base_model: MiniMaxAI/MiniMax-M2.5 language: en library_name: mlx-lm license: modified-mit model_name: MiniMax-M2.5-mix3-6bit tags: - quantization - mixed_3_6 - minimax - mlx

MiniMax-M2.5-mix3-6bit

Mixed precision quantized version of MiniMax M2.5 using mlx-lm with --quant-predicate mixed_3_6.

Model Details

Property Value
Base Model MiniMaxAI/MiniMax-M2.5
Quantization mlx-lm v0.30.7 with --quant-predicate mixed_3_6
Library mlx-lm
License modified-mit

Inference Parameters

Parameter Value
temperature 1.0
top_p 0.95
top_k 40

Usage

import mlx_lm
from mlx_lm.sample_utils import make_sampler

model_path = "petergilani/MiniMax-M2.5-mix3-6bit"
model, tokenizer = mlx_lm.load(model_path)

sampler = make_sampler(temp=1.0, top_p=0.95, top_k=40)

prompt = "Your prompt here"
response = mlx_lm.generate(
    model, 
    tokenizer, 
    prompt=prompt,
    sampler=sampler,
    max_tokens=512
)
print(response)
Downloads last month
117
Safetensors
Model size
229B params
Tensor type
BF16
·
U32
·
F32
·
MLX
Hardware compatibility
Log In to add your hardware

4-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for petergilani/MiniMax-M2.5-mix3-6bit

Quantized
(27)
this model