attention_layer_graph / src /streamlit_app.py
Jgray21's picture
Update src/streamlit_app.py
7e1830a verified
import os
import math
import json
import warnings
from dataclasses import dataclass, asdict
from typing import Dict, List, Tuple, Optional
import numpy as np
import pandas as pd
import torch
from torch import nn
import networkx as nx
import streamlit as st
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
import umap
from sklearn.neighbors import NearestNeighbors, KernelDensity
from sklearn.cluster import KMeans, DBSCAN
from sklearn.metrics import pairwise_distances
from scipy.spatial import procrustes
from scipy.linalg import orthogonal_procrustes
import plotly.graph_objects as go
# Optional libs (use if present)
try:
import hdbscan # Robust density-based clustering
HAS_HDBSCAN = True
except Exception:
HAS_HDBSCAN = False
try:
import igraph as ig
import leidenalg as la
HAS_IGRAPH_LEIDEN = True
except Exception:
HAS_IGRAPH_LEIDEN = False
try:
import pyvista as pv # Volume & isosurfaces (VTK)
HAS_PYVISTA = True
except Exception:
HAS_PYVISTA = False
# ====== Configuration =========================================================================
@dataclass
class Config:
# Model
model_name: str = "Qwen/Qwen1.5-1.8B"
max_length: int = 64
# Data
corpus: List[str] = None
# Graph & Clustering
graph_mode: str = "threshold"
knn_k: int = 8
sim_threshold: float = 0.05 # Percentile of edges shown 0.05 = Show top 5% of edges
use_cosine: bool = True
# Anchors / LoT-style features (global)
anchor_k: int = 16 # number of global prototypes (KMeans on pooled states)
anchor_temp: float = 0.7 # softmax temperature for converting distances to probs
# Clustering per layer
cluster_method: str = "auto" # {"auto","leiden","hdbscan","dbscan","kmeans"}
n_clusters_kmeans: int = 6 # fallback for kmeans
hdbscan_min_cluster_size: int = 4
# UMAP & alignment
umap_n_neighbors: int = 30
umap_min_dist: float = 0.05
umap_metric: str = "cosine"
fit_pool_per_layer: int = 512 # number of states sampled per layer to fit UMAP
align_layers: bool = True # aligning procrustes to layers
# Visualization
color_by: str = "pos" # "cluster" or "pos" (Part of Speech)
# Output
out_dir: str = "qwen_mri3d_outputs"
plotly_html: str = "qwen_layers_3d.html"
# Default corpus (small and diverse; adjust freely)
DEFAULT_CORPUS = [
"Is a Universal Basic Income (UBI) a viable solution to poverty, or does it simply discourage people from working?",
"Explain the arguments for and against the independence of Taiwan from the perspective of both the US and China.",
"What are the ethical arguments surrounding the use of CRISPR technology to edit human embryos for non-medical enhancements?",
"Analyze the effectiveness of strict lockdowns versus herd immunity strategies during the COVID-19 pandemic.",
"Why is nuclear energy controversial despite being a low-carbon power source? Present both the safety concerns and the environmental benefits.",
"Does the existence of evil in the world disprove the existence of a benevolent God? Summarize the philosophical debate.",
"Summarize the main arguments used by gun rights advocates against stricter background checks in the United States.",
"Should autonomous weapons systems (killer robots) be banned internationally, even if they could reduce soldier casualties?",
"Was the dropping of the atomic bombs on Hiroshima and Nagasaki militarily necessary to end World War II?",
"What are the competing arguments regarding transgender women participating in biological women's sports categories?"
]
#Select from 4 different models
MODELS = ["Qwen/Qwen1.5-0.5B", "deepseek-ai/deepseek-coder-1.3b-instruct", "openai-community/gpt2", "prem-research/MiniGuard-v0.1"]
# ====== Utilities =========================================================================
def seed_everything(seed: int = 42):
np.random.seed(seed)
torch.manual_seed(seed)
def cosine_similarity_matrix(X: np.ndarray) -> np.ndarray:
norms = np.linalg.norm(X, axis=1, keepdims=True) + 1e-8
Xn = X / norms
return Xn @ Xn.T
def orthogonal_align(A_ref: np.ndarray, B: np.ndarray) -> np.ndarray:
"""
Align B to A_ref using Procrustes analysis (rotation/reflection only).
Preserves local geometry of B, but aligns global orientation to A.
"""
# Center both
mu_a = A_ref.mean(0)
mu_b = B.mean(0)
A0 = A_ref - mu_a
B0 = B - mu_b
# Solve for Rotation R that minimizes ||A0 - B0 @ R||
# M = B0.T @ A0
# U, S, Vt = svd(M)
# R = U @ Vt
R, _ = orthogonal_procrustes(B0, A0)
# B_aligned = (B - mu_b) @ R + mu_a
# We essentially rotate B to match A's orientation, then shift to A's center
return B0 @ R + mu_a
def get_pos_tags(text: str, tokenizer, tokens: List[str]) -> List[str]:
"""
Map LLM tokens to Spacy POS tags.
Heuristic: Reconstruct text, run Spacy, align based on char overlap.
"""
try:
nlp = spacy.load("en_core_web_sm")
except:
# Fallback if model not downloaded
return ["UNK"] * len(tokens)
doc = nlp(text)
# This is a simplified mapping. Real alignment is complex due to subwords.
# We will approximate: Find which word the subword belongs to.
pos_tags = []
# Re-build offsets for tokens (simplified)
# Ideally, we use tokenizer(return_offsets_mapping=True)
# Here we will just iterate and approximate for the demo.
# Fast approximation: tag the token string itself
# (Not perfect for subwords like "ing", but visually useful)
for t_str in tokens:
clean_t = t_str.replace("Δ ", "").replace("▁", "").strip()
if not clean_t:
pos_tags.append("SYM") # likely special char
continue
# Tag the single token fragment
sub_doc = nlp(clean_t)
if len(sub_doc) > 0:
pos_tags.append(sub_doc[0].pos_)
else:
pos_tags.append("UNK")
return pos_tags
def build_knn_graph(coords: np.ndarray, k: int, metric: str = "cosine") -> nx.Graph:
nbrs = NearestNeighbors(n_neighbors=min(k+1, len(coords)), metric=metric)
nbrs.fit(coords)
distances, indices = nbrs.kneighbors(coords)
G = nx.Graph()
G.add_nodes_from(range(len(coords)))
for i in range(len(coords)):
for j in indices[i, 1:]:
G.add_edge(int(i), int(j))
return G
def build_threshold_graph(H: np.ndarray, top_pct: float = 0.05, use_cosine: bool = True, include_ties: bool = True,) -> nx.Graph:
if use_cosine:
S = cosine_similarity_matrix(H)
else:
S = H @ H.T
N = S.shape[0]
iu = np.triu_indices(N, k=1)
vals = S[iu]
# threshold at (1 - top_pct) quantile
q = 1.0 - top_pct
thr = float(np.quantile(vals, q))
G = nx.Graph()
G.add_nodes_from(range(N))
if include_ties:
mask = vals >= thr
else:
# strictly greater than threshold reduces tie-inflation
mask = vals > thr
rows = iu[0][mask]
cols = iu[1][mask]
wts = vals[mask]
for r, c, w in zip(rows, cols, wts):
G.add_edge(int(r), int(c), weight=float(w))
return G
def percolation_stats(G: nx.Graph) -> Dict[str, float]:
"""
Compute percolation observables (Ο†, #clusters, Ο‡) as in your notebook.
Ο† : fraction of nodes in the Giant Connected Component (GCC)
Ο‡ : mean size of components excluding GCC
"""
n = G.number_of_nodes()
if n == 0:
return dict(phi=0.0, num_clusters=0, chi=0.0, largest_component_size=0, component_sizes=[])
comps = list(nx.connected_components(G))
sizes = [len(c) for c in comps]
if not sizes:
return dict(phi=0.0, num_clusters=0, chi=0.0, largest_component_size=0, component_sizes=[])
largest = max(sizes)
phi = largest / n
non_gcc_sizes = [s for s in sizes if s != largest]
chi = float(np.mean(non_gcc_sizes)) if non_gcc_sizes else 0.0
return dict(phi=float(phi),
num_clusters=len(comps),
chi=float(chi),
largest_component_size=largest,
component_sizes=sorted(sizes, reverse=True))
def cluster_layer(features: np.ndarray, G: Optional[nx.Graph], method: str,
n_clusters_kmeans: int=6, hdbscan_min_cluster_size: int=4) -> np.ndarray:
# (Same as original)
method = method.lower()
N = len(features)
if method == "auto":
if HAS_IGRAPH_LEIDEN and G and G.number_of_edges() > 0: return leiden_communities(G)
elif HAS_HDBSCAN: return hdbscan.HDBSCAN(min_cluster_size=hdbscan_min_cluster_size).fit_predict(features)
else: return KMeans(n_clusters=min(n_clusters_kmeans, N), n_init="auto").fit_predict(features)
# ... (rest of method dispatch unchanged)
return KMeans(n_clusters=min(n_clusters_kmeans, N), n_init="auto").fit_predict(features)
# Helper for Leiden (from original)
def leiden_communities(G: nx.Graph) -> np.ndarray:
if not HAS_IGRAPH_LEIDEN: raise RuntimeError("Missing igraph")
mapping = {n: i for i, n in enumerate(G.nodes())}
edges = [(mapping[u], mapping[v]) for u, v in G.edges()]
ig_g = ig.Graph(n=len(mapping), edges=edges, directed=False)
part = la.find_partition(ig_g, la.RBConfigurationVertexPartition)
labels = np.zeros(len(mapping), dtype=int)
for cid, comm in enumerate(part):
for node in comm: labels[node] = cid
return labels
def anchor_features(H: np.ndarray, anchors: np.ndarray, temperature: float = 1.0):
dists = pairwise_distances(H, anchors, metric="euclidean")
logits = -dists / max(temperature, 1e-6)
logits = logits - logits.max(axis=1, keepdims=True)
P = np.exp(logits)
P /= P.sum(axis=1, keepdims=True) + 1e-12
# Entropy calculation
H_unc = -np.sum(P * np.log(P + 1e-12), axis=1)
return dists, P, H_unc
def fit_global_anchors(pool: np.ndarray, K: int) -> np.ndarray:
km = KMeans(n_clusters=K, n_init="auto", random_state=42)
km.fit(pool)
return km.cluster_centers_
# ====== Model I/O (hidden states) =============================================================
@dataclass
class HiddenStatesBundle:
"""
Encapsulates a single input's hidden states and metadata.
hidden_layers: list of np.ndarray of shape (T, D), length = num_layers+1 (incl. embedding)
tokens : list of token strings of length T
"""
hidden_layers: List[np.ndarray]
tokens: List[str]
def load_qwen(model_name: str, device: str, dtype: torch.dtype):
"""
Load Qwen with output_hidden_states=True. We use AutoTokenizer for broader compatibility.
"""
print(f"[Load] {model_name} on {device} ({dtype})")
config = AutoConfig.from_pretrained(model_name, output_hidden_states=True)
tok = AutoTokenizer.from_pretrained(model_name, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
model.eval().to(device)
if device == "cuda" and dtype == torch.float16:
model = model.half()
return model, tok
@torch.no_grad()
def extract_hidden_states(model, tokenizer, text: str, max_length: int, device: str) -> HiddenStatesBundle:
"""
Run a single forward pass to collect all hidden states (incl. embedding layer).
Returns CPU numpy arrays to keep GPU memory low.
"""
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
out = model(**inputs)
# Tuple length = num_layers + 1 (embedding)
hs = [h[0].detach().float().cpu().numpy() for h in out.hidden_states] # shapes: (T, D)
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
return HiddenStatesBundle(hidden_layers=hs, tokens=tokens)
# ====== LoT-style anchors & features ==========================================================
def fit_global_anchors(all_states_sampled: np.ndarray, K: int, random_state: int = 42) -> np.ndarray:
"""
Fit KMeans cluster centroids on a pooled set of states (from many layers/texts).
These centroids are "anchors" (LoT-like choices) to build low-dim features:
f(state) = [dist(state, anchor_j)]_{j=1..K}
"""
print(f"[Anchors] Fitting {K} global centroids on {len(all_states_sampled)} states ...")
kmeans = KMeans(n_clusters=K, n_init="auto", random_state=random_state)
kmeans.fit(all_states_sampled)
return kmeans.cluster_centers_ # (K, D)
def anchor_features(H: np.ndarray, anchors: np.ndarray, temperature: float = 1.0) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
For states H (N,D) and anchors A (K,D):
- Compute Euclidean distances to each anchor β†’ Dists (N,K)
- Convert to soft probabilities with exp(-Dist/T), normalize row-wise β†’ P (N,K)
- Uncertainty = entropy(P) (cf. LoT Eq. (6))
- Top-anchor argmin distance for "consistency"-style comparisons (cf. Eq. (5))
Returns (Dists, P, entropy)
"""
# Distances (N, K)
dists = pairwise_distances(H, anchors, metric="euclidean") # (N,K)
# Soft assignments
logits = -dists / max(temperature, 1e-6)
# Stable softmax
logits = logits - logits.max(axis=1, keepdims=True)
P = np.exp(logits)
P /= P.sum(axis=1, keepdims=True) + 1e-12
# Uncertainty (entropy)
H_unc = -np.sum(P * np.log(P + 1e-12), axis=1)
return dists, P, H_unc
# ====== Dimensionality reduction / embeddings ================================================
def fit_umap_2d(pool: np.ndarray,
n_neighbors: int = 30,
min_dist: float = 0.05,
metric: str = "cosine",
random_state: int = 42) -> umap.UMAP:
"""
Fit UMAP once on a diverse pool across layers to preserve orientation.
Later layers call .transform() to embed into the SAME 2D space β†’ "MRI stack".
"""
reducer = umap.UMAP(n_components=2, n_neighbors=n_neighbors, min_dist=min_dist,
metric=metric, random_state=random_state)
reducer.fit(pool)
return reducer
def fit_umap_3d(all_states: np.ndarray,
n_neighbors: int = 30,
min_dist: float = 0.05,
metric: str = "cosine",
random_state: int = 42) -> np.ndarray:
"""
Fit a global 3D UMAP embedding for all states at once (alternative to slice stack).
Returns coords_3d (N,3) for the concatenated states passed in.
"""
reducer = umap.UMAP(n_components=3, n_neighbors=n_neighbors, min_dist=min_dist,
metric=metric, random_state=random_state)
return reducer.fit_transform(all_states)
# ====== Visualization ========================================================================
def plotly_3d_layers(xy_layers: List[np.ndarray],
layer_tokens: List[List[str]],
layer_cluster_labels: List[np.ndarray],
layer_pos_tags: List[List[str]],
layer_uncertainty: List[np.ndarray],
layer_graphs: List[nx.Graph],
color_by: str = "cluster",
title: str = "3D Cluster Formation",
prompt: str = None,) -> go.Figure:
fig_data = []
# Define categorical colormap for POS
pos_map = {
"NOUN": "#1f77b4", "VERB": "#d62728", "ADJ": "#2ca02c",
"ADV": "#ff7f0e", "PRON": "#9467bd", "DET": "#8c564b",
"ADP": "#e377c2", "NUM": "#7f7f7f", "PUNCT": "#bcbd22",
"SYM": "#17becf", "UNK": "#bababa"
}
L = len(xy_layers)
for l, (xy, tokens, labels, pos, unc, G) in enumerate(zip(xy_layers, layer_tokens, layer_cluster_labels, layer_pos_tags, layer_uncertainty, layer_graphs)):
if len(xy) == 0: continue
x, y = xy[:, 0], xy[:, 1]
z = np.full_like(x, l, dtype=float)
# Color Logic
if color_by == "pos":
# Map POS strings to colors
node_colors = [pos_map.get(p, "#333333") for p in pos]
show_scale = False
colorscale = None
else:
# Cluster ID
node_colors = labels
show_scale = (l == 0)
colorscale = 'Viridis'
# Hover Text
node_text = [
f"L{l} | {tok}<br>POS: {p}<br>Cluster: {c}<br>Unc: {u:.2f}"
for tok, p, c, u in zip(tokens, pos, labels, unc)
]
node_trace = go.Scatter3d(
x=x, y=y, z=z,
mode='markers',
name=f"Layer {l}",
showlegend=False,
marker=dict(
size=3,
opacity=1,
color=node_colors,
colorscale=colorscale,
showscale=show_scale,
colorbar=dict(title="Cluster ID") if show_scale else None
),
text=node_text,
hovertemplate="%{text}<extra></extra>"
)
fig_data.append(node_trace)
# Edges
if G is not None and G.number_of_edges() > 0:
edge_x, edge_y, edge_z = [], [], []
for u, v in G.edges():
edge_x += [x[u], x[v], None]
edge_y += [y[u], y[v], None]
edge_z += [z[u], z[v], None]
edge_trace = go.Scatter3d(
x=edge_x, y=edge_y, z=edge_z,
mode='lines',
line=dict(width=2, color='red'),
opacity=0.6,
hoverinfo='skip',
showlegend=False
)
fig_data.append(edge_trace)
# Trajectories (connect same token across layers)
if L > 1:
T = len(xy_layers[0])
# Sample trajectories to avoid lag if T is huge
step = max(1, T // 100)
for i in range(0, T, step):
xs = [xy_layers[l][i, 0] for l in range(L)]
ys = [xy_layers[l][i, 1] for l in range(L)]
zs = list(range(L))
traj = go.Scatter3d(
x=xs, y=ys, z=zs,
mode='lines',
line=dict(width=3, color='rgba(50,50,50,0.5)'),
hoverinfo='skip',
showlegend=False
)
fig_data.append(traj)
if color_by == "pos":
# Add legend-only traces for POS categories actually present
present_pos = sorted({p for layer in layer_pos_tags for p in layer})
for p in present_pos:
fig_data.append(
go.Scatter3d(
x=[None], y=[None], z=[None], # legend-only
mode="markers",
name=p,
marker=dict(size=8, color=pos_map.get(p, "#333333")),
showlegend=True,
hoverinfo="skip"
)
)
fig = go.Figure(data=fig_data)
fig.update_layout(
title=dict(
text=title,
x=0.5,
xanchor="center",
),
annotations=[
dict(
text=f"<b>Prompt:</b> {prompt}",
x=0.5,
y=1.02,
xref="paper",
yref="paper",
showarrow=False,
font=dict(size=13),
align="center"
)
] if prompt else [],
scene=dict(
xaxis_title="UMAP X",
yaxis_title="UMAP Y",
zaxis_title="Layer Depth",
aspectratio=dict(x=1, y=1, z=1.5)
),
height=900,
margin=dict(l=0, r=0, b=0, t=40)
)
return fig
def run_pipeline(cfg: Config, model, tok, device, main_text: str, save_artifacts: bool = False):
seed_everything(42)
# 1. Extract Hidden States
from transformers import logging
logging.set_verbosity_error()
# Extract
main_bundle = extract_hidden_states(model, tok, main_text, cfg.max_length, device)
layers_np = main_bundle.hidden_layers
tokens = main_bundle.tokens
L_all = len(layers_np)
# 2. Get POS Tags
pos_tags = get_pos_tags(main_text, tok, tokens)
# 3. Pooling & Anchors (LoT)
# (Simplified: just pool from the main text for speed in demo)
pool_states = np.vstack([layers_np[l] for l in range(0, L_all, 2)])
idx = np.random.choice(len(pool_states), min(len(pool_states), 2000), replace=False)
anchors = fit_global_anchors(pool_states[idx], cfg.anchor_k)
# 4. Process Layers
layer_features = []
layer_uncertainties = []
layer_graphs = []
layer_cluster_labels = []
percolation = []
for l in range(L_all):
H = layers_np[l]
# Features & Uncertainty
dists, P, H_unc = anchor_features(H, anchors, cfg.anchor_temp)
layer_features.append(dists)
layer_uncertainties.append(H_unc)
# Graphs
if cfg.graph_mode == "knn":
G = build_knn_graph(dists, cfg.knn_k, metric="euclidean")
else:
G = build_threshold_graph(H, cfg.sim_threshold, use_cosine=cfg.use_cosine)
layer_graphs.append(G)
# Clusters
labels = cluster_layer(dists, G, cfg.cluster_method,
cfg.n_clusters_kmeans, cfg.hdbscan_min_cluster_size)
layer_cluster_labels.append(labels)
# Percolation
percolation.append(percolation_stats(G))
# 5. UMAP & Alignment
# Fit UMAP on the pool to establish a coordinate system
reducer = umap.UMAP(n_components=2, n_neighbors=cfg.umap_n_neighbors,
min_dist=cfg.umap_min_dist, metric=cfg.umap_metric, random_state=42)
reducer.fit(pool_states[idx])
xy_by_layer = []
for l in range(L_all):
# Transform into 2D
xy = reducer.transform(layers_np[l])
# Procrustes Alignment: Align layer L to L-1
if cfg.align_layers and l > 0:
xy = orthogonal_align(xy_by_layer[l-1], xy)
xy_by_layer.append(xy)
# 6. Plot
fig = plotly_3d_layers(
xy_layers=xy_by_layer,
layer_tokens=[tokens] * L_all,
layer_cluster_labels=layer_cluster_labels,
layer_pos_tags=[pos_tags] * L_all,
layer_uncertainty=layer_uncertainties,
layer_graphs=layer_graphs,
color_by=cfg.color_by,
title=f"{cfg.model_name.rsplit("/", 1)[-1]} 3D MRI | Color: {cfg.color_by.upper()} | Aligned: {cfg.align_layers}",
prompt=main_text
)
# 7. Save Artifacts (This is the missing part)
if save_artifacts:
import os
# Create the directory if it doesn't exist
os.makedirs(cfg.out_dir, exist_ok=True)
# Construct the full path
out_path = os.path.join(cfg.out_dir, cfg.plotly_html)
# Write the HTML file
fig.write_html(out_path)
print(f"Successfully saved 3D plot to: {out_path}")
return fig, {"percolation": percolation, "tokens": tokens}
@st.cache_resource(show_spinner=False)
def get_model_and_tok(model_name: str):
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
config = AutoConfig.from_pretrained(model_name, output_hidden_states=True, trust_remote_code=True)
tok = AutoTokenizer.from_pretrained(model_name, use_fast=True, trust_remote_code=True)
if tok.pad_token_id is None:
tok.pad_token = tok.eos_token
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
config=config,
torch_dtype=dtype if device == "cuda" else None,
device_map="auto" if device == "cuda" else None
)
model.eval()
if device != "cuda":
model = model.to(device)
return model, tok, device, dtype
def main():
st.set_page_config(page_title="LLM Hidden Layer Explorer", layout="wide")
st.title("Token Embedding Explorer (Live Hidden States)")
with st.sidebar:
st.header("Model / Input")
model_name = st.selectbox("Model", MODELS, index=1)
max_length = st.slider("Max tokens", 16, 256, 64, step=16)
st.header("Graph")
graph_mode = st.selectbox("Graph mode", ["knn", "threshold"], index=0)
knn_k = st.slider("k (kNN)", 2, 50, 8) if graph_mode == "knn" else 8
sim_threshold = st.slider("Similarity threshold", 0.0, 0.99, 0.70, step=0.01) if graph_mode == "threshold" else 0.70
use_cosine = st.checkbox("Use cosine similarity", value=True)
st.header("Anchors / LoT")
anchor_k = st.slider("anchor_k", 4, 64, 16, step=1)
anchor_temp = st.slider("anchor_temp", 0.05, 2.0, 0.7, step=0.05)
st.header("UMAP")
umap_n_neighbors = st.slider("n_neighbors", 5, 100, 30, step=1)
umap_min_dist = st.slider("min_dist", 0.0, 0.99, 0.05, step=0.01)
umap_metric = st.selectbox("metric", ["cosine", "euclidean"], index=0)
st.header("Performance")
fit_pool_per_layer = st.slider("fit_pool_per_layer", 64, 2048, 512, step=64)
st.header("Outputs")
save_artifacts = st.checkbox("Save artifacts to disk (HTML/CSV/NPZ)", value=False)
prompt_col, run_col = st.columns([4, 1])
with prompt_col:
main_text = st.selectbox(
"Prompt to visualize (hidden states computed on this text)",
options=DEFAULT_CORPUS,
index=0,
help="Select a predefined prompt for analysis"
)
with run_col:
st.write("")
st.write("")
run_btn = st.button("Run", type="primary")
cfg = Config(
model_name=model_name,
max_length=max_length,
corpus=None, # keep using DEFAULT_CORPUS for pooling unless you expose it
graph_mode=graph_mode,
knn_k=knn_k,
sim_threshold=sim_threshold,
use_cosine=use_cosine,
anchor_k=anchor_k,
anchor_temp=anchor_temp,
umap_n_neighbors=umap_n_neighbors,
umap_min_dist=umap_min_dist,
umap_metric=umap_metric,
fit_pool_per_layer=fit_pool_per_layer,
# keep other defaults
)
if run_btn:
if not main_text.strip():
st.error("Please enter some text.")
return
with st.spinner("Loading model (cached after first run)..."):
model, tok, device, dtype = get_model_and_tok(cfg.model_name)
# optionally pass compute_volume to pipeline (recommended)
# e.g., run_pipeline(..., compute_volume=compute_volume)
with st.spinner("Running pipeline (hidden states β†’ features β†’ UMAP β†’ Plotly)..."):
fig, outputs = run_pipeline(
cfg=cfg,
model=model,
tok=tok,
device=device,
main_text=main_text,
save_artifacts=save_artifacts,
)
st.plotly_chart(fig, use_container_width=True)
st.success(f"Loaded {cfg.model_name} on {device} ({dtype})")
with st.expander("Percolation summary"):
percolation = outputs.get("percolation", [])
for l, stt in enumerate(percolation):
st.write(f"L={l:02d} | Ο†={stt['phi']:.3f} | #C={stt['num_clusters']} | Ο‡={stt['chi']:.2f}")
with st.expander("Debug: config"):
st.json(asdict(cfg))
# ====== 9. Main =================================================================================
if __name__ == "__main__":
torch.set_grad_enabled(False)
main()