ProfilingAI / src /core /risk_metrics.py
Sandrine Guétin
Version propre de DeepVest
2106f78
raw
history blame
22.2 kB
import numpy as np
import pandas as pd
from scipy import stats
from typing import Optional, Dict
from arch import arch_model
from sklearn.mixture import GaussianMixture
from dataclasses import dataclass
from typing import Dict
@dataclass
class RiskAssessment:
volatility: float
var_95: float
cvar_95: float
tail_risk: float
correlation_risk: float
liquidity_risk: float
regime_risk: float
systemic_risk: float
stress_test_results: Dict[str, float]
@dataclass
class MarketMetrics:
"""Container for market metrics"""
volatility: float
skewness: float
kurtosis: float
tail_risk: float
liquidity_score: float
correlation_structure: Dict[str, float]
regime_probabilities: Dict[str, float]
@classmethod
def get_default(cls) -> 'MarketMetrics':
"""Get default market metrics"""
return cls(
volatility=0.15,
skewness=0.0,
kurtosis=3.0,
tail_risk=0.02,
liquidity_score=0.5,
correlation_structure={
'avg_correlation': 0.0,
'max_correlation': 1.0,
'min_correlation': -1.0
},
regime_probabilities={}
)
class EnhancedRiskMetrics:
"""Calcul amélioré des métriques de risque et performance"""
def __init__(self, returns: pd.Series = None, prices: pd.DataFrame = None, risk_free_rate: float = 0.02):
self.returns = returns
self.prices = prices
self.risk_free_rate = risk_free_rate
self._cache = {}
def _cached_calculation(self, key: str, calculation_func):
"""Utilise le cache pour les calculs coûteux"""
if key not in self._cache:
self._cache[key] = calculation_func()
return self._cache[key]
def reset_cache(self):
"""Réinitialise le cache des calculs"""
self._cache = {}
def calculate_volatility(self) -> float:
"""Volatilité avec estimation EWMA pour meilleure réactivité"""
ewm_vol = self.returns.ewm(span=63).std() * np.sqrt(self.trading_days)
garch_vol = self._fit_garch()
# Combine les deux estimations
return 0.7 * ewm_vol + 0.3 * garch_vol
def calculate_annualized_volatility(self) -> float:
return self.calculate_volatility()
def _fit_garch(self) -> float:
"""Implémentation GARCH(1,1) pour volatilité"""
from arch import arch_model
model = arch_model(self.returns, vol='Garch', p=1, q=1)
results = model.fit(disp='off')
forecast = results.forecast(horizon=1)
return np.sqrt(forecast.variance.values[-1]) * np.sqrt(self.trading_days)
def calculate_sharpe_ratio(self) -> float:
"""Sharpe ratio avec ajustement pour skewness"""
excess_returns = self.returns - self.rf
self.sr = np.sqrt(self.trading_days) * (excess_returns.mean() / excess_returns.std()) # Stocké dans self
skew_adj = self._skewness_adjustment()
return self.sr * skew_adj
def _skewness_adjustment(self) -> float:
"""Ajustement du Sharpe ratio pour la skewness"""
skew = stats.skew(self.returns)
kurt = stats.kurtosis(self.returns)
adj = 1 - (skew/6) * self.sr + (kurt-3)/24 * self.sr**2
return adj
def calculate_sortino_ratio(self) -> float:
"""Sortino ratio avec seuil dynamique"""
threshold = max(0, self.rf)
downside_returns = self.returns[self.returns < threshold]
downside_std = np.sqrt(np.sum(downside_returns**2)/len(self.returns)) * np.sqrt(self.trading_days)
return (self.returns.mean() - self.rf) * self.trading_days / downside_std
def calculate_modified_sortino_ratio(self) -> float:
return self.calculate_sortino_ratio() * (1 + abs(self.returns.skew()) * 0.2)
def calculate_max_drawdown(self, returns: Optional[pd.Series] = None) -> float:
"""Calculate Maximum Drawdown"""
if returns is None:
returns = self.returns
cumulative = (1 + returns).cumprod()
running_max = cumulative.expanding().max()
drawdowns = cumulative / running_max - 1
return drawdowns.min()
def calculate_conditional_sharpe_ratio(self) -> float:
"""Calcul du ratio de Sharpe conditionnel"""
var_95 = self.calculate_var(confidence=0.95)
cvar_95 = self.calculate_cvar(confidence=0.95)
return (self.returns.mean() - self.rf) * np.sqrt(self.trading_days) / cvar_95
def calculate_tail_ratio(self, returns: pd.Series) -> float:
"""Calculate tail ratio"""
if returns is None or len(returns) == 0:
return 1.0
return abs(np.percentile(returns, 95)) / abs(np.percentile(returns, 5))
def calculate_beta(self, market_returns: pd.Series = None) -> float:
"""Calcul du bêta avec correction pour l'autocorrélation"""
if market_returns is None:
# Utiliser un benchmark par défaut si non fourni
market_returns = self.returns.mean(axis=1) if isinstance(self.returns, pd.DataFrame) else self.returns
# Correction pour l'autocorrélation
returns_lag = pd.concat([self.returns, self.returns.shift(1)], axis=1).dropna()
market_lag = pd.concat([market_returns, market_returns.shift(1)], axis=1).dropna()
beta = np.cov(returns_lag.iloc[:,0], market_lag.iloc[:,0])[0,1] / np.var(market_lag.iloc[:,0])
return beta
def calculate_regime_based_risk(self) -> Dict[str, float]:
"""Analyse du risque basée sur les régimes de marché"""
# Détection des régimes avec GMM
gmm = GaussianMixture(n_components=3, random_state=42)
gmm.fit(self.returns.values.reshape(-1, 1))
regimes = gmm.predict(self.returns.values.reshape(-1, 1))
regime_risks = {}
for i in range(3):
regime_returns = self.returns[regimes == i]
regime_risks[f'regime_{i}'] = {
'volatility': regime_returns.std() * np.sqrt(self.trading_days),
'var_95': np.percentile(regime_returns, 5),
'mean_return': regime_returns.mean() * self.trading_days
}
return regime_risks
def _calculate_regime_metrics(self, returns: pd.Series) -> Dict[str, Dict[str, float]]:
"""Calculate metrics under different market regimes"""
try:
# Assurer que returns est une Series
if isinstance(returns, np.ndarray):
returns = pd.Series(returns)
# Vérifier la validité des données
if returns is None or len(returns) == 0:
return {}
# Reshape les données pour le GMM
data = returns.values.reshape(-1, 1)
# Fit le modèle GMM
gmm = GaussianMixture(n_components=3, random_state=42)
gmm.fit(data)
# Prédire les régimes
regimes = gmm.predict(data)
# Créer un DataFrame avec les returns et les régimes
regime_data = pd.DataFrame({
'returns': returns,
'regime': regimes
})
# Calculer les métriques par régime
regime_metrics = {}
for i in range(gmm.n_components):
regime_returns = regime_data[regime_data['regime'] == i]['returns']
if len(regime_returns) > 0:
regime_metrics[f'regime_{i}'] = {
'frequency': len(regime_returns) / len(returns),
'avg_return': regime_returns.mean() * 252, # Annualisé
'volatility': regime_returns.std() * np.sqrt(252),
'sharpe': self.calculate_regime_sharpe(regime_returns),
'max_drawdown': self.calculate_max_drawdown(regime_returns),
'var_95': np.percentile(regime_returns, 5),
'skewness': stats.skew(regime_returns),
'kurtosis': stats.kurtosis(regime_returns)
}
return regime_metrics
except Exception as e:
print(f"Error calculating regime metrics: {str(e)}")
return {}
def calculate_regime_sharpe(self, returns: pd.Series) -> float:
"""Calculate Sharpe ratio for specific regime"""
try:
if len(returns) == 0:
return 0.0
# Calculer le ratio de Sharpe annualisé
excess_returns = returns - (self.risk_free_rate / 252)
if excess_returns.std() == 0:
return 0.0
return np.sqrt(252) * excess_returns.mean() / excess_returns.std()
except Exception as e:
print(f"Error calculating regime Sharpe: {str(e)}")
return 0.0
def calculate_max_drawdown(self, returns: pd.Series) -> float:
"""Calculate maximum drawdown"""
try:
if len(returns) == 0:
return 0.0
# Calculer les rendements cumulatifs
cum_returns = (1 + returns).cumprod()
rolling_max = cum_returns.expanding().max()
drawdowns = cum_returns / rolling_max - 1
return drawdowns.min()
except Exception as e:
print(f"Error calculating max drawdown: {str(e)}")
return 0.0
def calculate_extreme_drawdown_risk(self, confidence: float = 0.95) -> float:
"""Estimation du risque de drawdown extrême"""
rolling_returns = self.returns.rolling(window=63).sum()
return np.percentile(rolling_returns, (1-confidence)*100)
def calculate_garch_volatility(self) -> pd.Series:
"""Estimation GARCH de la volatilité"""
try:
import arch
model = arch.arch_model(self.returns, vol='Garch', p=1, q=1)
res = model.fit(disp='off')
return np.sqrt(res.conditional_volatility) * np.sqrt(self.trading_days)
except ImportError:
return self.returns.rolling(window=63).std() * np.sqrt(self.trading_days)
def calculate_information_ratio(self, benchmark_returns: pd.Series) -> float:
"""Calcul du ratio d'information avec ajustement"""
active_returns = self.returns - benchmark_returns
tracking_error = active_returns.std() * np.sqrt(self.trading_days)
ir = active_returns.mean() * self.trading_days / tracking_error
return ir
def calculate_cagr(self, returns: pd.Series) -> float:
"""Calculate Compound Annual Growth Rate"""
total_return = (1 + returns).prod()
n_years = len(returns) / 252 # Assuming 252 trading days per year
return (total_return ** (1/n_years)) - 1
def calculate_treynor_ratio(self) -> float:
beta = self.calculate_beta()
if abs(beta) < 1e-6:
return np.inf
return (self.returns.mean() - self.rf) / beta
def calculate_calmar_ratio(self) -> float:
max_dd = self.calculate_max_drawdown()
if abs(max_dd) < 1e-6:
return np.inf
return -self.calculate_cagr(self.returns) / max_dd
def calculate_average_drawdown(self) -> float:
cum_returns = (1 + self.returns).cumprod()
rolling_max = cum_returns.expanding().max()
drawdowns = cum_returns / rolling_max - 1
return drawdowns.mean()
def calculate_drawdown_duration(self) -> int:
cum_returns = (1 + self.returns).cumprod()
rolling_max = cum_returns.expanding().max()
drawdowns = cum_returns / rolling_max - 1
in_drawdown = False
current_duration = 0
max_duration = 0
for dd in drawdowns:
if dd < 0:
if not in_drawdown:
in_drawdown = True
current_duration += 1
else:
if in_drawdown:
max_duration = max(max_duration, current_duration)
current_duration = 0
in_drawdown = False
return max_duration
def calculate_kurtosis_adjusted_sharpe(self) -> float:
sharpe = self.calculate_sharpe_ratio()
kurt = self.returns.kurtosis()
return sharpe * (1 - (kurt - 3) * 0.1)
def calculate_omega_ratio(self, threshold: float = 0) -> float:
returns_above = self.returns[self.returns > threshold].sum()
returns_below = abs(self.returns[self.returns <= threshold].sum())
return returns_above / returns_below if returns_below != 0 else np.inf
def calculate_historical_var(self, returns: pd.Series, confidence: float = 0.95) -> float:
"""Calculate historical Value at Risk"""
if returns is None or len(returns) == 0:
return 0.0
return np.percentile(returns, (1 - confidence) * 100)
def calculate_gaussian_var(self, returns: pd.Series, confidence: float = 0.95) -> float:
try:
z_score = stats.norm.ppf(confidence)
mu = returns.mean()
sigma = returns.std()
return -(mu + z_score * sigma)
except Exception as e:
print(f"Error calculating Gaussian VaR: {e}")
return 0.0
def calculate_downside_deviation(self, returns: pd.Series) -> float:
"""Calculate downside deviation"""
if returns is None or len(returns) == 0:
return 0.0
negative_returns = returns[returns < 0]
return negative_returns.std() * np.sqrt(252) if len(negative_returns) > 0 else 0.0
def calculate_upside_volatility(self, returns: Optional[pd.Series] = None) -> float:
try:
if returns is None:
returns = self.returns
positive_returns = returns[returns > 0]
return positive_returns.std() * np.sqrt(252) if len(positive_returns) > 0 else 0.0
except Exception as e:
print(f"Error calculating upside volatility: {e}")
return 0.0
def calculate_rolling_metrics(self, window: int = 252):
"""Calculate rolling versions of key metrics"""
metrics = {
'rolling_sharpe': self.returns.rolling(window).apply(
lambda x: np.sqrt(252) * (x.mean() - self.risk_free_rate/252) / x.std()
),
'rolling_sortino': self.returns.rolling(window).apply(
lambda x: np.sqrt(252) * x.mean() / x[x < 0].std() if len(x[x < 0]) > 0 else np.inf
),
'rolling_volatility': self.returns.rolling(window).std() * np.sqrt(252),
'rolling_beta': self.returns.rolling(window).apply(
lambda x: np.cov(x, pd.Series(1, index=x.index))[0,1] / 1
),
'rolling_var': self.returns.rolling(window).quantile(0.05)
}
return metrics
def calculate_regime_sharpe(self, returns: pd.Series) -> float:
if returns.std() == 0:
return np.inf
return np.sqrt(252) * returns.mean() / returns.std()
def calculate_regime_drawdown(self, returns: pd.Series) -> float:
return self.calculate_max_drawdown(returns)
def calculate_skewness_adjusted_sharpe(self) -> float:
"""Calculate Sharpe ratio adjusted for skewness"""
sharpe = self.calculate_sharpe_ratio()
skew = stats.skew(self.returns)
return sharpe * (1 - (skew/6))
def calculate_rolling_sharpe(self, window: int) -> pd.Series:
"""Calculate rolling Sharpe ratio"""
rolling_mean = self.returns.rolling(window=window).mean()
rolling_std = self.returns.rolling(window=window).std()
return np.sqrt(252) * (rolling_mean - self.rf) / rolling_std
def calculate_rolling_sortino(self, window: int) -> pd.Series:
"""Calculate rolling Sortino ratio"""
rolling_mean = self.returns.rolling(window=window).mean()
downside_returns = self.returns[self.returns < 0]
rolling_downside = downside_returns.rolling(window=window).std()
return np.sqrt(252) * (rolling_mean - self.rf) / rolling_downside
def calculate_rolling_volatility(self, window: int) -> pd.Series:
"""Calculate rolling volatility"""
return self.returns.rolling(window=window).std() * np.sqrt(252)
def calculate_rolling_beta(self, window: int) -> pd.Series:
"""Calculate rolling beta"""
returns = pd.DataFrame(self.returns) # Convertir en DataFrame
market_returns = self.returns # Utiliser directement les returns comme benchmark
# Calculer covs et vars roulants
rolling_cov = returns.rolling(window=window).cov(market_returns)
rolling_var = pd.Series(market_returns).rolling(window=window).var()
return rolling_cov / rolling_var
def calculate_rolling_var(self, window: int) -> pd.Series:
"""Calculate rolling VaR"""
return self.returns.rolling(window=window).quantile(0.05)
def calculate_skewness(self) -> float:
"""Calculate returns skewness"""
return stats.skew(self.returns)
def calculate_kurtosis(self) -> float:
"""Calculate returns kurtosis"""
return stats.kurtosis(self.returns)
def calculate_jarque_bera(self, returns: Optional[pd.Series] = None) -> float:
try:
if returns is None:
returns = self.returns
return stats.jarque_bera(returns)[0]
except Exception as e:
print(f"Error calculating Jarque-Bera: {e}")
return 0.0
def calculate_alpha(self) -> float:
"""Calculate Jensen's alpha"""
beta = self.calculate_beta()
return self.returns.mean() - (self.rf + beta * (self.returns.mean() - self.rf))
def calculate_r_squared(self) -> float:
"""Calculate R-squared"""
# Utiliser le benchmark ou créer un market proxy
market_returns = self.returns.mean() if isinstance(self.returns, pd.DataFrame) else self.returns
# Calculer la corrélation au carré
correlation = self.returns.corr(market_returns)
return correlation ** 2
def calculate_ulcer_index(self, returns: pd.Series) -> float:
"""Calculate Ulcer Index"""
if returns is None or len(returns) == 0:
return 0.0
cumulative = (1 + returns).cumprod()
drawdowns = cumulative / cumulative.expanding().max() - 1
return np.sqrt(np.mean(drawdowns ** 2))
def calculate_pain_index(self, returns: pd.Series) -> float:
"""Calculate Pain index"""
cumulative = (1 + returns).cumprod()
drawdowns = 1 - cumulative / cumulative.expanding().max()
return drawdowns.mean()
def calculate_pain_ratio(self, returns: Optional[pd.Series] = None) -> float:
try:
if returns is None:
returns = self.returns
pain_index = self.calculate_pain_index(returns)
if pain_index == 0:
return 0.0
return (returns.mean() - self.risk_free_rate) / pain_index
except Exception as e:
print(f"Error calculating pain ratio: {e}")
return 0.0
def _calculate_drawdowns(self) -> np.ndarray:
"""Calculate drawdown series"""
cumulative_returns = (1 + self.returns).cumprod()
rolling_max = cumulative_returns.expanding().max()
drawdowns = (cumulative_returns - rolling_max) / rolling_max
return drawdowns.values
def calculate_cvar(self, returns: pd.Series, confidence: float = 0.95) -> float:
"""Calculate Conditional Value at Risk"""
var = self.calculate_var(returns, confidence)
return returns[returns <= var].mean()
def calculate_alpha(self, returns: pd.Series) -> float:
"""Calculate alpha"""
beta = self.calculate_beta(returns)
market_return = self.returns.mean()
return returns.mean() - (self.risk_free_rate + beta * (market_return - self.risk_free_rate))
def calculate_tracking_error(self) -> float:
"""Calculate tracking error"""
if self.returns is None:
return 0.0
try:
return self.returns.std() * np.sqrt(252)
except Exception as e:
print(f"Error calculating tracking error: {e}")
return 0.0
def calculate_burke_ratio(self) -> float:
"""Calculate Burke ratio with proper error handling"""
try:
if self.returns is None or len(self.returns) == 0:
return 0.0
drawdowns = self._calculate_drawdowns()
squared_drawdowns = np.sum(drawdowns ** 2)
if squared_drawdowns == 0:
return 0.0
return (self.returns.mean() - self.risk_free_rate/252) / np.sqrt(squared_drawdowns)
except Exception as e:
print(f"Error calculating Burke ratio: {e}")
return 0.0
def calculate_var(self, returns: pd.Series, confidence: float = 0.95) -> float:
"""Calculate Value at Risk"""
try:
if returns is None or len(returns) == 0:
return 0.0
return np.percentile(returns, (1 - confidence) * 100)
except Exception as e:
print(f"Error calculating VaR: {e}")
return 0.0
def calculate_volatility_skew(self, returns: pd.Series) -> float:
"""Calculate volatility skew"""
try:
if returns is None:
return 0.0
positive_returns = returns[returns > 0]
negative_returns = returns[returns < 0]
return positive_returns.std() / negative_returns.std() if len(negative_returns) > 0 else 1.0
except Exception as e:
print(f"Error calculating volatility skew: {e}")
return 1.0