the best-performing model, gpt-5-medium, reaches only 52.56\% pass@1 and 33.86\% pass^4, while other widely regarded strong models, including claude-sonnet-4 and o3, fall below 30\% pass@1 and 15\% pass^4. On average, LLMs require 16.2 execution turns and 17.4 tool calls per task, significantly surpassing those in previous MCP benchmarks and highlighting the stress-testing nature of MCPMark.
CUA-Skill: Develop Skills for Computer Using Agent
Computer-Using Agents (CUAs) aim to autonomously operate computer systems to complete real-world tasks. However, existing agentic systems remain difficult to scale and lag behind human performance. A key limitation is the absence of reusable and structured skill abstractions that capture how humans interact with graphical user interfaces and how to leverage these skills. We introduce CUA-Skill, a computer-using agentic skill base that encodes human computer-use knowledge as skills coupled with parameterized execution and composition graphs. CUA-Skill is a large-scale library of carefully engineered skills spanning common Windows applications, serving as a practical infrastructure and tool substrate for scalable, reliable agent development. Built upon this skill base, we construct CUA-Skill Agent, an end-to-end computer-using agent that supports dynamic skill retrieval, argument instantiation, and memory-aware failure recovery. Our results demonstrate that CUA-Skill substantially improves execution success rates and robustness on challenging end-to-end agent benchmarks, establishing a strong foundation for future computer-using agent development. On WindowsAgentArena, CUA-Skill Agent achieves state-of-the-art 57.5% (best of three) successful rate while being significantly more efficient than prior and concurrent approaches. The project page is available at https://microsoft.github.io/cua_skill/.
Quartet: Native FP4 Training Can Be Optimal for Large Language Models
The rapid advancement of large language models (LLMs) has been paralleled by unprecedented increases in computational demands, with training costs for state-of-the-art models doubling every few months. Training models directly in low-precision arithmetic offers a solution, by improving both computational throughput and energy efficiency. Specifically, NVIDIA's recent Blackwell architecture facilitates extremely low-precision operations, specifically FP4 variants, promising substantial efficiency gains. Yet, current algorithms for training LLMs in FP4 precision face significant accuracy degradation and often rely on mixed-precision fallbacks. In this paper, we systematically investigate hardware-supported FP4 training and introduce Quartet, a new approach enabling accurate, end-to-end FP4 training with all the major computations (in e.g. linear layers) being performed in low precision. Through extensive evaluations on Llama-type models, we reveal a new low-precision scaling law that quantifies performance trade-offs across varying bit-widths and allows us to identify a "near-optimal" low-precision training technique in terms of accuracy-vs-computation, called Quartet. We implement Quartet using optimized CUDA kernels tailored for NVIDIA Blackwell GPUs, and show that it can achieve state-of-the-art accuracy for FP4 precision, successfully training billion-scale models. Our method demonstrates that fully FP4-based training is a competitive alternative to standard-precision and FP8 training. Our code is available at https://github.com/IST-DASLab/Quartet.
AutoEDA: Enabling EDA Flow Automation through Microservice-Based LLM Agents
Modern Electronic Design Automation (EDA) workflows, especially the RTL-to-GDSII flow, require heavily manual scripting and demonstrate a multitude of tool-specific interactions which limits scalability and efficiency. While LLMs introduces strides for automation, existing LLM solutions require expensive fine-tuning and do not contain standardized frameworks for integration and evaluation. We introduce AutoEDA, a framework for EDA automation that leverages paralleled learning through the Model Context Protocol (MCP) specific for standardized and scalable natural language experience across the entire RTL-to-GDSII flow. AutoEDA limits fine-tuning through structured prompt engineering, implements intelligent parameter extraction and task decomposition, and provides an extended CodeBLEU metric to evaluate the quality of TCL scripts. Results from experiments over five previously curated benchmarks show improvements in automation accuracy and efficiency, as well as script quality when compared to existing methods. AutoEDA is released open-sourced to support reproducibility and the EDA community. Available at: https://github.com/AndyLu666/MCP-EDA-Server
Code2MCP: A Multi-Agent Framework for Automated Transformation of Code Repositories into Model Context Protocol Services
The proliferation of Large Language Models (LLMs) has created a significant integration challenge in the AI agent ecosystem, often called the "N times M problem," where N models require custom integrations for M tools. This fragmentation stifles innovation and creates substantial development overhead. While the Model Context Protocol (MCP) has emerged as a standard to resolve this, its adoption is hindered by the manual effort required to convert the vast universe of existing software into MCP-compliant services. This is especially true for the millions of open-source repositories on GitHub, the world's largest collection of functional code. This paper introduces Code2MCP, a highly automated, agentic framework designed to transform any GitHub repository into a functional MCP service with minimal human intervention. Our system employs a multi-stage workflow that automates the entire process, from code analysis and environment configuration to service generation and deployment. A key innovation of our framework is an LLM-driven, closed-loop "Run--Review--Fix" cycle, which enables the system to autonomously debug and repair the code it generates. Code2MCP produces not only deployable services but also comprehensive technical documentation, acting as a catalyst to accelerate the MCP ecosystem by systematically unlocking the world's largest open-source code repository and automating the critical last mile of tool integration. The code is open-sourced at https://github.com/DEFENSE-SEU/MCP-Github-Agent.
CURA: Size Isnt All You Need -- A Compact Universal Architecture for On-Device Intelligence
Existing on-device AI architectures for resource-constrained environments face two critical limitations: they lack compactness, with parameter requirements scaling proportionally to task complexity, and they exhibit poor generalizability, performing effectively only on specific application domains (e.g., models designed for regression tasks cannot adapt to natural language processing (NLP) applications). In this paper, we propose CURA, an architecture inspired by analog audio signal processing circuits that provides a compact and lightweight solution for diverse machine learning tasks across multiple domains. Our architecture offers three key advantages over existing approaches: (1) Compactness: it requires significantly fewer parameters regardless of task complexity; (2) Generalizability: it adapts seamlessly across regression, classification, complex NLP, and computer vision tasks; and (3) Complex pattern recognition: it can capture intricate data patterns while maintaining extremely low model complexity. We evaluated CURA across diverse datasets and domains. For compactness, it achieved equivalent accuracy using up to 2,500 times fewer parameters compared to baseline models. For generalizability, it demonstrated consistent performance across four NLP benchmarks and one computer vision dataset, nearly matching specialized existing models (achieving F1-scores up to 90%). Lastly, it delivers superior forecasting accuracy for complex patterns, achieving 1.6 times lower mean absolute error and 2.1 times lower mean squared error than competing models.
CARMA: Context-Aware Runtime Reconfiguration for Energy-Efficient Sensor Fusion
Autonomous systems (AS) are systems that can adapt and change their behavior in response to unanticipated events and include systems such as aerial drones, autonomous vehicles, and ground/aquatic robots. AS require a wide array of sensors, deep-learning models, and powerful hardware platforms to perceive and safely operate in real-time. However, in many contexts, some sensing modalities negatively impact perception while increasing the system's overall energy consumption. Since AS are often energy-constrained edge devices, energy-efficient sensor fusion methods have been proposed. However, existing methods either fail to adapt to changing scenario conditions or to optimize energy efficiency system-wide. We propose CARMA: a context-aware sensor fusion approach that uses context to dynamically reconfigure the computation flow on a Field-Programmable Gate Array (FPGA) at runtime. By clock-gating unused sensors and model sub-components, CARMA significantly reduces the energy used by a multi-sensory object detector without compromising performance. We use a Deep-learning Processor Unit (DPU) based reconfiguration approach to minimize the latency of model reconfiguration. We evaluate multiple context-identification strategies, propose a novel system-wide energy-performance joint optimization, and evaluate scenario-specific perception performance. Across challenging real-world sensing contexts, CARMA outperforms state-of-the-art methods with up to 1.3x speedup and 73% lower energy consumption.
When Actions Go Off-Task: Detecting and Correcting Misaligned Actions in Computer-Use Agents
Computer-use agents (CUAs) have made tremendous progress in the past year, yet they still frequently produce misaligned actions that deviate from the user's original intent. Such misaligned actions may arise from external attacks (e.g., indirect prompt injection) or from internal limitations (e.g., erroneous reasoning). They not only expose CUAs to safety risks, but also degrade task efficiency and reliability. This work makes the first effort to define and study misaligned action detection in CUAs, with comprehensive coverage of both externally induced and internally arising misaligned actions. We further identify three common categories in real-world CUA deployment and construct MisActBench, a benchmark of realistic trajectories with human-annotated, action-level alignment labels. Moreover, we propose DeAction, a practical and universal guardrail that detects misaligned actions before execution and iteratively corrects them through structured feedback. DeAction outperforms all existing baselines across offline and online evaluations with moderate latency overhead: (1) On MisActBench, it outperforms baselines by over 15% absolute in F1 score; (2) In online evaluation, it reduces attack success rate by over 90% under adversarial settings while preserving or even improving task success rate in benign environments.
Code Generation and Conic Constraints for Model-Predictive Control on Microcontrollers with Conic-TinyMPC
Model-predictive control (MPC) is a powerful framework for controlling dynamic systems under constraints, but it remains challenging to deploy on resource-constrained platforms, especially for problems involving conic constraints. To address this, we extend recent work developing fast, structure-exploiting, cached ADMM solvers for embedded applications, to provide support for second-order cones, as well as C++ code generation from Python, MATLAB, and Julia for easy deployment. Microcontroller benchmarks show that our solver provides up to a two-order-of-magnitude speedup, ranging from 10.6x to 142.7x, over state-of-the-art embedded solvers on QP and SOCP problems, and enables us to fit order-of-magnitude larger problems in memory. We validate our solver's deployed performance through simulation and hardware experiments, including conically-constrained trajectory tracking on a 27g Crazyflie quadrotor. To get started with Conic-TinyMPC, visit our documentation, examples, and the open-source codebase at https://tinympc.org.
Mildly Constrained Evaluation Policy for Offline Reinforcement Learning
Offline reinforcement learning (RL) methodologies enforce constraints on the policy to adhere closely to the behavior policy, thereby stabilizing value learning and mitigating the selection of out-of-distribution (OOD) actions during test time. Conventional approaches apply identical constraints for both value learning and test time inference. However, our findings indicate that the constraints suitable for value estimation may in fact be excessively restrictive for action selection during test time. To address this issue, we propose a Mildly Constrained Evaluation Policy (MCEP) for test time inference with a more constrained target policy for value estimation. Since the target policy has been adopted in various prior approaches, MCEP can be seamlessly integrated with them as a plug-in. We instantiate MCEP based on TD3-BC [Fujimoto and Gu, 2021] and AWAC [Nair et al., 2020] algorithms. The empirical results on MuJoCo locomotion tasks show that the MCEP significantly outperforms the target policy and achieves competitive results to state-of-the-art offline RL methods. The codes are open-sourced at https://github.com/egg-west/MCEP.git.
From Benchmarks to Business Impact: Deploying IBM Generalist Agent in Enterprise Production
Agents are rapidly advancing in automating digital work, but enterprises face a harder challenge: moving beyond prototypes to deployed systems that deliver measurable business value. This path is complicated by fragmented frameworks, slow development, and the absence of standardized evaluation practices. Generalist agents have emerged as a promising direction, excelling on academic benchmarks and offering flexibility across task types, applications, and modalities. Yet, evidence of their use in production enterprise settings remains limited. This paper reports IBM's experience developing and piloting the Computer Using Generalist Agent (CUGA), which has been open-sourced for the community (https://github.com/cuga-project/cuga-agent). CUGA adopts a hierarchical planner--executor architecture with strong analytical foundations, achieving state-of-the-art performance on AppWorld and WebArena. Beyond benchmarks, it was evaluated in a pilot within the Business-Process-Outsourcing talent acquisition domain, addressing enterprise requirements for scalability, auditability, safety, and governance. To support assessment, we introduce BPO-TA, a 26-task benchmark spanning 13 analytics endpoints. In preliminary evaluations, CUGA approached the accuracy of specialized agents while indicating potential for reducing development time and cost. Our contribution is twofold: presenting early evidence of generalist agents operating at enterprise scale, and distilling technical and organizational lessons from this initial pilot. We outline requirements and next steps for advancing research-grade architectures like CUGA into robust, enterprise-ready systems.
Model Context Protocol (MCP) at First Glance: Studying the Security and Maintainability of MCP Servers
Although Foundation Models (FMs), such as GPT-4, are increasingly used in domains like finance and software engineering, reliance on textual interfaces limits these models' real-world interaction. To address this, FM providers introduced tool calling-triggering a proliferation of frameworks with distinct tool interfaces. In late 2024, Anthropic introduced the Model Context Protocol (MCP) to standardize this tool ecosystem, which has become the de facto standard with over eight million weekly SDK downloads. Despite its adoption, MCP's AI-driven, non-deterministic control flow introduces new risks to sustainability, security, and maintainability, warranting closer examination. Towards this end, we present the first large-scale empirical study of MCP servers. Using state-of-the-art health metrics and a hybrid analysis pipeline, combining a general-purpose static analysis tool with an MCP-specific scanner, we evaluate 1,899 open-source MCP servers to assess their health, security, and maintainability. Despite MCP servers demonstrating strong health metrics, we identify eight distinct vulnerabilities - only three overlapping with traditional software vulnerabilities. Additionally, 7.2% of servers contain general vulnerabilities and 5.5% exhibit MCP-specific tool poisoning. Regarding maintainability, while 66% exhibit code smells, 14.4% contain nine bug patterns overlapping with traditional open-source software projects. These findings highlight the need for MCP-specific vulnerability detection techniques while reaffirming the value of traditional analysis and refactoring practices.
Universal Adversarial Perturbations for Vision-Language Pre-trained Models
Vision-language pre-trained (VLP) models have been the foundation of numerous vision-language tasks. Given their prevalence, it becomes imperative to assess their adversarial robustness, especially when deploying them in security-crucial real-world applications. Traditionally, adversarial perturbations generated for this assessment target specific VLP models, datasets, and/or downstream tasks. This practice suffers from low transferability and additional computation costs when transitioning to new scenarios. In this work, we thoroughly investigate whether VLP models are commonly sensitive to imperceptible perturbations of a specific pattern for the image modality. To this end, we propose a novel black-box method to generate Universal Adversarial Perturbations (UAPs), which is so called the Effective and T ransferable Universal Adversarial Attack (ETU), aiming to mislead a variety of existing VLP models in a range of downstream tasks. The ETU comprehensively takes into account the characteristics of UAPs and the intrinsic cross-modal interactions to generate effective UAPs. Under this regime, the ETU encourages both global and local utilities of UAPs. This benefits the overall utility while reducing interactions between UAP units, improving the transferability. To further enhance the effectiveness and transferability of UAPs, we also design a novel data augmentation method named ScMix. ScMix consists of self-mix and cross-mix data transformations, which can effectively increase the multi-modal data diversity while preserving the semantics of the original data. Through comprehensive experiments on various downstream tasks, VLP models, and datasets, we demonstrate that the proposed method is able to achieve effective and transferrable universal adversarial attacks.
Rethinking the "Heatmap + Monte Carlo Tree Search" Paradigm for Solving Large Scale TSP
The Travelling Salesman Problem (TSP) remains a fundamental challenge in combinatorial optimization, inspiring diverse algorithmic strategies. This paper revisits the "heatmap + Monte Carlo Tree Search (MCTS)" paradigm that has recently gained traction for learning-based TSP solutions. Within this framework, heatmaps encode the likelihood of edges forming part of the optimal tour, and MCTS refines this probabilistic guidance to discover optimal solutions. Contemporary approaches have predominantly emphasized the refinement of heatmap generation through sophisticated learning models, inadvertently sidelining the critical role of MCTS. Our extensive empirical analysis reveals two pivotal insights: 1) The configuration of MCTS strategies profoundly influences the solution quality, demanding meticulous tuning to leverage their full potential; 2) Our findings demonstrate that a rudimentary and parameter-free heatmap, derived from the intrinsic k-nearest nature of TSP, can rival or even surpass the performance of complicated heatmaps, with strong generalizability across various scales. Empirical evaluations across various TSP scales underscore the efficacy of our approach, achieving competitive results. These observations challenge the prevailing focus on heatmap sophistication, advocating a reevaluation of the paradigm to harness both components synergistically. Our code is available at: https://github.com/LOGO-CUHKSZ/rethink_mcts_tsp.
Orion-MSP: Multi-Scale Sparse Attention for Tabular In-Context Learning
Tabular data remain the predominant format for real-world applications. Yet, developing effective neural models for tabular data remains challenging due to heterogeneous feature types and complex interactions occurring at multiple scales. Recent advances in tabular in-context learning (ICL), such as TabPFN and TabICL, have achieved state-of-the-art performance comparable to gradient-boosted trees (GBTs) without task-specific fine-tuning. However, current architectures exhibit key limitations: (1) single-scale feature processing that overlooks hierarchical dependencies, (2) dense attention with quadratic scaling in table width, and (3) strictly sequential component processing that prevents iterative representation refinement and cross-component communication. To address these challenges, we introduce Orion-MSP, a tabular ICL architecture featuring three key innovations: (1) multi-scale processing to capture hierarchical feature interactions; (2) block-sparse attention combining windowed, global, and random patterns for scalable efficiency and long-range connectivity; and (3) a Perceiver-style memory enabling safe bidirectional information flow across components. Across diverse benchmarks, Orion-MSP matches or surpasses state-of-the-art performance while scaling effectively to high-dimensional tables, establishing a new standard for efficient tabular in-context learning. The model is publicly available at https://github.com/Lexsi-Labs/Orion-MSP .
MCP-RADAR: A Multi-Dimensional Benchmark for Evaluating Tool Use Capabilities in Large Language Models
As Large Language Models (LLMs) evolve from passive text generators to active reasoning agents capable of tool interaction, the Model Context Protocol (MCP) has emerged as a standardized framework for dynamic tool discovery and orchestration. Despite widespread industry adoption, existing evaluation methodologies fail to adequately assess tool utilization capabilities within this new paradigm. This paper introduces MCP-RADAR, the first comprehensive benchmark specifically designed to evaluate LLM performance in the MCP framework through a novel five-dimensional approach measuring: answer accuracy, tool selection efficiency, computational resource efficiency, parameter construction accuracy, and execution speed. Unlike conventional benchmarks that rely on subjective human evaluations or binary success metrics, MCP-RADAR employs objective, quantifiable measurements across multiple task domains including software engineering, mathematical reasoning, and general problem-solving. Our evaluations of leading commercial and open-source LLMs reveal distinctive capability profiles with significant trade-offs between accuracy, efficiency, and speed, challenging traditional single-metric performance rankings. Besides, we provide valuable guidance for developers to optimize their tools for maximum model compatibility and effectiveness. While focused on MCP due to its standardized approach, our methodology remains applicable across all LLM agent tool integration frameworks, providing valuable insights for both LLM developers and tool creators to optimize the entire LLM-tool interaction ecosystem. The implementation, configurations, and datasets used in our evaluation are publicly available at https://anonymous.4open.science/r/MCPRadar-B143.
Enhancing Generalization of Universal Adversarial Perturbation through Gradient Aggregation
Deep neural networks are vulnerable to universal adversarial perturbation (UAP), an instance-agnostic perturbation capable of fooling the target model for most samples. Compared to instance-specific adversarial examples, UAP is more challenging as it needs to generalize across various samples and models. In this paper, we examine the serious dilemma of UAP generation methods from a generalization perspective -- the gradient vanishing problem using small-batch stochastic gradient optimization and the local optima problem using large-batch optimization. To address these problems, we propose a simple and effective method called Stochastic Gradient Aggregation (SGA), which alleviates the gradient vanishing and escapes from poor local optima at the same time. Specifically, SGA employs the small-batch training to perform multiple iterations of inner pre-search. Then, all the inner gradients are aggregated as a one-step gradient estimation to enhance the gradient stability and reduce quantization errors. Extensive experiments on the standard ImageNet dataset demonstrate that our method significantly enhances the generalization ability of UAP and outperforms other state-of-the-art methods. The code is available at https://github.com/liuxuannan/Stochastic-Gradient-Aggregation.
When Benign Inputs Lead to Severe Harms: Eliciting Unsafe Unintended Behaviors of Computer-Use Agents
Although computer-use agents (CUAs) hold significant potential to automate increasingly complex OS workflows, they can demonstrate unsafe unintended behaviors that deviate from expected outcomes even under benign input contexts. However, exploration of this risk remains largely anecdotal, lacking concrete characterization and automated methods to proactively surface long-tail unintended behaviors under realistic CUA scenarios. To fill this gap, we introduce the first conceptual and methodological framework for unintended CUA behaviors, by defining their key characteristics, automatically eliciting them, and analyzing how they arise from benign inputs. We propose AutoElicit: an agentic framework that iteratively perturbs benign instructions using CUA execution feedback, and elicits severe harms while keeping perturbations realistic and benign. Using AutoElicit, we surface hundreds of harmful unintended behaviors from state-of-the-art CUAs such as Claude 4.5 Haiku and Opus. We further evaluate the transferability of human-verified successful perturbations, identifying persistent susceptibility to unintended behaviors across various other frontier CUAs. This work establishes a foundation for systematically analyzing unintended behaviors in realistic computer-use settings.
Step-GUI Technical Report
Recent advances in multimodal large language models unlock unprecedented opportunities for GUI automation. However, a fundamental challenge remains: how to efficiently acquire high-quality training data while maintaining annotation reliability? We introduce a self-evolving training pipeline powered by the Calibrated Step Reward System, which converts model-generated trajectories into reliable training signals through trajectory-level calibration, achieving >90% annotation accuracy with 10-100x lower cost. Leveraging this pipeline, we introduce Step-GUI, a family of models (4B/8B) that achieves state-of-the-art GUI performance (8B: 80.2% AndroidWorld, 48.5% OSWorld, 62.6% ScreenShot-Pro) while maintaining robust general capabilities. As GUI agent capabilities improve, practical deployment demands standardized interfaces across heterogeneous devices while protecting user privacy. To this end, we propose GUI-MCP, the first Model Context Protocol for GUI automation with hierarchical architecture that combines low-level atomic operations and high-level task delegation to local specialist models, enabling high-privacy execution where sensitive data stays on-device. Finally, to assess whether agents can handle authentic everyday usage, we introduce AndroidDaily, a benchmark grounded in real-world mobile usage patterns with 3146 static actions and 235 end-to-end tasks across high-frequency daily scenarios (8B: static 89.91%, end-to-end 52.50%). Our work advances the development of practical GUI agents and demonstrates strong potential for real-world deployment in everyday digital interactions.
VCMamba: Bridging Convolutions with Multi-Directional Mamba for Efficient Visual Representation
Recent advances in Vision Transformers (ViTs) and State Space Models (SSMs) have challenged the dominance of Convolutional Neural Networks (CNNs) in computer vision. ViTs excel at capturing global context, and SSMs like Mamba offer linear complexity for long sequences, yet they do not capture fine-grained local features as effectively as CNNs. Conversely, CNNs possess strong inductive biases for local features but lack the global reasoning capabilities of transformers and Mamba. To bridge this gap, we introduce VCMamba, a novel vision backbone that integrates the strengths of CNNs and multi-directional Mamba SSMs. VCMamba employs a convolutional stem and a hierarchical structure with convolutional blocks in its early stages to extract rich local features. These convolutional blocks are then processed by later stages incorporating multi-directional Mamba blocks designed to efficiently model long-range dependencies and global context. This hybrid design allows for superior feature representation while maintaining linear complexity with respect to image resolution. We demonstrate VCMamba's effectiveness through extensive experiments on ImageNet-1K classification and ADE20K semantic segmentation. Our VCMamba-B achieves 82.6% top-1 accuracy on ImageNet-1K, surpassing PlainMamba-L3 by 0.3% with 37% fewer parameters, and outperforming Vision GNN-B by 0.3% with 64% fewer parameters. Furthermore, VCMamba-B obtains 47.1 mIoU on ADE20K, exceeding EfficientFormer-L7 by 2.0 mIoU while utilizing 62% fewer parameters. Code is available at https://github.com/Wertyuui345/VCMamba.
Multi-Agent Cross-Entropy Method with Monotonic Nonlinear Critic Decomposition
Cooperative multi-agent reinforcement learning (MARL) commonly adopts centralized training with decentralized execution (CTDE), where centralized critics leverage global information to guide decentralized actors. However, centralized-decentralized mismatch (CDM) arises when the suboptimal behavior of one agent degrades others' learning. Prior approaches mitigate CDM through value decomposition, but linear decompositions allow per-agent gradients at the cost of limited expressiveness, while nonlinear decompositions improve representation but require centralized gradients, reintroducing CDM. To overcome this trade-off, we propose the multi-agent cross-entropy method (MCEM), combined with monotonic nonlinear critic decomposition (NCD). MCEM updates policies by increasing the probability of high-value joint actions, thereby excluding suboptimal behaviors. For sample efficiency, we extend off-policy learning with a modified k-step return and Retrace. Analysis and experiments demonstrate that MCEM outperforms state-of-the-art methods across both continuous and discrete action benchmarks.
Servant, Stalker, Predator: How An Honest, Helpful, And Harmless (3H) Agent Unlocks Adversarial Skills
This paper identifies and analyzes a novel vulnerability class in Model Context Protocol (MCP) based agent systems. The attack chain describes and demonstrates how benign, individually authorized tasks can be orchestrated to produce harmful emergent behaviors. Through systematic analysis using the MITRE ATLAS framework, we demonstrate how 95 agents tested with access to multiple services-including browser automation, financial analysis, location tracking, and code deployment-can chain legitimate operations into sophisticated attack sequences that extend beyond the security boundaries of any individual service. These red team exercises survey whether current MCP architectures lack cross-domain security measures necessary to detect or prevent a large category of compositional attacks. We present empirical evidence of specific attack chains that achieve targeted harm through service orchestration, including data exfiltration, financial manipulation, and infrastructure compromise. These findings reveal that the fundamental security assumption of service isolation fails when agents can coordinate actions across multiple domains, creating an exponential attack surface that grows with each additional capability. This research provides a barebones experimental framework that evaluate not whether agents can complete MCP benchmark tasks, but what happens when they complete them too well and optimize across multiple services in ways that violate human expectations and safety constraints. We propose three concrete experimental directions using the existing MCP benchmark suite.
Interpretable Contrastive Monte Carlo Tree Search Reasoning
We propose SC-MCTS*: a novel Monte Carlo Tree Search (MCTS) reasoning algorithm for Large Language Models (LLMs), significantly improves both reasoning accuracy and speed. Our motivation comes from: 1. Previous MCTS LLM reasoning works often overlooked its biggest drawback--slower speed compared to CoT; 2. Previous research mainly used MCTS as a tool for LLM reasoning on various tasks with limited quantitative analysis or ablation studies of its components from reasoning interpretability perspective. 3. The reward model is the most crucial component in MCTS, however previous work has rarely conducted in-depth study or improvement of MCTS's reward models. Thus, we conducted extensive ablation studies and quantitative analysis on components of MCTS, revealing the impact of each component on the MCTS reasoning performance of LLMs. Building on this, (i) we designed a highly interpretable reward model based on the principle of contrastive decoding and (ii) achieved an average speed improvement of 51.9% per node using speculative decoding. Additionally, (iii) we improved UCT node selection strategy and backpropagation used in previous works, resulting in significant performance improvement. We outperformed o1-mini by an average of 17.4% on the Blocksworld multi-step reasoning dataset using Llama-3.1-70B with SC-MCTS*. Our code is available at https://github.com/zitian-gao/SC-MCTS.
MCP-Bench: Benchmarking Tool-Using LLM Agents with Complex Real-World Tasks via MCP Servers
We introduce MCP-Bench, a benchmark for evaluating large language models (LLMs) on realistic, multi-step tasks that demand tool use, cross-tool coordination, precise parameter control, and planning/reasoning for solving tasks. Built on the Model Context Protocol (MCP), MCP-Bench connects LLMs to 28 representative live MCP servers spanning 250 tools across domains such as finance, traveling, scientific computing, and academic search. Unlike prior API-based benchmarks, each MCP server provides a set of complementary tools designed to work together, enabling the construction of authentic, multi-step tasks with rich input-output coupling. Tasks in MCP-Bench test agents' ability to retrieve relevant tools from fuzzy instructions without explicit tool names, plan multi-hop execution trajectories for complex objectives, ground responses in intermediate tool outputs, and orchestrate cross-domain workflows - capabilities not adequately evaluated by existing benchmarks that rely on explicit tool specifications, shallow few-step workflows, and isolated domain operations. We propose a multi-faceted evaluation framework covering tool-level schema understanding and usage, trajectory-level planning, and task completion. Experiments on 20 advanced LLMs reveal persistent challenges in MCP-Bench. Code and data: https://github.com/Accenture/mcp-bench.
Fara-7B: An Efficient Agentic Model for Computer Use
Progress in computer use agents (CUAs) has been constrained by the absence of large and high-quality datasets that capture how humans interact with a computer. While LLMs have thrived on abundant textual data, no comparable corpus exists for CUA trajectories. To address these gaps, we introduce FaraGen, a novel synthetic data generation system for multi-step web tasks. FaraGen can propose diverse tasks from frequently used websites, generate multiple solution attempts, and filter successful trajectories using multiple verifiers. It achieves high throughput, yield, and diversity for multi-step web tasks, producing verified trajectories at approximately $1 each. We use this data to train Fara-7B, a native CUA model that perceives the computer using only screenshots, executes actions via predicted coordinates, and is small enough to run on-device. We find that Fara-7B outperforms other CUA models of comparable size on benchmarks like WebVoyager, Online-Mind2Web, and WebTailBench -- our novel benchmark that better captures under-represented web tasks in pre-existing benchmarks. Furthermore, Fara-7B is competitive with much larger frontier models, illustrating key benefits of scalable data generation systems in advancing small efficient agentic models. We are making Fara-7B open-weight on Microsoft Foundry and HuggingFace, and we are releasing WebTailBench.
Teaching a Language Model to Speak the Language of Tools
External tool integration through function-calling is essential for practical language model applications, yet most multilingual models lack reliable tool-use capabilities in non-English languages. Even state-of-the-art multilingual models struggle with determining when to use tools and generating the structured outputs required for function calls, often exhibiting language confusion when prompted in lower-resource languages. This work presents a methodology for adapting existing language models to enable robust tool use in any target language, using Bulgarian as a case study. The approach involves continued training of the BgGPT model series (2.6B, 9B, 27B parameters) on a novel bilingual dataset of 10,035 function-calling examples designed to support standardized protocols like MCP (Model Context Protocol). The research introduces TUCAN (Tool-Using Capable Assistant Navigator), which achieves up to 28.75% improvement in function-calling accuracy over base models while preserving core language understanding, as verified on established Bulgarian benchmarks. Beyond accuracy gains, TUCAN models demonstrate production-ready response formatting with clean, parsable function calls, contrasting with the verbose and inconsistent outputs of base models. The models, evaluation framework, and dataset are released to enable replication for other languages. This work demonstrates a practical approach for extending tool-augmented capabilities beyond English-centric systems.
Training Foundation Models on a Full-Stack AMD Platform: Compute, Networking, and System Design
We report on the first large-scale mixture-of-experts (MoE) pretraining study on pure AMD hardware, utilizing both MI300X GPUs with Pollara interconnect. We distill practical guidance for both systems and model design. On the systems side, we deliver a comprehensive cluster and networking characterization: microbenchmarks for all core collectives (all-reduce, reduce-scatter, all-gather, broadcast) across message sizes and GPU counts on Pollara. To our knowledge, this is the first at this scale. We further provide MI300X microbenchmarks on kernel sizing and memory bandwidth to inform model design. On the modeling side, we introduce and apply MI300X-aware transformer sizing rules for attention and MLP blocks and justify MoE widths that jointly optimize training throughput and inference latency. We describe our training stack in depth, including often-ignored utilities such as fault-tolerance and checkpoint-reshaping, as well as detailed information on our training recipe. We also provide a preview of our model architecture and base model - ZAYA1 (760M active, 8.3B total parameters MoE) - which will be further improved upon in forthcoming papers. ZAYA1-base achieves performance comparable to leading base models such as Qwen3-4B and Gemma3-12B at its scale and larger, and outperforms models including Llama-3-8B and OLMoE across reasoning, mathematics, and coding benchmarks. Together, these results demonstrate that the AMD hardware, network, and software stack are mature and optimized enough for competitive large-scale pretraining.
Contextual Combinatorial Bandits with Probabilistically Triggered Arms
We study contextual combinatorial bandits with probabilistically triggered arms (C^2MAB-T) under a variety of smoothness conditions that capture a wide range of applications, such as contextual cascading bandits and contextual influence maximization bandits. Under the triggering probability modulated (TPM) condition, we devise the C^2-UCB-T algorithm and propose a novel analysis that achieves an O(dKT) regret bound, removing a potentially exponentially large factor O(1/p_{min}), where d is the dimension of contexts, p_{min} is the minimum positive probability that any arm can be triggered, and batch-size K is the maximum number of arms that can be triggered per round. Under the variance modulated (VM) or triggering probability and variance modulated (TPVM) conditions, we propose a new variance-adaptive algorithm VAC^2-UCB and derive a regret bound O(dT), which is independent of the batch-size K. As a valuable by-product, our analysis technique and variance-adaptive algorithm can be applied to the CMAB-T and C^2MAB setting, improving existing results there as well. We also include experiments that demonstrate the improved performance of our algorithms compared with benchmark algorithms on synthetic and real-world datasets.
Model Context Protocols in Adaptive Transport Systems: A Survey
The rapid expansion of interconnected devices, autonomous systems, and AI applications has created severe fragmentation in adaptive transport systems, where diverse protocols and context sources remain isolated. This survey provides the first systematic investigation of the Model Context Protocol (MCP) as a unifying paradigm, highlighting its ability to bridge protocol-level adaptation with context-aware decision making. Analyzing established literature, we show that existing efforts have implicitly converged toward MCP-like architectures, signaling a natural evolution from fragmented solutions to standardized integration frameworks. We propose a five-category taxonomy covering adaptive mechanisms, context-aware frameworks, unification models, integration strategies, and MCP-enabled architectures. Our findings reveal three key insights: traditional transport protocols have reached the limits of isolated adaptation, MCP's client-server and JSON-RPC structure enables semantic interoperability, and AI-driven transport demands integration paradigms uniquely suited to MCP. Finally, we present a research roadmap positioning MCP as a foundation for next-generation adaptive, context-aware, and intelligent transport infrastructures.
MCPGuard : Automatically Detecting Vulnerabilities in MCP Servers
The Model Context Protocol (MCP) has emerged as a standardized interface enabling seamless integration between Large Language Models (LLMs) and external data sources and tools. While MCP significantly reduces development complexity and enhances agent capabilities, its openness and extensibility introduce critical security vulnerabilities that threaten system trustworthiness and user data protection. This paper systematically analyzes the security landscape of MCP-based systems, identifying three principal threat categories: (1) agent hijacking attacks stemming from protocol design deficiencies; (2) traditional web vulnerabilities in MCP servers; and (3) supply chain security. To address these challenges, we comprehensively survey existing defense strategies, examining both proactive server-side scanning approaches, ranging from layered detection pipelines and agentic auditing frameworks to zero-trust registry systems, and runtime interaction monitoring solutions that provide continuous oversight and policy enforcement. Our analysis reveals that MCP security fundamentally represents a paradigm shift where the attack surface extends from traditional code execution to semantic interpretation of natural language metadata, necessitating novel defense mechanisms tailored to this unique threat model.
Checkmating One, by Using Many: Combining Mixture of Experts with MCTS to Improve in Chess
This paper presents a new approach that integrates deep learning with computational chess, using both the Mixture of Experts (MoE) method and Monte-Carlo Tree Search (MCTS). Our methodology employs a suite of specialized models, each designed to respond to specific changes in the game's input data. This results in a framework with sparsely activated models, which provides significant computational benefits. Our framework combines the MoE method with MCTS, in order to align it with the strategic phases of chess, thus departing from the conventional ``one-for-all'' model. Instead, we utilize distinct game phase definitions to effectively distribute computational tasks across multiple expert neural networks. Our empirical research shows a substantial improvement in playing strength, surpassing the traditional single-model framework. This validates the efficacy of our integrated approach and highlights the potential of incorporating expert knowledge and strategic principles into neural network design. The fusion of MoE and MCTS offers a promising avenue for advancing machine learning architectures.
On Many-Actions Policy Gradient
We study the variance of stochastic policy gradients (SPGs) with many action samples per state. We derive a many-actions optimality condition, which determines when many-actions SPG yields lower variance as compared to a single-action agent with proportionally extended trajectory. We propose Model-Based Many-Actions (MBMA), an approach leveraging dynamics models for many-actions sampling in the context of SPG. MBMA addresses issues associated with existing implementations of many-actions SPG and yields lower bias and comparable variance to SPG estimated from states in model-simulated rollouts. We find that MBMA bias and variance structure matches that predicted by theory. As a result, MBMA achieves improved sample efficiency and higher returns on a range of continuous action environments as compared to model-free, many-actions, and model-based on-policy SPG baselines.
Implementing and Optimizing the Scaled Dot-Product Attention on Streaming Dataflow
Transformer models serve as the backbone of many state-ofthe-art language models, and most use the scaled dot-product attention (SDPA) mechanism to capture relationships between tokens. However, the straightforward implementation of SDPA has quadratic compute and memory complexity with respect to the sequence length. On processor architectures such as GPUs and TPUs, there is a robust body of prior work. However, little work has been performed on non-processor architectures.In this work, we show how the architecture and execution model of Streaming Dataflow Accelerators can help tackle this challenge. We first define abstract hardware that adopts a streaming execution model, and we implement a cycle-accurate simulator of the abstract hardware using the Dataflow Abstract Machine simulation framework. Second, we implement the naive SDPA algorithm on this abstract hardware and show it requires linear (O(N)) intermediate memory. Third, we then modify the naive algorithm, taking inspiration from prior processor-oriented works, by reordering the multiplication and division operations. Finally, we map the modified algorithm to abstract hardware, and confirm that the implementation computes SDPA at full throughput while only using a constant amount (O(1)) of intermediate memory.
Initialization of a Polyharmonic Cascade, Launch and Testing
This paper concludes a series of studies on the polyharmonic cascade, a deep machine learning architecture theoretically derived from indifference principles and the theory of random functions. A universal initialization procedure is proposed, based on symmetric constellations in the form of hyperoctahedra with a central point. This initialization not only ensures stable training of cascades with tens and hundreds of layers (up to 500 layers without skip connections), but also radically simplifies the computations. Scalability and robustness are demonstrated on MNIST (98.3% without convolutions or augmentations), HIGGS (AUC approximately 0.885 on 11M examples), and Epsilon (AUC approximately 0.963 with 2000 features). All linear algebra is reduced to 2D operations and is efficiently executed on GPUs. A public repository and an archived snapshot are provided for full reproducibility.
OSWorld-MCP: Benchmarking MCP Tool Invocation In Computer-Use Agents
With advances in decision-making and reasoning capabilities, multimodal agents show strong potential in computer application scenarios. Past evaluations have mainly assessed GUI interaction skills, while tool invocation abilities, such as those enabled by the Model Context Protocol (MCP), have been largely overlooked. Comparing agents with integrated tool invocation to those evaluated only on GUI interaction is inherently unfair. We present OSWorld-MCP, the first comprehensive and fair benchmark for assessing computer-use agents' tool invocation, GUI operation, and decision-making abilities in a real-world environment. We design a novel automated code-generation pipeline to create tools and combine them with a curated selection from existing tools. Rigorous manual validation yields 158 high-quality tools (covering 7 common applications), each verified for correct functionality, practical applicability, and versatility. Extensive evaluations of state-of-the-art multimodal agents on OSWorld-MCP show that MCP tools generally improve task success rates (e.g., from 8.3% to 20.4% for OpenAI o3 at 15 steps, from 40.1% to 43.3% for Claude 4 Sonnet at 50 steps), underscoring the importance of assessing tool invocation capabilities. However, even the strongest models have relatively low tool invocation rates, Only 36.3%, indicating room for improvement and highlighting the benchmark's challenge. By explicitly measuring MCP tool usage skills, OSWorld-MCP deepens understanding of multimodal agents and sets a new standard for evaluating performance in complex, tool-assisted environments. Our code, environment, and data are publicly available at https://osworld-mcp.github.io.
Grounding Computer Use Agents on Human Demonstrations
Building reliable computer-use agents requires grounding: accurately connecting natural language instructions to the correct on-screen elements. While large datasets exist for web and mobile interactions, high-quality resources for desktop environments are limited. To address this gap, we introduce GroundCUA, a large-scale desktop grounding dataset built from expert human demonstrations. It covers 87 applications across 12 categories and includes 56K screenshots, with every on-screen element carefully annotated for a total of over 3.56M human-verified annotations. From these demonstrations, we generate diverse instructions that capture a wide range of real-world tasks, providing high-quality data for model training. Using GroundCUA, we develop the GroundNext family of models that map instructions to their target UI elements. At both 3B and 7B scales, GroundNext achieves state-of-the-art results across five benchmarks using supervised fine-tuning, while requiring less than one-tenth the training data of prior work. Reinforcement learning post-training further improves performance, and when evaluated in an agentic setting on the OSWorld benchmark using o3 as planner, GroundNext attains comparable or superior results to models trained with substantially more data,. These results demonstrate the critical role of high-quality, expert-driven datasets in advancing general-purpose computer-use agents.
Sample-Efficient Neural Architecture Search by Learning Action Space
Neural Architecture Search (NAS) has emerged as a promising technique for automatic neural network design. However, existing MCTS based NAS approaches often utilize manually designed action space, which is not directly related to the performance metric to be optimized (e.g., accuracy), leading to sample-inefficient explorations of architectures. To improve the sample efficiency, this paper proposes Latent Action Neural Architecture Search (LaNAS), which learns actions to recursively partition the search space into good or bad regions that contain networks with similar performance metrics. During the search phase, as different action sequences lead to regions with different performance, the search efficiency can be significantly improved by biasing towards the good regions. On three NAS tasks, empirical results demonstrate that LaNAS is at least an order more sample efficient than baseline methods including evolutionary algorithms, Bayesian optimizations, and random search. When applied in practice, both one-shot and regular LaNAS consistently outperform existing results. Particularly, LaNAS achieves 99.0% accuracy on CIFAR-10 and 80.8% top1 accuracy at 600 MFLOPS on ImageNet in only 800 samples, significantly outperforming AmoebaNet with 33x fewer samples. Our code is publicly available at https://github.com/facebookresearch/LaMCTS.
Sparse Query Attention (SQA): A Computationally Efficient Attention Mechanism with Query Heads Reduction
The Transformer architecture, underpinned by the Multi-Head Attention (MHA) mechanism, has become the de facto standard for state-of-the-art models in artificial intelligence. However, the quadratic computational complexity of MHA with respect to sequence length presents a significant barrier to scaling, particularly for applications involving long contexts. Prevailing solutions, such as Multi-Query Attention (MQA) and Grouped-Query Attention (GQA), have effectively addressed the memory bandwidth bottleneck that dominates autoregressive inference latency by sharing Key and Value projections. While highly successful, these methods do not reduce the fundamental number of floating-point operations (FLOPs) required for the attention score computation, which remains a critical bottleneck for training and full-sequence processing. This paper introduces Sparse Query Attention (SQA), a novel attention architecture that pursues an alternative and complementary optimization path. Instead of reducing Key/Value heads, SQA reduces the number of Query heads. This architectural modification directly decreases the computational complexity of the attention mechanism by a factor proportional to the reduction in query heads, thereby lowering the overall FLOPs. This work presents the theoretical foundation of SQA, its mathematical formulation, and a family of architectural variants. Empirical benchmarks on long sequences (32k-200k tokens) demonstrate that SQA can achieve significant throughput improvements of up to 3x in computation-bound scenarios such as model pre-training, fine-tuning, and encoder-based tasks, with only a minimal impact on model quality in preliminary smallscale experiments. SQA was discovered serendipitously during the development of the upcoming Reactive Transformer architecture, suggesting its potential as a powerful tool for building more efficient and scalable models
Alita-G: Self-Evolving Generative Agent for Agent Generation
Large language models (LLMs) have been shown to perform better when scaffolded into agents with memory, tools, and feedback. Beyond this, self-evolving agents have emerged, but current work largely limits adaptation to prompt rewriting or failure retries. Therefore, we present ALITA-G, a self-evolution framework that transforms a general-purpose agent into a domain expert by systematically generating, abstracting, and curating Model Context Protocol (MCP) tools. In this framework, a generalist agent executes a curated suite of target-domain tasks and synthesizes candidate MCPs from successful trajectories. These are then abstracted to parameterized primitives and consolidated into an MCP Box. At inference time, ALITA-G performs retrieval-augmented MCP selection with the help of each tool's descriptions and use cases, before executing an agent equipped with the MCP Executor. Across several benchmarks GAIA, PathVQA, and Humanity's Last Exam, ALITA-G attains strong gains while reducing computation costs. On GAIA validation, it achieves 83.03% pass@1 and 89.09% pass@3, establishing a new state-of-the-art result while reducing mean tokens per example by approximately 15% relative to a strong baseline agent. ALITA-G thus provides a principled pathway from generalist capability to reusable, domain-specific competence, improving both accuracy and efficiency on complex reasoning tasks.
Controlling Large Language Model-based Agents for Large-Scale Decision-Making: An Actor-Critic Approach
The remarkable progress in Large Language Models (LLMs) opens up new avenues for addressing planning and decision-making problems in Multi-Agent Systems (MAS). However, as the number of agents increases, the issues of hallucination in LLMs and coordination in MAS have become increasingly prominent. Additionally, the efficient utilization of tokens emerges as a critical consideration when employing LLMs to facilitate the interactions among a substantial number of agents. In this paper, we develop a modular framework called LLaMAC to mitigate these challenges. LLaMAC implements a value distribution encoding similar to that found in the human brain, utilizing internal and external feedback mechanisms to facilitate collaboration and iterative reasoning among its modules. Through evaluations involving system resource allocation and robot grid transportation, we demonstrate the considerable advantages afforded by our proposed approach.
LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios
Building agents based on tree-search planning capabilities with learned models has achieved remarkable success in classic decision-making problems, such as Go and Atari. However, it has been deemed challenging or even infeasible to extend Monte Carlo Tree Search (MCTS) based algorithms to diverse real-world applications, especially when these environments involve complex action spaces and significant simulation costs, or inherent stochasticity. In this work, we introduce LightZero, the first unified benchmark for deploying MCTS/MuZero in general sequential decision scenarios. Specificially, we summarize the most critical challenges in designing a general MCTS-style decision-making solver, then decompose the tightly-coupled algorithm and system design of tree-search RL methods into distinct sub-modules. By incorporating more appropriate exploration and optimization strategies, we can significantly enhance these sub-modules and construct powerful LightZero agents to tackle tasks across a wide range of domains, such as board games, Atari, MuJoCo, MiniGrid and GoBigger. Detailed benchmark results reveal the significant potential of such methods in building scalable and efficient decision intelligence. The code is available as part of OpenDILab at https://github.com/opendilab/LightZero.
DeepArchitect: Automatically Designing and Training Deep Architectures
In deep learning, performance is strongly affected by the choice of architecture and hyperparameters. While there has been extensive work on automatic hyperparameter optimization for simple spaces, complex spaces such as the space of deep architectures remain largely unexplored. As a result, the choice of architecture is done manually by the human expert through a slow trial and error process guided mainly by intuition. In this paper we describe a framework for automatically designing and training deep models. We propose an extensible and modular language that allows the human expert to compactly represent complex search spaces over architectures and their hyperparameters. The resulting search spaces are tree-structured and therefore easy to traverse. Models can be automatically compiled to computational graphs once values for all hyperparameters have been chosen. We can leverage the structure of the search space to introduce different model search algorithms, such as random search, Monte Carlo tree search (MCTS), and sequential model-based optimization (SMBO). We present experiments comparing the different algorithms on CIFAR-10 and show that MCTS and SMBO outperform random search. In addition, these experiments show that our framework can be used effectively for model discovery, as it is possible to describe expressive search spaces and discover competitive models without much effort from the human expert. Code for our framework and experiments has been made publicly available.
PanGu-π: Enhancing Language Model Architectures via Nonlinearity Compensation
The recent trend of large language models (LLMs) is to increase the scale of both model size (\aka the number of parameters) and dataset to achieve better generative ability, which is definitely proved by a lot of work such as the famous GPT and Llama. However, large models often involve massive computational costs, and practical applications cannot afford such high prices. However, the method of constructing a strong model architecture for LLMs is rarely discussed. We first analyze the state-of-the-art language model architectures and observe the feature collapse problem. Based on the theoretical analysis, we propose that the nonlinearity is also very important for language models, which is usually studied in convolutional neural networks for vision tasks. The series informed activation function is then introduced with tiny calculations that can be ignored, and an augmented shortcut is further used to enhance the model nonlinearity. We then demonstrate that the proposed approach is significantly effective for enhancing the model nonlinearity through carefully designed ablations; thus, we present a new efficient model architecture for establishing modern, namely, PanGu-pi. Experiments are then conducted using the same dataset and training strategy to compare PanGu-pi with state-of-the-art LLMs. The results show that PanGu-pi-7B can achieve a comparable performance to that of benchmarks with about 10\% inference speed-up, and PanGu-pi-1B can achieve state-of-the-art performance in terms of accuracy and efficiency. In addition, we have deployed PanGu-pi-7B in the high-value domains of finance and law, developing an LLM named YunShan for practical application. The results show that YunShan can surpass other models with similar scales on benchmarks.
GroupMamba: Parameter-Efficient and Accurate Group Visual State Space Model
Recent advancements in state-space models (SSMs) have showcased effective performance in modeling long-range dependencies with subquadratic complexity. However, pure SSM-based models still face challenges related to stability and achieving optimal performance on computer vision tasks. Our paper addresses the challenges of scaling SSM-based models for computer vision, particularly the instability and inefficiency of large model sizes. To address this, we introduce a Modulated Group Mamba layer which divides the input channels into four groups and applies our proposed SSM-based efficient Visual Single Selective Scanning (VSSS) block independently to each group, with each VSSS block scanning in one of the four spatial directions. The Modulated Group Mamba layer also wraps the four VSSS blocks into a channel modulation operator to improve cross-channel communication. Furthermore, we introduce a distillation-based training objective to stabilize the training of large models, leading to consistent performance gains. Our comprehensive experiments demonstrate the merits of the proposed contributions, leading to superior performance over existing methods for image classification on ImageNet-1K, object detection, instance segmentation on MS-COCO, and semantic segmentation on ADE20K. Our tiny variant with 23M parameters achieves state-of-the-art performance with a classification top-1 accuracy of 83.3% on ImageNet-1K, while being 26% efficient in terms of parameters, compared to the best existing Mamba design of same model size. Our code and models are available at: https://github.com/Amshaker/GroupMamba.
Accessing GPT-4 level Mathematical Olympiad Solutions via Monte Carlo Tree Self-refine with LLaMa-3 8B
This paper introduces the MCT Self-Refine (MCTSr) algorithm, an innovative integration of Large Language Models (LLMs) with Monte Carlo Tree Search (MCTS), designed to enhance performance in complex mathematical reasoning tasks. Addressing the challenges of accuracy and reliability in LLMs, particularly in strategic and mathematical reasoning, MCTSr leverages systematic exploration and heuristic self-refine mechanisms to improve decision-making frameworks within LLMs. The algorithm constructs a Monte Carlo search tree through iterative processes of Selection, self-refine, self-evaluation, and Backpropagation, utilizing an improved Upper Confidence Bound (UCB) formula to optimize the exploration-exploitation balance. Extensive experiments demonstrate MCTSr's efficacy in solving Olympiad-level mathematical problems, significantly improving success rates across multiple datasets, including GSM8K, GSM Hard, MATH, and Olympiad-level benchmarks, including Math Odyssey, AIME, and OlympiadBench. The study advances the application of LLMs in complex reasoning tasks and sets a foundation for future AI integration, enhancing decision-making accuracy and reliability in LLM-driven applications.
The Computational Limits of State-Space Models and Mamba via the Lens of Circuit Complexity
In this paper, we analyze the computational limitations of Mamba and State-space Models (SSMs) by using the circuit complexity framework. Despite Mamba's stateful design and recent attention as a strong candidate to outperform Transformers, we have demonstrated that both Mamba and SSMs with poly(n)-precision and constant-depth layers reside within the DLOGTIME-uniform TC^0 complexity class. This result indicates Mamba has the same computational capabilities as Transformer theoretically, and it cannot solve problems like arithmetic formula problems, boolean formula value problems, and permutation composition problems if TC^0 neq NC^1. Therefore, it challenges the assumption Mamba is more computationally expressive than Transformers. Our contributions include rigorous proofs showing that Selective SSM and Mamba architectures can be simulated by DLOGTIME-uniform TC^0 circuits, and they cannot solve problems outside TC^0.
CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning
The exponential growth in demand for GPU computing resources, driven by the rapid advancement of Large Language Models, has created an urgent need for automated CUDA optimization strategies. While recent advances in LLMs show promise for code generation, current SOTA models (e.g. R1, o1) achieve low success rates in improving CUDA speed. In this paper, we introduce CUDA-L1, an automated reinforcement learning framework for CUDA optimization. CUDA-L1 achieves performance improvements on the CUDA optimization task: trained on NVIDIA A100, it delivers an average speedup of x17.7 across all 250 CUDA kernels of KernelBench, with peak speedups reaching x449. Furthermore, the model also demonstrates excellent portability across GPU architectures, achieving average speedups of x17.8 on H100, x19.0 on RTX 3090, x16.5 on L40, x14.7 on H800, and x13.9 on H20 despite being optimized specifically for A100. Beyond these benchmark results, CUDA-L1 demonstrates several remarkable properties: 1) Discovers a variety of CUDA optimization techniques and learns to combine them strategically to achieve optimal performance; 2) Uncovers fundamental principles of CUDA optimization; 3) Identifies non-obvious performance bottlenecks and rejects seemingly beneficial optimizations that harm performance. The capabilities of CUDA-L1 demonstrate that reinforcement learning can transform an initially poor-performing LLM into an effective CUDA optimizer through speedup-based reward signals alone, without human expertise or domain knowledge. More importantly, the trained RL model extend the acquired reasoning abilities to new kernels. This paradigm opens possibilities for automated optimization of CUDA operations, and holds promise to substantially promote GPU efficiency and alleviate the rising pressure on GPU computing resources.
An Approximation Algorithm for Monotone Submodular Cost Allocation
In this paper, we consider the minimum submodular cost allocation (MSCA) problem. The input of MSCA is k non-negative submodular functions f_1,ldots,f_k on the ground set N given by evaluation oracles, and the goal is to partition N into k (possibly empty) sets X_1,ldots,X_k so that sum_{i=1}^k f_i(X_i) is minimized. In this paper, we focus on the case when f_1,ldots,f_k are monotone (denoted by Mono-MSCA). We provide a natural LP-relaxation for Mono-MSCA, which is equivalent to the convex program relaxation introduced by Chekuri and Ene. We show that the integrality gap of the LP-relaxation is at most k/2, which yields a k/2-approximation algorithm for Mono-MSCA. We also show that the integrality gap of the LP-relaxation is at least k/2-epsilon for any constant epsilon>0 when k is fixed.
Guided Search Strategies in Non-Serializable Environments with Applications to Software Engineering Agents
Large language models (LLMs) have recently achieved remarkable results in complex multi-step tasks, such as mathematical reasoning and agentic software engineering. However, they often struggle to maintain consistent performance across multiple solution attempts. One effective approach to narrow the gap between average-case and best-case performance is guided test-time search, which explores multiple solution paths to identify the most promising one. Unfortunately, effective search techniques (e.g. MCTS) are often unsuitable for non-serializable RL environments, such as Docker containers, where intermediate environment states cannot be easily saved and restored. We investigate two complementary search strategies applicable to such environments: 1-step lookahead and trajectory selection, both guided by a learned action-value function estimator. On the SWE-bench Verified benchmark, a key testbed for agentic software engineering, we find these methods to double the average success rate of a fine-tuned Qwen-72B model, achieving 40.8%, the new state-of-the-art for open-weights models. Additionally, we show that these techniques are transferable to more advanced closed models, yielding similar improvements with GPT-4o.
E-CAR: Efficient Continuous Autoregressive Image Generation via Multistage Modeling
Recent advances in autoregressive (AR) models with continuous tokens for image generation show promising results by eliminating the need for discrete tokenization. However, these models face efficiency challenges due to their sequential token generation nature and reliance on computationally intensive diffusion-based sampling. We present ECAR (Efficient Continuous Auto-Regressive Image Generation via Multistage Modeling), an approach that addresses these limitations through two intertwined innovations: (1) a stage-wise continuous token generation strategy that reduces computational complexity and provides progressively refined token maps as hierarchical conditions, and (2) a multistage flow-based distribution modeling method that transforms only partial-denoised distributions at each stage comparing to complete denoising in normal diffusion models. Holistically, ECAR operates by generating tokens at increasing resolutions while simultaneously denoising the image at each stage. This design not only reduces token-to-image transformation cost by a factor of the stage number but also enables parallel processing at the token level. Our approach not only enhances computational efficiency but also aligns naturally with image generation principles by operating in continuous token space and following a hierarchical generation process from coarse to fine details. Experimental results demonstrate that ECAR achieves comparable image quality to DiT Peebles & Xie [2023] while requiring 10times FLOPs reduction and 5times speedup to generate a 256times256 image.
Nonlinear Multiple Response Regression and Learning of Latent Spaces
Identifying low-dimensional latent structures within high-dimensional data has long been a central topic in the machine learning community, driven by the need for data compression, storage, transmission, and deeper data understanding. Traditional methods, such as principal component analysis (PCA) and autoencoders (AE), operate in an unsupervised manner, ignoring label information even when it is available. In this work, we introduce a unified method capable of learning latent spaces in both unsupervised and supervised settings. We formulate the problem as a nonlinear multiple-response regression within an index model context. By applying the generalized Stein's lemma, the latent space can be estimated without knowing the nonlinear link functions. Our method can be viewed as a nonlinear generalization of PCA. Moreover, unlike AE and other neural network methods that operate as "black boxes", our approach not only offers better interpretability but also reduces computational complexity while providing strong theoretical guarantees. Comprehensive numerical experiments and real data analyses demonstrate the superior performance of our method.
Neural Architecture Search via Combinatorial Multi-Armed Bandit
Neural Architecture Search (NAS) has gained significant popularity as an effective tool for designing high performance deep neural networks (DNNs). NAS can be performed via policy gradient, evolutionary algorithms, differentiable architecture search or tree-search methods. While significant progress has been made for both policy gradient and differentiable architecture search, tree-search methods have so far failed to achieve comparable accuracy or search efficiency. In this paper, we formulate NAS as a Combinatorial Multi-Armed Bandit (CMAB) problem (CMAB-NAS). This allows the decomposition of a large search space into smaller blocks where tree-search methods can be applied more effectively and efficiently. We further leverage a tree-based method called Nested Monte-Carlo Search to tackle the CMAB-NAS problem. On CIFAR-10, our approach discovers a cell structure that achieves a low error rate that is comparable to the state-of-the-art, using only 0.58 GPU days, which is 20 times faster than current tree-search methods. Moreover, the discovered structure transfers well to large-scale datasets such as ImageNet.
Monte Carlo Permutation Search
We propose Monte Carlo Permutation Search (MCPS), a general-purpose Monte Carlo Tree Search (MCTS) algorithm that improves upon the GRAVE algorithm. MCPS is relevant when deep reinforcement learning is not an option, or when the computing power available before play is not substantial, such as in General Game Playing, for example. The principle of MCPS is to include in the exploration term of a node the statistics on all the playouts that contain all the moves on the path from the root to the node. We extensively test MCPS on a variety of games: board games, wargame, investment game, video game and multi-player games. MCPS has better results than GRAVE in all the two-player games. It has equivalent results for multi-player games because these games are inherently balanced even when players have different strengths. We also show that using abstract codes for moves instead of exact codes can be beneficial to both MCPS and GRAVE, as they improve the permutation statistics and the AMAF statistics. We also provide a mathematical derivation of the formulas used for weighting the three sources of statistics. These formulas are an improvement on the GRAVE formula since they no longer use the bias hyperparameter of GRAVE. Moreover, MCPS is not sensitive to the ref hyperparameter.
MCPEval: Automatic MCP-based Deep Evaluation for AI Agent Models
The rapid rise of Large Language Models (LLMs)-based intelligent agents underscores the need for robust, scalable evaluation frameworks. Existing methods rely on static benchmarks and labor-intensive data collection, limiting practical assessment. We introduce \oursystemname, an open-source Model Context Protocol (MCP)-based framework that automates end-to-end task generation and deep evaluation of LLM agents across diverse domains. MCPEval standardizes metrics, seamlessly integrates with native agent tools, and eliminates manual effort in building evaluation pipelines. Empirical results across five real-world domains show its effectiveness in revealing nuanced, domain-specific performance. We publicly release MCPEval https://github.com/SalesforceAIResearch/MCPEval to promote reproducible and standardized LLM agent evaluation.
MirrorGuard: Toward Secure Computer-Use Agents via Simulation-to-Real Reasoning Correction
Large foundation models are integrated into Computer Use Agents (CUAs), enabling autonomous interaction with operating systems through graphical user interfaces (GUIs) to perform complex tasks. This autonomy introduces serious security risks: malicious instructions or visual prompt injections can trigger unsafe reasoning and cause harmful system-level actions. Existing defenses, such as detection-based blocking, prevent damage but often abort tasks prematurely, reducing agent utility. In this paper, we present MirrorGuard, a plug-and-play defense framework that uses simulation-based training to improve CUA security in the real world. To reduce the cost of large-scale training in operating systems, we propose a novel neural-symbolic simulation pipeline, which generates realistic, high-risk GUI interaction trajectories entirely in a text-based simulated environment, which captures unsafe reasoning patterns and potential system hazards without executing real operations. In the simulation environment, MirrorGuard learns to intercept and rectify insecure reasoning chains of CUAs before they produce and execute unsafe actions. In real-world testing, extensive evaluations across diverse benchmarks and CUA architectures show that MirrorGuard significantly mitigates security risks. For instance, on the ByteDance UI-TARS system, it reduces the unsafe rate from 66.5% to 13.0% while maintaining a marginal false refusal rate (FRR). In contrast, the state-of-the-art GuardAgent only achieves a reduction to 53.9% and suffers from a 15.4% higher FRR. Our work proves that simulation-derived defenses can provide robust, real-world protection while maintaining the fundamental utility of the agent. Our code and model are publicly available at https://bmz-q-q.github.io/MirrorGuard/.
Progressive-Hint Prompting Improves Reasoning in Large Language Models
The performance of Large Language Models (LLMs) in reasoning tasks depends heavily on prompt design, with Chain-of-Thought (CoT) and self-consistency being critical methods that enhance this ability. However, these methods do not fully exploit the answers generated by the LLM to guide subsequent responses. This paper proposes a new prompting method, named Progressive-Hint Prompting (PHP), that enables automatic multiple interactions between users and LLMs by using previously generated answers as hints to progressively guide toward the correct answers. PHP is orthogonal to CoT and self-consistency, making it easy to combine with state-of-the-art techniques to further improve performance. We conducted extensive and comprehensive experiments on seven benchmarks. The results show that PHP significantly improves accuracy while remaining highly efficient. For instance, with text-davinci-003, we observed a 4.2% improvement on GSM8K with greedy decoding compared to Complex CoT, and a 46.17% reduction in sample paths with self-consistency. With GPT-4 and PHP, we achieve state-of-the-art performances on SVAMP (89.1% -> 91.9%), GSM8K (92% -> 95.5%), AQuA (76.4% -> 79.9%) and MATH (50.3% -> 53.9%).
Verbal Process Supervision Elicits Better Coding Agents
The emergence of large language models and their applications as AI agents have significantly advanced state-of-the-art code generation benchmarks, transforming modern software engineering tasks. However, even with test-time computed reasoning models, these systems still struggle with complex software engineering challenges. This work introduces CURA, a code understanding and reasoning agent system enhanced with verbal process supervision (VPS), achieving a 3.65\% improvement over baseline models on challenging benchmarks like BigCodeBench. Furthermore, CURA, when paired with the o3-mini model and VPS techniques, attains state-of-the-art performance. This work represents a step forward in integrating reasoning-driven architectures with LLM-based code generation, enabling agentic reasoning for language models to solve complex software engineering tasks.
Bourbaki: Self-Generated and Goal-Conditioned MDPs for Theorem Proving
Reasoning remains a challenging task for large language models (LLMs), especially within the logically constrained environment of automated theorem proving (ATP), due to sparse rewards and the vast scale of proofs. These challenges are amplified in benchmarks like PutnamBench, which contains university-level problems requiring complex, multi-step reasoning. To address this, we introduce self-generated goal-conditioned MDPs (sG-MDPs), a new framework in which agents generate and pursue their subgoals based on the evolving proof state. Given this more structured generation of goals, the resulting problem becomes more amenable to search. We then apply Monte Carlo Tree Search (MCTS)-like algorithms to solve the sG-MDP, instantiating our approach in Bourbaki (7B), a modular system that can ensemble multiple 7B LLMs for subgoal generation and tactic synthesis. On PutnamBench, Bourbaki (7B) solves 26 problems, achieving new state-of-the-art results with models at this scale.
MARS: Modular Agent with Reflective Search for Automated AI Research
Automating AI research differs from general software engineering due to computationally expensive evaluation (e.g., model training) and opaque performance attribution. Current LLM-based agents struggle here, often generating monolithic scripts that ignore execution costs and causal factors. We introduce MARS (Modular Agent with Reflective Search), a framework optimized for autonomous AI research. MARS relies on three pillars: (1) Budget-Aware Planning via cost-constrained Monte Carlo Tree Search (MCTS) to explicitly balance performance with execution expense; (2) Modular Construction, employing a "Design-Decompose-Implement" pipeline to manage complex research repositories; and (3) Comparative Reflective Memory, which addresses credit assignment by analyzing solution differences to distill high-signal insights. MARS achieves state-of-the-art performance among open-source frameworks on MLE-Bench under comparable settings, maintaining competitiveness with the global leaderboard's top methods. Furthermore, the system exhibits qualitative "Aha!" moments, where 63% of all utilized lessons originate from cross-branch transfer, demonstrating that the agent effectively generalizes insights across search paths.
Watch and Learn: Learning to Use Computers from Online Videos
Computer use agents (CUAs) need to plan task workflows grounded in diverse, ever-changing applications and environments, but learning is hindered by the scarcity of large-scale, high-quality training data in the target application. Existing datasets are domain-specific, static, and costly to annotate, while current synthetic data generation methods often yield simplistic or misaligned task demonstrations. To address these limitations, we introduce Watch & Learn (W&L), a framework that converts human demonstration videos readily available on the Internet into executable UI trajectories at scale. Instead of directly generating trajectories or relying on ad hoc reasoning heuristics, we cast the problem as an inverse dynamics objective: predicting the user's action from consecutive screen states. This formulation reduces manual engineering, is easier to learn, and generalizes more robustly across applications. Concretely, we develop an inverse dynamics labeling pipeline with task-aware video retrieval, generate over 53k high-quality trajectories from raw web videos, and demonstrate that these trajectories improve CUAs both as in-context demonstrations and as supervised training data. On the challenging OSWorld benchmark, UI trajectories extracted with W&L consistently enhance both general-purpose and state-of-the-art frameworks in-context, and deliver stronger gains for open-source models under supervised training. These results highlight web-scale human demonstration videos as a practical and scalable foundation for advancing CUAs towards real-world deployment.
ToolACE-MCP: Generalizing History-Aware Routing from MCP Tools to the Agent Web
With the rise of the Agent Web and Model Context Protocol (MCP), the agent ecosystem is evolving into an open collaborative network, exponentially increasing accessible tools. However, current architectures face severe scalability and generality bottlenecks. To address this, we propose ToolACE-MCP, a pipeline for training history-aware routers to empower precise navigation in large-scale ecosystems. By leveraging a dependency-rich candidate Graph to synthesize multi-turn trajectories, we effectively train routers with dynamic context understanding to create the plug-and-play Light Routing Agent. Experiments on the real-world benchmarks MCP-Universe and MCP-Mark demonstrate superior performance. Notably, ToolACE-MCP exhibits critical properties for the future Agent Web: it not only generalizes to multi-agent collaboration with minimal adaptation but also maintains exceptional robustness against noise and scales effectively to massive candidate spaces. These findings provide a strong empirical foundation for universal orchestration in open-ended ecosystems.
Automatic Red Teaming LLM-based Agents with Model Context Protocol Tools
The remarkable capability of large language models (LLMs) has led to the wide application of LLM-based agents in various domains. To standardize interactions between LLM-based agents and their environments, model context protocol (MCP) tools have become the de facto standard and are now widely integrated into these agents. However, the incorporation of MCP tools introduces the risk of tool poisoning attacks, which can manipulate the behavior of LLM-based agents. Although previous studies have identified such vulnerabilities, their red teaming approaches have largely remained at the proof-of-concept stage, leaving the automatic and systematic red teaming of LLM-based agents under the MCP tool poisoning paradigm an open question. To bridge this gap, we propose AutoMalTool, an automated red teaming framework for LLM-based agents by generating malicious MCP tools. Our extensive evaluation shows that AutoMalTool effectively generates malicious MCP tools capable of manipulating the behavior of mainstream LLM-based agents while evading current detection mechanisms, thereby revealing new security risks in these agents.
The Unreasonable Effectiveness of Scaling Agents for Computer Use
Computer-use agents (CUAs) hold promise for automating everyday digital tasks, but their unreliability and high variance hinder their application to long-horizon, complex tasks. We introduce Behavior Best-of-N (bBoN), a method that scales over agents by generating multiple rollouts and selecting among them using behavior narratives that describe the agents' rollouts. It enables both wide exploration and principled trajectory selection, substantially improving robustness and success rates. On OSWorld, our bBoN scaling method establishes a new state of the art (SoTA) at 69.9%, significantly outperforming prior methods and approaching human-level performance at 72%, with comprehensive ablations validating key design choices. We further demonstrate strong generalization results to different operating systems on WindowsAgentArena and AndroidWorld. Crucially, our results highlight the unreasonable effectiveness of scaling CUAs, when you do it right: effective scaling requires structured trajectory understanding and selection, and bBoN provides a practical framework to achieve this.
Scalable Set Encoding with Universal Mini-Batch Consistency and Unbiased Full Set Gradient Approximation
Recent work on mini-batch consistency (MBC) for set functions has brought attention to the need for sequentially processing and aggregating chunks of a partitioned set while guaranteeing the same output for all partitions. However, existing constraints on MBC architectures lead to models with limited expressive power. Additionally, prior work has not addressed how to deal with large sets during training when the full set gradient is required. To address these issues, we propose a Universally MBC (UMBC) class of set functions which can be used in conjunction with arbitrary non-MBC components while still satisfying MBC, enabling a wider range of function classes to be used in MBC settings. Furthermore, we propose an efficient MBC training algorithm which gives an unbiased approximation of the full set gradient and has a constant memory overhead for any set size for both train- and test-time. We conduct extensive experiments including image completion, text classification, unsupervised clustering, and cancer detection on high-resolution images to verify the efficiency and efficacy of our scalable set encoding framework. Our code is available at github.com/jeffwillette/umbc
TOUCAN: Synthesizing 1.5M Tool-Agentic Data from Real-World MCP Environments
Large Language Model (LLM) agents are rapidly emerging as powerful systems for automating tasks across domains. Yet progress in the open-source community is constrained by the lack of high quality permissively licensed tool-agentic training data. Existing datasets are often limited in diversity, realism, and complexity, particularly regarding multi-tool and multi-turn interactions. To address this gap, we introduce Toucan, the largest publicly available tool-agentic dataset to date, containing 1.5 million trajectories synthesized from nearly 500 real-world Model Context Protocols (MCPs). Unlike prior work, Toucan leverages authentic MCP environments to generate diverse, realistic, and challenging tasks with trajectories involving real tool execution. Our pipeline first produces a broad spectrum of tool-use queries using five distinct models, applies model-based quality filtering, and then generates agentic trajectories with three teacher models using two agentic frameworks. Rigorous rule-based and model-based validation ensures high-quality outputs. We also introduce three extension mechanisms to further diversify tasks and simulate multi-turn conversations. Models fine-tuned on Toucan outperform larger closed-source counterparts on the BFCL V3 benchmark and push the Pareto frontier forward on MCP-Universe Bench.
Can I Have Your Order? Monte-Carlo Tree Search for Slot Filling Ordering in Diffusion Language Models
While plan-and-infill decoding in Masked Diffusion Models (MDMs) shows promise for mathematical and code reasoning, performance remains highly sensitive to slot infilling order, often yielding substantial output variance. We introduce McDiffuSE, a framework that formulates slot selection as decision making and optimises infilling orders through Monte Carlo Tree Search (MCTS). McDiffuSE uses look-ahead simulations to evaluate partial completions before commitment, systematically exploring the combinatorial space of generation orders. Experiments show an average improvement of 3.2% over autoregressive baselines and 8.0% over baseline plan-and-infill, with notable gains of 19.5% on MBPP and 4.9% on MATH500. Our analysis reveals that while McDiffuSE predominantly follows sequential ordering, incorporating non-sequential generation is essential for maximising performance. We observe that larger exploration constants, rather than increased simulations, are necessary to overcome model confidence biases and discover effective orderings. These findings establish MCTS-based planning as an effective approach for enhancing generation quality in MDMs.
Improving Autonomous AI Agents with Reflective Tree Search and Self-Learning
Autonomous agents have demonstrated significant potential in automating complex multistep decision-making tasks. However, even state-of-the-art vision-language models (VLMs), such as GPT-4o, still fall short of human-level performance, particularly in intricate web environments and long-horizon planning tasks. To address these limitations, we introduce Reflective Monte Carlo Tree Search (R-MCTS), a novel test-time algorithm designed to enhance the ability of AI agents, e.g., powered by GPT-4o, to explore decision space on the fly. R-MCTS extends traditional MCTS by 1) incorporating contrastive reflection, allowing agents to learn from past interactions and dynamically improve their search efficiency; and 2) using multi-agent debate to provide reliable state evaluation. Moreover, we improve the agent's performance by fine-tuning GPT-4o through self-learning, using R-MCTS generated tree traversals without any human-provided labels. On the challenging VisualWebArena benchmark, our GPT-4o-based R-MCTS agent achieves a 6% to 30% relative improvement across various tasks compared to the previous state-of-the-art. Additionally, we show that the knowledge gained from test-time search can be effectively transferred back to GPT-4o via fine-tuning. The fine-tuned GPT-4o matches 97% of R-MCTS's performance while reducing compute usage by a factor of four at test time. Furthermore, qualitative results reveal that the fine-tuned GPT-4o model demonstrates the ability to explore the environment, evaluate a state, and backtrack to viable ones when it detects that the current state cannot lead to success. Moreover, our work demonstrates the compute scaling properties in both training - data collection with R-MCTS - and testing time. These results suggest a promising research direction to enhance VLMs' reasoning and planning capabilities for agentic applications via test-time search and self-learning.
Rethinking Token Reduction for State Space Models
Recent advancements in State Space Models (SSMs) have attracted significant interest, particularly in models optimized for parallel training and handling long-range dependencies. Architectures like Mamba have scaled to billions of parameters with selective SSM. To facilitate broader applications using Mamba, exploring its efficiency is crucial. While token reduction techniques offer a straightforward post-training strategy, we find that applying existing methods directly to SSMs leads to substantial performance drops. Through insightful analysis, we identify the reasons for this failure and the limitations of current techniques. In response, we propose a tailored, unified post-training token reduction method for SSMs. Our approach integrates token importance and similarity, thus taking advantage of both pruning and merging, to devise a fine-grained intra-layer token reduction strategy. Extensive experiments show that our method improves the average accuracy by 5.7% to 13.1% on six benchmarks with Mamba-2 compared to existing methods, while significantly reducing computational demands and memory requirements.
Compressed Convolutional Attention: Efficient Attention in a Compressed Latent Space
Multi-headed Attention's (MHA) quadratic compute and linearly growing KV-cache make long-context transformers expensive to train and serve. Prior works such as Grouped Query Attention (GQA) and Multi-Latent Attention (MLA) shrink the cache, speeding decode, but leave compute, which determines prefill and training speed, largely unchanged. We introduce Compressed Convolutional Attention (CCA), a novel attention method which down-projects queries, keys, and values and performs the entire attention operation inside the shared latent space. This simple design dramatically cuts parameters, KV-cache, and FLOPs all at once by the desired compression factor. Because CCA is orthogonal to head-sharing, we combine the two to form Compressed Convolutional Grouped Query Attention (CCGQA), which further tightens the compute-bandwidth Pareto frontier so that users can tune compression toward either FLOP or memory limits without sacrificing quality. Experiments show that CCGQA consistently outperforms both GQA and MLA at equal KV-cache compression on dense and MoE models. Additionally, we show that CCGQA outperforms all other attention methods on MoE models with half the KV-cache of GQA and MLA, achieving an 8x KV-cache compression with no drop in performance compared to standard MHA. CCA and CCGQA also dramatically reduce the FLOP cost of attention which leads to substantially faster training and prefill than existing methods. On H100 GPUs, our fused CCA/CCGQA kernel reduces prefill latency by about 1.7x at a sequence length of 16k relative to MHA, and accelerates backward by about 1.3x.
Long Is More for Alignment: A Simple but Tough-to-Beat Baseline for Instruction Fine-Tuning
There is a consensus that instruction fine-tuning of LLMs requires high-quality data, but what are they? LIMA (NeurIPS 2023) and AlpaGasus (ICLR 2024) are state-of-the-art methods for selecting such high-quality examples, either via manual curation or using GPT-3.5-Turbo as a quality scorer. We show that the extremely simple baseline of selecting the 1,000 instructions with longest responses from standard datasets can consistently outperform these sophisticated methods according to GPT-4 and PaLM-2 as judges, while remaining competitive on the OpenLLM benchmarks that test factual knowledge. We demonstrate this for several state-of-the-art LLMs (Llama-2-7B, Llama-2-13B, and Mistral-7B) and datasets (Alpaca-52k and Evol-Instruct-70k). In addition, a lightweight refinement of such long instructions can further improve the abilities of the fine-tuned LLMs, and allows us to obtain the 2nd highest-ranked Llama-2-7B-based model on AlpacaEval 2.0 while training on only 1,000 examples and no extra preference data. We also conduct a thorough analysis of our models to ensure that their enhanced performance is not simply due to GPT-4's preference for longer responses, thus ruling out any artificial improvement. In conclusion, our findings suggest that fine-tuning on the longest instructions should be the default baseline for any research on instruction fine-tuning.
Advancing Multi-Agent Systems Through Model Context Protocol: Architecture, Implementation, and Applications
Multi-agent systems represent a significant advancement in artificial intelligence, enabling complex problem-solving through coordinated specialized agents. However, these systems face fundamental challenges in context management, coordination efficiency, and scalable operation. This paper introduces a comprehensive framework for advancing multi-agent systems through Model Context Protocol (MCP), addressing these challenges through standardized context sharing and coordination mechanisms. We extend previous work on AI agent architectures by developing a unified theoretical foundation, advanced context management techniques, and scalable coordination patterns. Through detailed implementation case studies across enterprise knowledge management, collaborative research, and distributed problem-solving domains, we demonstrate significant performance improvements compared to traditional approaches. Our evaluation methodology provides a systematic assessment framework with benchmark tasks and datasets specifically designed for multi-agent systems. We identify current limitations, emerging research opportunities, and potential transformative applications across industries. This work contributes to the evolution of more capable, collaborative, and context-aware artificial intelligence systems that can effectively address complex real-world challenges.
Are NLP Models really able to Solve Simple Math Word Problems?
The problem of designing NLP solvers for math word problems (MWP) has seen sustained research activity and steady gains in the test accuracy. Since existing solvers achieve high performance on the benchmark datasets for elementary level MWPs containing one-unknown arithmetic word problems, such problems are often considered "solved" with the bulk of research attention moving to more complex MWPs. In this paper, we restrict our attention to English MWPs taught in grades four and lower. We provide strong evidence that the existing MWP solvers rely on shallow heuristics to achieve high performance on the benchmark datasets. To this end, we show that MWP solvers that do not have access to the question asked in the MWP can still solve a large fraction of MWPs. Similarly, models that treat MWPs as bag-of-words can also achieve surprisingly high accuracy. Further, we introduce a challenge dataset, SVAMP, created by applying carefully chosen variations over examples sampled from existing datasets. The best accuracy achieved by state-of-the-art models is substantially lower on SVAMP, thus showing that much remains to be done even for the simplest of the MWPs.
Automated Quantum Circuit Design with Nested Monte Carlo Tree Search
Quantum algorithms based on variational approaches are one of the most promising methods to construct quantum solutions and have found a myriad of applications in the last few years. Despite the adaptability and simplicity, their scalability and the selection of suitable ans\"atzs remain key challenges. In this work, we report an algorithmic framework based on nested Monte-Carlo Tree Search (MCTS) coupled with the combinatorial multi-armed bandit (CMAB) model for the automated design of quantum circuits. Through numerical experiments, we demonstrated our algorithm applied to various kinds of problems, including the ground energy problem in quantum chemistry, quantum optimisation on a graph, solving systems of linear equations, and finding encoding circuit for quantum error detection codes. Compared to the existing approaches, the results indicate that our circuit design algorithm can explore larger search spaces and optimise quantum circuits for larger systems, showing both versatility and scalability.
End-to-end Differentiable Clustering with Associative Memories
Clustering is a widely used unsupervised learning technique involving an intensive discrete optimization problem. Associative Memory models or AMs are differentiable neural networks defining a recursive dynamical system, which have been integrated with various deep learning architectures. We uncover a novel connection between the AM dynamics and the inherent discrete assignment necessary in clustering to propose a novel unconstrained continuous relaxation of the discrete clustering problem, enabling end-to-end differentiable clustering with AM, dubbed ClAM. Leveraging the pattern completion ability of AMs, we further develop a novel self-supervised clustering loss. Our evaluations on varied datasets demonstrate that ClAM benefits from the self-supervision, and significantly improves upon both the traditional Lloyd's k-means algorithm, and more recent continuous clustering relaxations (by upto 60% in terms of the Silhouette Coefficient).
CoCo-MILP: Inter-Variable Contrastive and Intra-Constraint Competitive MILP Solution Prediction
Mixed-Integer Linear Programming (MILP) is a cornerstone of combinatorial optimization, yet solving large-scale instances remains a significant computational challenge. Recently, Graph Neural Networks (GNNs) have shown promise in accelerating MILP solvers by predicting high-quality solutions. However, we identify that existing methods misalign with the intrinsic structure of MILP problems at two levels. At the leaning objective level, the Binary Cross-Entropy (BCE) loss treats variables independently, neglecting their relative priority and yielding plausible logits. At the model architecture level, standard GNN message passing inherently smooths the representations across variables, missing the natural competitive relationships within constraints. To address these challenges, we propose CoCo-MILP, which explicitly models inter-variable Contrast and intra-constraint Competition for advanced MILP solution prediction. At the objective level, CoCo-MILP introduces the Inter-Variable Contrastive Loss (VCL), which explicitly maximizes the embedding margin between variables assigned one versus zero. At the architectural level, we design an Intra-Constraint Competitive GNN layer that, instead of homogenizing features, learns to differentiate representations of competing variables within a constraint, capturing their exclusionary nature. Experimental results on standard benchmarks demonstrate that CoCo-MILP significantly outperforms existing learning-based approaches, reducing the solution gap by up to 68.12% compared to traditional solvers. Our code is available at https://github.com/happypu326/CoCo-MILP.
Multi-Curve Translator for High-Resolution Photorealistic Image Translation
The dominant image-to-image translation methods are based on fully convolutional networks, which extract and translate an image's features and then reconstruct the image. However, they have unacceptable computational costs when working with high-resolution images. To this end, we present the Multi-Curve Translator (MCT), which not only predicts the translated pixels for the corresponding input pixels but also for their neighboring pixels. And if a high-resolution image is downsampled to its low-resolution version, the lost pixels are the remaining pixels' neighboring pixels. So MCT makes it possible to feed the network only the downsampled image to perform the mapping for the full-resolution image, which can dramatically lower the computational cost. Besides, MCT is a plug-in approach that utilizes existing base models and requires only replacing their output layers. Experiments demonstrate that the MCT variants can process 4K images in real-time and achieve comparable or even better performance than the base models on various photorealistic image-to-image translation tasks.
Token Coordinated Prompt Attention is Needed for Visual Prompting
Visual prompting techniques are widely used to efficiently fine-tune pretrained Vision Transformers (ViT) by learning a small set of shared prompts for all tokens. However, existing methods overlook the unique roles of different tokens in conveying discriminative information and interact with all tokens using the same prompts, thereby limiting the representational capacity of ViT. This often leads to indistinguishable and biased prompt-extracted features, hindering performance. To address this issue, we propose a plug-and-play Token Coordinated Prompt Attention (TCPA) module, which assigns specific coordinated prompts to different tokens for attention-based interactions. Firstly, recognizing the distinct functions of CLS and image tokens-global information aggregation and local feature extraction, we disentangle the prompts into CLS Prompts and Image Prompts, which interact exclusively with CLS tokens and image tokens through attention mechanisms. This enhances their respective discriminative abilities. Furthermore, as different image tokens correspond to distinct image patches and contain diverse information, we employ a matching function to automatically assign coordinated prompts to individual tokens. This enables more precise attention interactions, improving the diversity and representational capacity of the extracted features. Extensive experiments across various benchmarks demonstrate that TCPA significantly enhances the diversity and discriminative power of the extracted features. The code is available at https://github.com/zhoujiahuan1991/ICML2025-TCPA.
MCP-Atlas: A Large-Scale Benchmark for Tool-Use Competency with Real MCP Servers
The Model Context Protocol (MCP) is rapidly becoming the standard interface for Large Language Models (LLMs) to discover and invoke external tools. However, existing evaluations often fail to capture the complexity of real-world scenarios, relying on restricted toolsets, simplistic workflows, or subjective LLM-as-a-judge metrics. We introduce MCP-Atlas, a large-scale benchmark for evaluating tool-use competency, comprising 36 real MCP servers and 220 tools. It includes 1,000 tasks designed to assess tool-use competency in realistic, multi-step workflows. Tasks use natural language prompts that avoid naming specific tools or servers, requiring agents to identify and orchestrate 3-6 tool calls across multiple servers. We score tasks using a claims-based rubric that awards partial credit based on the factual claims satisfied in the model's final answer, complemented by internal diagnostics on tool discovery, parameterization, syntax, error recovery, and efficiency. Evaluation results on frontier models reveal that top models achieve pass rates exceeding 50%, with primary failures arising from inadequate tool usage and task understanding. We release the task schema, containerized harness, and a 500-task public subset of the benchmark dataset to facilitate reproducible comparisons and advance the development of robust, tool-augmented agents.
RAG-MCP: Mitigating Prompt Bloat in LLM Tool Selection via Retrieval-Augmented Generation
Large language models (LLMs) struggle to effectively utilize a growing number of external tools, such as those defined by the Model Context Protocol (MCP)IntroducingMCP, due to prompt bloat and selection complexity. We introduce RAG-MCP, a Retrieval-Augmented Generation framework that overcomes this challenge by offloading tool discovery. RAG-MCP uses semantic retrieval to identify the most relevant MCP(s) for a given query from an external index before engaging the LLM. Only the selected tool descriptions are passed to the model, drastically reducing prompt size and simplifying decision-making. Experiments, including an MCP stress test, demonstrate RAG-MCP significantly cuts prompt tokens (e.g., by over 50%) and more than triples tool selection accuracy (43.13% vs 13.62% baseline) on benchmark tasks. RAG-MCP enables scalable and accurate tool integration for LLMs.
m2mKD: Module-to-Module Knowledge Distillation for Modular Transformers
Modular neural architectures are gaining increasing attention due to their powerful capability for generalization and sample-efficient adaptation to new domains. However, training modular models, particularly in the early stages, poses challenges due to the optimization difficulties arising from their intrinsic sparse connectivity. Leveraging the knowledge from monolithic models, using techniques such as knowledge distillation, is likely to facilitate the training of modular models and enable them to integrate knowledge from multiple models pretrained on diverse sources. Nevertheless, conventional knowledge distillation approaches are not tailored to modular models and can fail when directly applied due to the unique architectures and the enormous number of parameters involved. Motivated by these challenges, we propose a general module-to-module knowledge distillation (m2mKD) method for transferring knowledge between modules. Our approach involves teacher modules split from a pretrained monolithic model, and student modules of a modular model. m2mKD separately combines these modules with a shared meta model and encourages the student module to mimic the behaviour of the teacher module. We evaluate the effectiveness of m2mKD on two distinct modular neural architectures: Neural Attentive Circuits (NACs) and Vision Mixture-of-Experts (V-MoE). By applying m2mKD to NACs, we achieve significant improvements in IID accuracy on Tiny-ImageNet (up to 5.6%) and OOD robustness on Tiny-ImageNet-R (up to 4.2%). On average, we observe a 1% gain in both ImageNet and ImageNet-R. The V-MoE-Base model trained using m2mKD also achieves 3.5% higher accuracy than end-to-end training on ImageNet. The experimental results demonstrate that our method offers a promising solution for connecting modular networks with pretrained monolithic models. Code is available at https://github.com/kamanphoebe/m2mKD.
Mamba State-Space Models Are Lyapunov-Stable Learners
Mamba state-space models (SSMs) were recently shown to outperform state-of-the-art (SOTA) Transformer large language models (LLMs) across various tasks. Despite subsequent widespread adaptation, little work has focused on Mamba LLMs' amenability for fine-tuning frameworks ubiquitously used for Transformer-based LLMs, e.g., mixed-precision fine-tuning (MPFT) and parameter-efficient fine-tuning (PEFT). For the former, it currently remains an open question whether Mamba's recurrent dynamics are robust to small input changes, such as those encountered during MPFT. Using dynamical systems theory (in particular, Lyapunov exponents), we answer this question in the affirmative. We empirically validate this result through several experiments, showing that Mamba SSMs are significantly more stable to changes introduced by mixed-precision than comparable Transformers, even when both MPFT and PEFT are combined. For PEFT, we show how targeting specific memory buffers in Mamba's customized CUDA kernels for low-rank adaptation regularizes SSM parameters, thus providing both parameter efficient learning and computational savings. Finally, with both MPFT and PEFT enabled, we explore the impact of instruction tuning Mamba SSMs for in-context learning (ICL) on natural language tasks. While pretrained Mamba and Mamba-2 models only achieve 38% and 82% (respectively) of the ICL improvements of comparable Transformer-based LLMs, we show that instruction tuning allows Mamba models to narrow this gap to 81% and Mamba-2 models to skyrocket over this gap to 132%.
