monkey-mind / agent.py
sxandie's picture
pushing first iter
af8e698 verified
"""Core repository analysis helpers used by both the Gradio UI and MCP server."""
from __future__ import annotations
from typing import Any, Dict, List, Optional, Tuple
import asyncio
import json
import logging
import os
import tempfile
from pathlib import Path
import contextlib
import io
import re
import traceback
import requests
from git import GitCommandError, Repo
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_openai import ChatOpenAI
from langchain_text_splitters import RecursiveCharacterTextSplitter
from dotenv import load_dotenv, dotenv_values
from mcp import ClientSession, StdioServerParameters
from mcp.client.streamable_http import streamablehttp_client
from mcp.client.stdio import stdio_client
logger = logging.getLogger(__name__)
PROJECT_ROOT = Path(__file__).resolve().parent
DOTENV_PATH = PROJECT_ROOT / ".env"
load_dotenv(DOTENV_PATH, override=False)
_ENV_CACHE = dotenv_values(DOTENV_PATH) if DOTENV_PATH.exists() else {}
DOC_DIRECTORIES = ("docs", "documentation", "doc")
DOC_EXTENSIONS = (".md", ".rst", ".txt")
DOC_FILENAMES = {"readme", "readme.md", "readme.rst", "changelog", "contributing"}
IGNORE_DIRS = {".git", "__pycache__", "node_modules", "dist", "build", ".venv", "venv", ".tox"}
DEFAULT_EMBEDDING_MODEL = os.getenv("SENTENCE_EMBEDDER", "sentence-transformers/all-MiniLM-L6-v2")
class RepoAnalyzer:
"""Utility that clones a repo and extracts any documentation-esque files."""
def __init__(self, repo_url: str, working_dir: str):
self.repo_url = repo_url.strip()
self.working_dir = Path(working_dir)
self.repo_name = self._derive_repo_name()
self.repo_path = self.working_dir / self.repo_name
self.docs_path: Path | None = None
def _derive_repo_name(self) -> str:
base = self.repo_url.rstrip("/").split("/")[-1]
if base.endswith(".git"):
base = base[:-4]
return base or "repository"
def clone_repo(self) -> bool:
try:
Repo.clone_from(self.repo_url, self.repo_path)
logger.info("Cloned %s", self.repo_url)
return True
except GitCommandError as err:
logger.error("Failed to clone repo: %s", err)
return False
def resolve_docs_directory(self) -> bool:
for doc_dir in DOC_DIRECTORIES:
candidate = self.repo_path / doc_dir
if candidate.exists() and candidate.is_dir():
self.docs_path = candidate
return True
return False
def find_documentation_files(self) -> List[Path]:
doc_files: List[Path] = []
for root, dirs, files in os.walk(self.repo_path):
dirs[:] = [d for d in dirs if d not in IGNORE_DIRS and not d.startswith(".")]
for filename in files:
lower = filename.lower()
if lower.endswith(DOC_EXTENSIONS) or lower in DOC_FILENAMES:
doc_files.append(Path(root) / filename)
return doc_files
def read_documentation_files(self, doc_files: List[Path]) -> List[Dict[str, Any]]:
docs: List[Dict[str, Any]] = []
for path in doc_files:
try:
content = path.read_text(encoding="utf-8", errors="ignore")
except Exception as err: # pragma: no cover - best effort read
logger.warning("Unable to read %s: %s", path, err)
continue
docs.append({
"path": str(path.relative_to(self.repo_path)),
"content": content,
})
return docs
def get_repo_structure(self) -> List[str]:
structure: List[str] = []
for root, dirs, files in os.walk(self.repo_path):
dirs[:] = [d for d in dirs if not d.startswith(".") and d not in IGNORE_DIRS]
files = [f for f in files if not f.startswith(".")]
rel_root = Path(root)
level = len(rel_root.relative_to(self.repo_path).parts)
indent = " " * 4 * level
structure.append(f"{indent}{rel_root.name}/")
subindent = " " * 4 * (level + 1)
for file_name in files:
structure.append(f"{subindent}{file_name}")
return structure
def analyze_repo(self, persist_path: Path | None = None) -> Dict[str, Any]:
if not self.clone_repo():
return {"error": "Failed to clone repository. Confirm the URL is reachable."}
has_docs = self.resolve_docs_directory()
doc_files = self.find_documentation_files()
documentation = self.read_documentation_files(doc_files) if doc_files else []
if persist_path:
persist_path.mkdir(parents=True, exist_ok=True)
for doc in documentation:
rel_path = Path(doc["path"]).with_suffix(".txt")
target_file = persist_path / rel_path
target_file.parent.mkdir(parents=True, exist_ok=True)
target_file.write_text(doc.get("content", ""))
metadata_file = persist_path / "metadata.json"
metadata_file.write_text(json.dumps({
"repo_url": self.repo_url,
"repo_name": self.repo_name,
"documentation_files": [doc["path"] for doc in documentation],
}, indent=2))
return {
"repo_url": self.repo_url,
"repo_name": self.repo_name,
"has_documentation": has_docs,
"documentation_count": len(documentation),
"documentation_files": [doc["path"] for doc in documentation],
"documentation": documentation,
"structure": self.get_repo_structure(),
}
def analyze_github_repo(repo_url: str, *, persist_dir: Optional[Path] = None) -> Dict[str, Any]:
repo_url = (repo_url or "").strip()
if not repo_url:
return {"error": "Please provide a GitHub repository URL."}
with tempfile.TemporaryDirectory() as tmp_dir:
analyzer = RepoAnalyzer(repo_url, tmp_dir)
return analyzer.analyze_repo(persist_dir)
def analyze_local_repo(root_dir: str) -> Dict[str, Any]:
"""Analyze a local repository directory without performing a git clone.
This mirrors the payload shape of ``analyze_github_repo`` so the UI
and bookmarking logic can treat remote and local repos uniformly.
"""
root = Path(root_dir)
if not root.exists() or not root.is_dir():
return {"error": "Uploaded folder was not found on the server."}
repo_name = root.name or "local-repository"
doc_files: List[Path] = []
for r, dirs, files in os.walk(root):
dirs[:] = [d for d in dirs if d not in IGNORE_DIRS and not d.startswith(".")]
for filename in files:
lower = filename.lower()
if lower.endswith(DOC_EXTENSIONS) or lower in DOC_FILENAMES:
doc_files.append(Path(r) / filename)
documentation: List[Dict[str, Any]] = []
for path in doc_files:
try:
content = path.read_text(encoding="utf-8", errors="ignore")
except Exception as err: # pragma: no cover - best effort read
logger.warning("Unable to read %s: %s", path, err)
continue
documentation.append(
{
"path": str(path.relative_to(root)),
"content": content,
}
)
structure: List[str] = []
for r, dirs, files in os.walk(root):
dirs[:] = [d for d in dirs if not d.startswith(".") and d not in IGNORE_DIRS]
files = [f for f in files if not f.startswith(".")]
rel_root = Path(r)
level = len(rel_root.relative_to(root).parts)
indent = " " * 4 * level
structure.append(f"{indent}{rel_root.name}/")
subindent = " " * 4 * (level + 1)
for file_name in files:
structure.append(f"{subindent}{file_name}")
return {
"repo_url": f"local://{repo_name}",
"repo_name": repo_name,
"has_documentation": bool(doc_files),
"documentation_count": len(documentation),
"documentation_files": [str(p.relative_to(root)) for p in doc_files],
"documentation": documentation,
"structure": structure,
}
def _get_embeddings() -> HuggingFaceEmbeddings:
return HuggingFaceEmbeddings(model_name=DEFAULT_EMBEDDING_MODEL)
def build_repo_vector_store(documents: List[Dict[str, Any]], *, persist_path: Path) -> Tuple[Optional[Chroma], int]:
if not documents:
return None, 0
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
texts: List[str] = []
metadatas: List[Dict[str, str]] = []
for doc in documents:
content = doc.get("content") or ""
if not content:
continue
chunks = text_splitter.split_text(content)
texts.extend(chunks)
metadatas.extend({"path": doc.get("path", "") or ""} for _ in chunks)
if not texts:
return None, 0
embeddings = _get_embeddings()
persist_path.mkdir(parents=True, exist_ok=True)
vectorstore = Chroma.from_texts(
texts=texts,
metadatas=metadatas,
embedding=embeddings,
persist_directory=str(persist_path),
)
return vectorstore, len(texts)
def load_vector_store(vector_dir: Path) -> Optional[Chroma]:
if not vector_dir.exists():
return None
embeddings = _get_embeddings()
return Chroma(
persist_directory=str(vector_dir),
embedding_function=embeddings,
)
def _get_env_var(*names: str) -> str:
for name in names:
value = os.getenv(name)
if value:
value = value.strip().strip('"').strip("'")
if value:
return value
cache_val = (_ENV_CACHE or {}).get(name)
if cache_val:
cache_val = cache_val.strip().strip('"').strip("'")
if cache_val:
return cache_val
return ""
def get_llm_provider() -> str:
provider = os.getenv("LLM_PROVIDER", "").strip().lower()
if provider in ("openrouter", "openrounter"):
return "openrouter"
if provider == "openai":
return "openai"
if _get_env_var("OPENAI_API_KEY"):
return "openai"
if _get_env_var("OPENROUTER_API_KEY", "OPENROUNTER_API_KEY"):
return "openrouter"
return "openai"
def _build_openrouter_chat_model(default_model: str | None = None) -> ChatOpenAI:
api_key = _get_env_var("OPENROUTER_API_KEY", "OPENROUNTER_API_KEY")
if not api_key:
raise ValueError(
"OpenRouter API key is not set. Provide OPENROUTER_API_KEY to enable the fallback provider."
)
base_url = os.getenv("OPENROUTER_BASE_URL", "https://openrouter.ai/api/v1")
model = default_model or os.getenv("OPENROUTER_MODEL", "openrouter/sherlock-think-alpha")
return ChatOpenAI(model=model, api_key=api_key, base_url=base_url, temperature=0)
def get_chat_model() -> ChatOpenAI:
provider = get_llm_provider()
if provider == "openrouter":
logger.info("Using OpenRouter provider (model=%s)", os.getenv("OPENROUTER_MODEL", "openrouter/sherlock-think-alpha"))
return _build_openrouter_chat_model()
api_key = _get_env_var("OPENAI_API_KEY")
if api_key:
model = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
logger.info("Using OpenAI provider (model=%s)", model)
return ChatOpenAI(model=model, api_key=api_key, temperature=0)
# Fallback: use OpenRouter with grok-4.1-fast when OpenAI key is missing
logger.warning("OPENAI_API_KEY not found; falling back to OpenRouter grok-4.1-fast")
return _build_openrouter_chat_model(default_model="openrouter/sherlock-think-alpha")
def rag_answer_from_store(vector_dir: Path, question: str, repo_summary: str = "") -> str:
if not question.strip():
return "Please enter a question to search your bookmarked repository."
vectorstore = load_vector_store(vector_dir)
if vectorstore is None:
return "Vector store not found. Bookmark the repository first to build embeddings."
chunk_count = None
collection = getattr(vectorstore, "_collection", None)
if collection:
try:
chunk_count = collection.count()
except Exception as err: # pragma: no cover - debug helper
logger.debug("Unable to count Chroma collection: %s", err)
logger.info(
"RAG query: dir=%s | chunks=%s | question=%.60s",
vector_dir,
chunk_count,
question.strip(),
)
retriever = vectorstore.as_retriever(search_kwargs={"k": 4})
docs = retriever.invoke(question)
logger.info("Retriever returned %s documents", len(docs) if hasattr(docs, "__len__") else "unknown")
if not docs:
return "No relevant context found in the selected repository."
context = "\n\n".join(
f"Source: {doc.metadata.get('path', 'unknown')}\n{doc.page_content}"
for doc in docs
)
llm = get_chat_model()
prompt = (
"You are a helpful study assistant for a GitHub repository.\n"
"Use the repository context below as your primary source of truth.\n"
"Prefer concise, direct answers.\n"
"If the context is incomplete, you may draw on general knowledge, but make clear when you are doing so.\n"
"Only say \"I don't know based on this repository\" if the question truly cannot be answered, even approximately, from the context and your general knowledge.\n\n"
f"Repository summary:\n{repo_summary}\n\nContext:\n{context}\n\nQuestion: {question}"
)
response = llm.invoke(prompt)
logger.info("RAG LLM raw response: %.120s", getattr(response, "content", str(response)).replace("\n", " "))
return getattr(response, "content", str(response))
def qa_on_repo(repo_url: str, question: str) -> str:
del repo_url, question
return "Repository Q&A is now handled via bookmarked vector stores."
def _strip_markdown_code_fences(code: str) -> str:
"""Remove markdown code fences (```python ... ```) from LLM output."""
code = code.strip()
# Remove opening fence with optional language specifier
if code.startswith("```"):
first_newline = code.find("\n")
if first_newline != -1:
code = code[first_newline + 1:]
# Remove closing fence
if code.rstrip().endswith("```"):
code = code.rstrip()[:-3].rstrip()
return code
def _sandbox_test_experiment_code(code: str) -> Tuple[str, str]:
# Strip markdown fences if LLM included them
code = _strip_markdown_code_fences(code)
buf = io.StringIO()
ns: Dict[str, Any] = {}
with contextlib.redirect_stdout(buf), contextlib.redirect_stderr(buf):
try:
exec(code, ns, ns)
except Exception:
return buf.getvalue(), traceback.format_exc()
return buf.getvalue(), ""
def build_experiment_from_report(intention: str, report_markdown: str) -> Dict[str, Any]:
intention = (intention or "").strip()
if not intention:
return {"code": "", "stdout": "", "error": "No intention was provided."}
llm = get_chat_model()
snippet = report_markdown[:8000] if report_markdown else ""
prompt = (
"You are a senior Python engineer. Given the following project knowledge transfer report "
"and a user intention, write a minimal, self-contained Gradio app in Python.\n\n"
"Constraints:\n"
"- Use the 'gradio' library.\n"
"- Define a function `build_experiment()` that returns a `gr.Blocks` instance.\n"
"- Do NOT call `launch()` anywhere. The caller will handle running the app.\n"
"- Keep the app small and focused on the intention.\n"
"- Return only Python code, with no explanations or Markdown fences.\n\n"
f"KNOWLEDGE TRANSFER REPORT (truncated):\n{snippet}\n\n"
f"USER INTENTION:\n{intention}\n"
)
response = llm.invoke(prompt)
code = getattr(response, "content", str(response))
stdout, error = _sandbox_test_experiment_code(code)
return {"code": code, "stdout": stdout, "error": error}
_YOUTUBE_TRANSCRIPT_API = "https://youtube-captions-transcript-subtitles-video-combiner.p.rapidapi.com/download-all/{video_id}"
_YOUTUBE_LANGUAGES_API = "https://youtube-captions-transcript-subtitles-video-combiner.p.rapidapi.com/languages/{video_id}"
_YOUTUBE_TRANSCRIPT_FALLBACK_API = "https://youtube-video-summarizer-gpt-ai.p.rapidapi.com/api/v1/get-transcript-v2"
def _extract_video_id(url_or_id: str) -> str:
pattern = re.compile(r"(?:v=|/)([0-9A-Za-z_-]{11})")
match = pattern.search(url_or_id)
if match:
return match.group(1)
# Maybe the user already passed the ID.
return url_or_id.strip()
def _parse_transcript_payload(data: Any) -> str:
"""Extract transcript text from various API response shapes."""
transcript_text = ""
if isinstance(data, dict):
candidates = []
for key in ("transcript", "subtitle", "subtitles", "caption", "captions"):
if key in data:
candidates.append(data[key])
payload = data.get("data")
if payload and isinstance(payload, dict):
for key in ("transcript", "subtitle", "subtitles"):
if key in payload:
candidates.append(payload[key])
for candidate in candidates:
if isinstance(candidate, str) and candidate.strip():
transcript_text = candidate.strip()
break
if isinstance(candidate, list):
joined = " ".join(str(item).strip() for item in candidate if str(item).strip())
if joined.strip():
transcript_text = joined.strip()
break
return transcript_text.strip()
def _call_primary_transcript_api(video_id: str, language: str, rapidapi_key: str) -> Dict[str, Any]:
headers = {
"x-rapidapi-key": rapidapi_key,
"x-rapidapi-host": "youtube-captions-transcript-subtitles-video-combiner.p.rapidapi.com",
}
params = {"format_subtitle": "srt", "format_answer": "json", "lang": language}
api_url = _YOUTUBE_TRANSCRIPT_API.format(video_id=video_id)
response = requests.get(api_url, headers=headers, params=params, timeout=20)
return {"status": response.status_code, "data": response.json() if response.content else {}, "text": response.text}
def _call_fallback_transcript_api(video_id: str, rapidapi_key: str) -> Dict[str, Any]:
headers = {
"x-rapidapi-key": rapidapi_key,
"x-rapidapi-host": "youtube-video-summarizer-gpt-ai.p.rapidapi.com",
}
params = {"video_id": video_id, "platform": "youtube"}
response = requests.get(_YOUTUBE_TRANSCRIPT_FALLBACK_API, headers=headers, params=params, timeout=20)
payload = response.json() if response.content else {}
return {"status": response.status_code, "data": payload, "text": response.text}
def fetch_youtube_transcript(url: str, lang: str = "en") -> Dict[str, Any]:
"""Fetch a YouTube transcript using RapidAPI endpoints with fallback."""
url = (url or "").strip()
if not url:
return {"error": "Please provide a YouTube video URL."}
video_id = _extract_video_id(url)
if not video_id:
return {"error": "Unable to determine the YouTube video ID."}
rapidapi_key = (os.getenv("RAPID_API_KEY") or "").strip()
if not rapidapi_key:
return {"error": "RAPID_API_KEY is not configured. Set it in your .env file."}
language = (lang or "en").strip() or "en"
try:
primary_result = _call_primary_transcript_api(video_id, language, rapidapi_key)
except requests.RequestException as err:
logger.error("Error calling RapidAPI transcript endpoint: %s", err)
primary_result = {"status": 503, "data": {}, "text": str(err)}
transcript_text = ""
if primary_result["status"] == 200:
transcript_text = _parse_transcript_payload(primary_result["data"]) or primary_result.get("text", "").strip()
if primary_result["status"] == 403 or not transcript_text:
logger.warning(
"Primary transcript API failed (status=%s). Falling back to youtube-video-summarizer endpoint.",
primary_result["status"],
)
try:
fallback_result = _call_fallback_transcript_api(video_id, rapidapi_key)
except requests.RequestException as err:
logger.error("Fallback transcript endpoint error: %s", err)
return {"error": f"Fallback transcript service failed: {err}"}
if fallback_result["status"] != 200:
logger.error(
"Fallback transcript endpoint returned %s: %s",
fallback_result["status"],
fallback_result.get("text", ""),
)
return {
"error": f"Transcript APIs failed (primary status {primary_result['status']}, fallback status {fallback_result['status']}).",
}
transcript_text = _parse_transcript_payload(fallback_result["data"]) or fallback_result.get("text", "").strip()
if not transcript_text:
return {"error": "Transcript APIs returned no textual content."}
return {
"url": url,
"video_id": video_id,
"lang": language,
"raw_transcript": transcript_text,
}
def summarize_youtube_chapters(transcript: str, url: str = "") -> str:
"""Summarize a YouTube transcript into chapter-style groups.
This uses the main chat model to infer chapter titles and rough time ranges
from the transcript text. It is intentionally lightweight and returns
Markdown directly for display in the UI.
"""
text = (transcript or "").strip()
if not text:
return "No transcript text available to generate chapter groups."
llm = get_chat_model()
snippet = text
prompt = (
"You are a helpful study assistant in teaching core concepts and ideas.",
" Given the following YouTube transcript, divide it into a small number of",
" high-level chapters with intricate important details that would be useful for the students to prepare for the exam and interviews.",
"\n\nRequirements:\n",
"- Return Markdown only, no code fences.\n",
"- For each chapter, provide a short time range (approximate is fine), a title,",
" and 3-6 bullet points summarizing the key ideas and concepts.\n",
"- Prefer 5-12 chapters for a long subtitles.\n",
f"Source URL (optional): {url or 'N/A'}\n\n",
f"TRANSCRIPT (truncated):\n{snippet}\n",
)
full_prompt = "".join(prompt)
response = llm.invoke(full_prompt)
return getattr(response, "content", str(response))
def generate_youtube_study_notes(chapters_markdown: str, url: str = "") -> str:
"""Generate extended study and interview-oriented notes from chapter groups."""
text = (chapters_markdown or "").strip()
if not text:
return "No chapter outline is available to derive study notes."
llm = get_chat_model()
prompt = (
"You are an expert instructor preparing a study and interview guide based on a YouTube lecture.\n\n"
"You are given a chapter-style outline (with headings and bullet points).\n\n"
"Produce Markdown (no code fences) with these sections:\n"
"1. **Key Concepts & Skills to Master** – group related ideas, describe why they matter, and point to where in the video they appear.\n"
"2. **How to Study This Video** – concrete tips on how a learner should watch, pause, and practice to internalize the material.\n"
"3. **Interview Preparation Checklist** – a list of specific topics, sub-skills, and example questions a candidate should be ready to answer, based only on this video.\n\n"
"Keep the tone concise but rich in information. Do not repeat the entire outline verbatim; instead, synthesize and reorganize it for learning.\n\n"
f"Source URL (optional): {url or 'N/A'}\n\n"
f"CHAPTER OUTLINE:\n{text}\n"
)
response = llm.invoke(prompt)
return getattr(response, "content", str(response))