Update app.py
Browse files
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import os
|
|
| 7 |
import logging
|
| 8 |
from reportlab.lib.pagesizes import letter
|
| 9 |
from reportlab.pdfgen import canvas
|
|
|
|
| 10 |
import tempfile
|
| 11 |
|
| 12 |
# Configure logging to match the log format
|
|
@@ -31,46 +32,51 @@ def validate_csv(df):
|
|
| 31 |
|
| 32 |
def generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path):
|
| 33 |
"""
|
| 34 |
-
Generate a detailed summary of the processing results.
|
| 35 |
Returns a markdown string for display in the Gradio interface.
|
| 36 |
"""
|
| 37 |
-
summary = [
|
| 38 |
|
| 39 |
-
#
|
|
|
|
| 40 |
total_records = len(combined_df)
|
| 41 |
unique_devices = combined_df['equipment'].unique()
|
| 42 |
-
summary.append(f"
|
| 43 |
-
summary.append(
|
| 44 |
|
| 45 |
-
# Anomalies
|
|
|
|
| 46 |
if anomaly_df is not None:
|
| 47 |
num_anomalies = sum(anomaly_df['anomaly'] == -1)
|
| 48 |
-
summary.append(f"- **Anomalies Detected**: {num_anomalies}")
|
| 49 |
if num_anomalies > 0:
|
|
|
|
| 50 |
anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count', 'status']]
|
| 51 |
-
summary.append(" **Anomalous Devices**:")
|
| 52 |
for _, row in anomaly_records.iterrows():
|
| 53 |
-
summary.append(f"
|
| 54 |
else:
|
| 55 |
-
summary.append("
|
| 56 |
else:
|
| 57 |
-
summary.append("
|
| 58 |
summary.append("\n")
|
| 59 |
|
| 60 |
-
# AMC Expiries
|
|
|
|
| 61 |
if amc_df is not None and not amc_df.empty:
|
| 62 |
unique_devices_amc = amc_df['equipment'].unique()
|
| 63 |
-
summary.append(f"
|
| 64 |
-
summary.append(" **Details**:")
|
| 65 |
for _, row in amc_df.iterrows():
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
| 67 |
else:
|
| 68 |
-
summary.append("
|
| 69 |
summary.append("\n")
|
| 70 |
|
| 71 |
-
#
|
| 72 |
-
summary.append("
|
| 73 |
-
summary.append("- **
|
|
|
|
| 74 |
|
| 75 |
return "\n".join(summary)
|
| 76 |
|
|
@@ -84,14 +90,14 @@ def process_files(uploaded_files):
|
|
| 84 |
|
| 85 |
if not uploaded_files:
|
| 86 |
logging.warning("No files uploaded.")
|
| 87 |
-
return None, None, None, "Please upload at least one valid CSV file.", "
|
| 88 |
|
| 89 |
valid_files = [f for f in uploaded_files if f.name.endswith('.csv')]
|
| 90 |
logging.info(f"Processing {len(valid_files)} valid files: {valid_files}")
|
| 91 |
|
| 92 |
if not valid_files:
|
| 93 |
logging.warning("No valid CSV files uploaded.")
|
| 94 |
-
return None, None, None, "Please upload at least one valid CSV file.", "
|
| 95 |
|
| 96 |
logging.info("Loading logs from uploaded files...")
|
| 97 |
all_data = []
|
|
@@ -105,15 +111,15 @@ def process_files(uploaded_files):
|
|
| 105 |
is_valid, error_msg = validate_csv(df)
|
| 106 |
if not is_valid:
|
| 107 |
logging.error(f"Failed to load {file.name}: {error_msg}")
|
| 108 |
-
return None, None, None, f"Error loading {file.name}: {error_msg}", f"
|
| 109 |
all_data.append(df)
|
| 110 |
except Exception as e:
|
| 111 |
logging.error(f"Failed to load {file.name}: {str(e)}")
|
| 112 |
-
return None, None, None, f"Error loading {file.name}: {str(e)}", f"
|
| 113 |
|
| 114 |
if not all_data:
|
| 115 |
logging.warning("No data loaded from uploaded files.")
|
| 116 |
-
return None, None, None, "No valid data found in uploaded files.", "
|
| 117 |
|
| 118 |
combined_df = pd.concat(all_data, ignore_index=True)
|
| 119 |
logging.info(f"Combined {len(combined_df)} total records.")
|
|
@@ -126,7 +132,7 @@ def process_files(uploaded_files):
|
|
| 126 |
logging.info("Usage plot generated successfully.")
|
| 127 |
else:
|
| 128 |
logging.error("Failed to generate usage plot.")
|
| 129 |
-
return combined_df, None, None, "Failed to generate usage plot.", "
|
| 130 |
|
| 131 |
# Detect anomalies using Local Outlier Factor
|
| 132 |
logging.info("Detecting anomalies using Local Outlier Factor...")
|
|
@@ -141,7 +147,12 @@ def process_files(uploaded_files):
|
|
| 141 |
amc_message, amc_df = process_amc_expiries(combined_df)
|
| 142 |
|
| 143 |
# Generate PDF report
|
|
|
|
| 144 |
pdf_path = generate_pdf_report(combined_df, anomaly_df, amc_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
# Generate summary
|
| 147 |
logging.info("Generating summary of results...")
|
|
@@ -151,7 +162,7 @@ def process_files(uploaded_files):
|
|
| 151 |
# Prepare output dataframe (combine original data with anomalies)
|
| 152 |
output_df = combined_df.copy()
|
| 153 |
if anomaly_df is not None:
|
| 154 |
-
output_df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "
|
| 155 |
|
| 156 |
return output_df, plot_path, pdf_path, amc_message, summary
|
| 157 |
|
|
@@ -226,7 +237,7 @@ def process_amc_expiries(df):
|
|
| 226 |
|
| 227 |
def generate_pdf_report(original_df, anomaly_df, amc_df):
|
| 228 |
"""
|
| 229 |
-
Generate a PDF report with
|
| 230 |
Returns the path to the saved PDF.
|
| 231 |
"""
|
| 232 |
try:
|
|
@@ -236,63 +247,134 @@ def generate_pdf_report(original_df, anomaly_df, amc_df):
|
|
| 236 |
|
| 237 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp:
|
| 238 |
c = canvas.Canvas(tmp.name, pagesize=letter)
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
|
| 249 |
# Summary
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
c.drawString(
|
| 253 |
y -= 20
|
| 254 |
-
c.drawString(
|
| 255 |
y -= 40
|
| 256 |
|
| 257 |
-
#
|
| 258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
y -= 20
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
if anomaly_df is not None:
|
| 261 |
num_anomalies = sum(anomaly_df['anomaly'] == -1)
|
| 262 |
-
c.drawString(
|
| 263 |
y -= 20
|
| 264 |
if num_anomalies > 0:
|
| 265 |
anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count', 'status']]
|
| 266 |
-
c.drawString(
|
| 267 |
y -= 20
|
|
|
|
| 268 |
for _, row in anomaly_records.iterrows():
|
| 269 |
-
c.drawString(
|
|
|
|
|
|
|
| 270 |
y -= 20
|
| 271 |
if y < 50:
|
| 272 |
c.showPage()
|
| 273 |
-
y =
|
| 274 |
-
|
|
|
|
| 275 |
else:
|
| 276 |
-
c.drawString(
|
| 277 |
y -= 20
|
| 278 |
y -= 20
|
| 279 |
|
| 280 |
# AMC Expiries
|
| 281 |
-
|
| 282 |
-
|
| 283 |
if amc_df is not None and not amc_df.empty:
|
| 284 |
-
c.drawString(
|
| 285 |
y -= 20
|
|
|
|
| 286 |
for _, row in amc_df.iterrows():
|
| 287 |
-
|
|
|
|
|
|
|
| 288 |
y -= 20
|
| 289 |
if y < 50:
|
| 290 |
c.showPage()
|
| 291 |
-
y =
|
| 292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
else:
|
| 294 |
-
c.drawString(
|
| 295 |
y -= 20
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
|
| 297 |
c.showPage()
|
| 298 |
c.save()
|
|
@@ -308,13 +390,13 @@ with gr.Blocks() as demo:
|
|
| 308 |
file_input = gr.File(file_count="multiple", label="Upload CSV Files")
|
| 309 |
process_button = gr.Button("Process Files")
|
| 310 |
with gr.Row():
|
| 311 |
-
|
| 312 |
-
output_plot = gr.Image(label="Usage Plot")
|
| 313 |
with gr.Row():
|
| 314 |
-
|
| 315 |
-
|
| 316 |
with gr.Row():
|
| 317 |
-
|
|
|
|
| 318 |
|
| 319 |
process_button.click(
|
| 320 |
fn=process_files,
|
|
|
|
| 7 |
import logging
|
| 8 |
from reportlab.lib.pagesizes import letter
|
| 9 |
from reportlab.pdfgen import canvas
|
| 10 |
+
from reportlab.lib import colors
|
| 11 |
import tempfile
|
| 12 |
|
| 13 |
# Configure logging to match the log format
|
|
|
|
| 32 |
|
| 33 |
def generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path):
|
| 34 |
"""
|
| 35 |
+
Generate a detailed and easy-to-understand summary of the processing results.
|
| 36 |
Returns a markdown string for display in the Gradio interface.
|
| 37 |
"""
|
| 38 |
+
summary = []
|
| 39 |
|
| 40 |
+
# Overview
|
| 41 |
+
summary.append("## Overview")
|
| 42 |
total_records = len(combined_df)
|
| 43 |
unique_devices = combined_df['equipment'].unique()
|
| 44 |
+
summary.append(f"We processed **{total_records} log entries** for **{len(unique_devices)} devices** ({', '.join(unique_devices)}).")
|
| 45 |
+
summary.append("This report helps you understand device usage, identify unusual activity, and plan maintenance.\n")
|
| 46 |
|
| 47 |
+
# Unusual Activity (Anomalies)
|
| 48 |
+
summary.append("## Unusual Activity")
|
| 49 |
if anomaly_df is not None:
|
| 50 |
num_anomalies = sum(anomaly_df['anomaly'] == -1)
|
|
|
|
| 51 |
if num_anomalies > 0:
|
| 52 |
+
summary.append(f"We found **{num_anomalies} unusual activities** that might need your attention:")
|
| 53 |
anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count', 'status']]
|
|
|
|
| 54 |
for _, row in anomaly_records.iterrows():
|
| 55 |
+
summary.append(f"- **{row['equipment']}** (Usage: {row['usage_count']}, Status: {row['status']}) - High or low usage compared to others might indicate overuse or underuse.")
|
| 56 |
else:
|
| 57 |
+
summary.append("No unusual activity detected. All devices are operating within expected usage patterns.")
|
| 58 |
else:
|
| 59 |
+
summary.append("We couldn’t check for unusual activity due to an error.")
|
| 60 |
summary.append("\n")
|
| 61 |
|
| 62 |
+
# Maintenance Alerts (AMC Expiries)
|
| 63 |
+
summary.append("## Maintenance Alerts")
|
| 64 |
if amc_df is not None and not amc_df.empty:
|
| 65 |
unique_devices_amc = amc_df['equipment'].unique()
|
| 66 |
+
summary.append(f"**{len(unique_devices_amc)} devices** need maintenance soon (within 7 days from 2025-06-05):")
|
|
|
|
| 67 |
for _, row in amc_df.iterrows():
|
| 68 |
+
days_until_expiry = (row['amc_expiry'] - datetime(2025, 6, 5)).days
|
| 69 |
+
urgency = "Urgent" if days_until_expiry <= 3 else "Upcoming"
|
| 70 |
+
summary.append(f"- **{row['equipment']}**: Due on {row['amc_expiry'].strftime('%Y-%m-%d')} ({urgency}, {days_until_expiry} days left)")
|
| 71 |
+
summary.append("Please schedule maintenance to avoid downtime.")
|
| 72 |
else:
|
| 73 |
+
summary.append("No devices need maintenance within the next 7 days.")
|
| 74 |
summary.append("\n")
|
| 75 |
|
| 76 |
+
# Generated Reports
|
| 77 |
+
summary.append("## Generated Reports")
|
| 78 |
+
summary.append("- **Usage Chart**: A bar chart showing how much each device was used, grouped by status (e.g., Active, Inactive).")
|
| 79 |
+
summary.append("- **PDF Report**: Download the detailed report below for a full analysis, including a table of all records and a flowchart of our process.")
|
| 80 |
|
| 81 |
return "\n".join(summary)
|
| 82 |
|
|
|
|
| 90 |
|
| 91 |
if not uploaded_files:
|
| 92 |
logging.warning("No files uploaded.")
|
| 93 |
+
return None, None, None, "Please upload at least one valid CSV file.", "## Summary\nNo files uploaded."
|
| 94 |
|
| 95 |
valid_files = [f for f in uploaded_files if f.name.endswith('.csv')]
|
| 96 |
logging.info(f"Processing {len(valid_files)} valid files: {valid_files}")
|
| 97 |
|
| 98 |
if not valid_files:
|
| 99 |
logging.warning("No valid CSV files uploaded.")
|
| 100 |
+
return None, None, None, "Please upload at least one valid CSV file.", "## Summary\nNo valid CSV files uploaded."
|
| 101 |
|
| 102 |
logging.info("Loading logs from uploaded files...")
|
| 103 |
all_data = []
|
|
|
|
| 111 |
is_valid, error_msg = validate_csv(df)
|
| 112 |
if not is_valid:
|
| 113 |
logging.error(f"Failed to load {file.name}: {error_msg}")
|
| 114 |
+
return None, None, None, f"Error loading {file.name}: {error_msg}", f"## Summary\nError: {error_msg}"
|
| 115 |
all_data.append(df)
|
| 116 |
except Exception as e:
|
| 117 |
logging.error(f"Failed to load {file.name}: {str(e)}")
|
| 118 |
+
return None, None, None, f"Error loading {file.name}: {str(e)}", f"## Summary\nError: {str(e)}"
|
| 119 |
|
| 120 |
if not all_data:
|
| 121 |
logging.warning("No data loaded from uploaded files.")
|
| 122 |
+
return None, None, None, "No valid data found in uploaded files.", "## Summary\nNo data loaded."
|
| 123 |
|
| 124 |
combined_df = pd.concat(all_data, ignore_index=True)
|
| 125 |
logging.info(f"Combined {len(combined_df)} total records.")
|
|
|
|
| 132 |
logging.info("Usage plot generated successfully.")
|
| 133 |
else:
|
| 134 |
logging.error("Failed to generate usage plot.")
|
| 135 |
+
return combined_df, None, None, "Failed to generate usage plot.", "## Summary\nUsage plot generation failed."
|
| 136 |
|
| 137 |
# Detect anomalies using Local Outlier Factor
|
| 138 |
logging.info("Detecting anomalies using Local Outlier Factor...")
|
|
|
|
| 147 |
amc_message, amc_df = process_amc_expiries(combined_df)
|
| 148 |
|
| 149 |
# Generate PDF report
|
| 150 |
+
logging.info("Generating PDF report...")
|
| 151 |
pdf_path = generate_pdf_report(combined_df, anomaly_df, amc_df)
|
| 152 |
+
if pdf_path:
|
| 153 |
+
logging.info("PDF report generated successfully.")
|
| 154 |
+
else:
|
| 155 |
+
logging.error("Failed to generate PDF report.")
|
| 156 |
|
| 157 |
# Generate summary
|
| 158 |
logging.info("Generating summary of results...")
|
|
|
|
| 162 |
# Prepare output dataframe (combine original data with anomalies)
|
| 163 |
output_df = combined_df.copy()
|
| 164 |
if anomaly_df is not None:
|
| 165 |
+
output_df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "Unusual"})
|
| 166 |
|
| 167 |
return output_df, plot_path, pdf_path, amc_message, summary
|
| 168 |
|
|
|
|
| 237 |
|
| 238 |
def generate_pdf_report(original_df, anomaly_df, amc_df):
|
| 239 |
"""
|
| 240 |
+
Generate a professionally formatted PDF report with necessary fields and a flowchart.
|
| 241 |
Returns the path to the saved PDF.
|
| 242 |
"""
|
| 243 |
try:
|
|
|
|
| 247 |
|
| 248 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp:
|
| 249 |
c = canvas.Canvas(tmp.name, pagesize=letter)
|
| 250 |
+
width, height = letter
|
| 251 |
+
|
| 252 |
+
def draw_header():
|
| 253 |
+
c.setFont("Helvetica-Bold", 16)
|
| 254 |
+
c.setFillColor(colors.darkblue)
|
| 255 |
+
c.drawString(50, height - 50, "Equipment Log Analysis Report")
|
| 256 |
+
c.setFont("Helvetica", 10)
|
| 257 |
+
c.setFillColor(colors.black)
|
| 258 |
+
c.drawString(50, height - 70, f"Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
| 259 |
+
c.line(50, height - 80, width - 50, height - 80)
|
| 260 |
+
|
| 261 |
+
def draw_section_title(title, y):
|
| 262 |
+
c.setFont("Helvetica-Bold", 14)
|
| 263 |
+
c.setFillColor(colors.darkblue)
|
| 264 |
+
c.drawString(50, y, title)
|
| 265 |
+
c.setFillColor(colors.black)
|
| 266 |
+
c.line(50, y - 5, width - 50, y - 5)
|
| 267 |
+
return y - 30
|
| 268 |
+
|
| 269 |
+
y = height - 100
|
| 270 |
+
draw_header()
|
| 271 |
|
| 272 |
# Summary
|
| 273 |
+
y = draw_section_title("Summary", y)
|
| 274 |
+
c.setFont("Helvetica", 12)
|
| 275 |
+
c.drawString(50, y, f"Total Records: {len(original_df)}")
|
| 276 |
y -= 20
|
| 277 |
+
c.drawString(50, y, f"Unique Devices: {', '.join(original_df['equipment'].unique())}")
|
| 278 |
y -= 40
|
| 279 |
|
| 280 |
+
# Data Table
|
| 281 |
+
y = draw_section_title("Device Log Details", y)
|
| 282 |
+
c.setFont("Helvetica-Bold", 10)
|
| 283 |
+
headers = ["Equipment", "Usage Count", "Status", "AMC Expiry", "Activity"]
|
| 284 |
+
x_positions = [50, 150, 250, 350, 450]
|
| 285 |
+
for i, header in enumerate(headers):
|
| 286 |
+
c.drawString(x_positions[i], y, header)
|
| 287 |
+
c.line(50, y - 5, width - 50, y - 5)
|
| 288 |
y -= 20
|
| 289 |
+
|
| 290 |
+
c.setFont("Helvetica", 10)
|
| 291 |
+
output_df = original_df.copy()
|
| 292 |
+
if anomaly_df is not None:
|
| 293 |
+
output_df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "Unusual"})
|
| 294 |
+
for _, row in output_df.iterrows():
|
| 295 |
+
c.drawString(50, y, str(row['equipment']))
|
| 296 |
+
c.drawString(150, y, str(row['usage_count']))
|
| 297 |
+
c.drawString(250, y, str(row['status']))
|
| 298 |
+
c.drawString(350, y, str(row['amc_expiry'].strftime('%Y-%m-%d')))
|
| 299 |
+
c.drawString(450, y, str(row['anomaly']))
|
| 300 |
+
y -= 20
|
| 301 |
+
if y < 50:
|
| 302 |
+
c.showPage()
|
| 303 |
+
y = height - 100
|
| 304 |
+
draw_header()
|
| 305 |
+
c.setFont("Helvetica", 10)
|
| 306 |
+
|
| 307 |
+
# Anomalies
|
| 308 |
+
y = draw_section_title("Unusual Activity (Using Local Outlier Factor)", y)
|
| 309 |
+
c.setFont("Helvetica", 12)
|
| 310 |
if anomaly_df is not None:
|
| 311 |
num_anomalies = sum(anomaly_df['anomaly'] == -1)
|
| 312 |
+
c.drawString(50, y, f"Unusual Activities Detected: {num_anomalies}")
|
| 313 |
y -= 20
|
| 314 |
if num_anomalies > 0:
|
| 315 |
anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count', 'status']]
|
| 316 |
+
c.drawString(50, y, "Details:")
|
| 317 |
y -= 20
|
| 318 |
+
c.setFont("Helvetica-Oblique", 10)
|
| 319 |
for _, row in anomaly_records.iterrows():
|
| 320 |
+
c.drawString(50, y, f"{row['equipment']}: Usage Count = {row['usage_count']}, Status = {row['status']}")
|
| 321 |
+
y -= 20
|
| 322 |
+
c.drawString(70, y, "Note: This device’s usage is significantly higher or lower than others, which may indicate overuse or underuse.")
|
| 323 |
y -= 20
|
| 324 |
if y < 50:
|
| 325 |
c.showPage()
|
| 326 |
+
y = height - 100
|
| 327 |
+
draw_header()
|
| 328 |
+
c.setFont("Helvetica-Oblique", 10)
|
| 329 |
else:
|
| 330 |
+
c.drawString(50, y, "Unable to detect unusual activity due to an error.")
|
| 331 |
y -= 20
|
| 332 |
y -= 20
|
| 333 |
|
| 334 |
# AMC Expiries
|
| 335 |
+
y = draw_section_title("Maintenance Alerts (as of 2025-06-05)", y)
|
| 336 |
+
c.setFont("Helvetica", 12)
|
| 337 |
if amc_df is not None and not amc_df.empty:
|
| 338 |
+
c.drawString(50, y, f"Devices Needing Maintenance Soon: {len(amc_df['equipment'].unique())}")
|
| 339 |
y -= 20
|
| 340 |
+
c.setFont("Helvetica", 10)
|
| 341 |
for _, row in amc_df.iterrows():
|
| 342 |
+
days_until_expiry = (row['amc_expiry'] - datetime(2025, 6, 5)).days
|
| 343 |
+
urgency = "Urgent" if days_until_expiry <= 3 else "Upcoming"
|
| 344 |
+
c.drawString(50, y, f"{row['equipment']}: {row['amc_expiry'].strftime('%Y-%m-%d')} ({urgency}, {days_until_expiry} days left)")
|
| 345 |
y -= 20
|
| 346 |
if y < 50:
|
| 347 |
c.showPage()
|
| 348 |
+
y = height - 100
|
| 349 |
+
draw_header()
|
| 350 |
+
c.setFont("Helvetica", 10)
|
| 351 |
+
c.setFont("Helvetica-Oblique", 10)
|
| 352 |
+
c.drawString(50, y, "Recommendation: Schedule maintenance to prevent downtime.")
|
| 353 |
+
y -= 20
|
| 354 |
else:
|
| 355 |
+
c.drawString(50, y, "No devices need maintenance within the next 7 days.")
|
| 356 |
y -= 20
|
| 357 |
+
y -= 20
|
| 358 |
+
|
| 359 |
+
# Flowchart
|
| 360 |
+
y = draw_section_title("Processing Pipeline Flowchart", y)
|
| 361 |
+
c.setFont("Helvetica", 10)
|
| 362 |
+
flowchart = [
|
| 363 |
+
"1. Upload CSV File(s)",
|
| 364 |
+
"2. Validate Data (Check for required columns and data types)",
|
| 365 |
+
"3. Generate Usage Chart (Bar chart of usage by device and status)",
|
| 366 |
+
"4. Detect Unusual Activity (Using Local Outlier Factor)",
|
| 367 |
+
"5. Check Maintenance Dates (Identify AMC expiries within 7 days)",
|
| 368 |
+
"6. Create PDF Report (Detailed analysis with tables and insights)"
|
| 369 |
+
]
|
| 370 |
+
for step in flowchart:
|
| 371 |
+
c.drawString(50, y, step)
|
| 372 |
+
y -= 20
|
| 373 |
+
if y < 50:
|
| 374 |
+
c.showPage()
|
| 375 |
+
y = height - 100
|
| 376 |
+
draw_header()
|
| 377 |
+
c.setFont("Helvetica", 10)
|
| 378 |
|
| 379 |
c.showPage()
|
| 380 |
c.save()
|
|
|
|
| 390 |
file_input = gr.File(file_count="multiple", label="Upload CSV Files")
|
| 391 |
process_button = gr.Button("Process Files")
|
| 392 |
with gr.Row():
|
| 393 |
+
output_summary = gr.Markdown(label="Summary of Results")
|
|
|
|
| 394 |
with gr.Row():
|
| 395 |
+
output_df = gr.Dataframe(label="Processed Data")
|
| 396 |
+
output_plot = gr.Image(label="Usage Chart")
|
| 397 |
with gr.Row():
|
| 398 |
+
output_message = gr.Textbox(label="Maintenance Alerts")
|
| 399 |
+
output_pdf = gr.File(label="Download Detailed PDF Report")
|
| 400 |
|
| 401 |
process_button.click(
|
| 402 |
fn=process_files,
|