Spaces:
Running
on
Zero
Running
on
Zero
| import argparse | |
| import functools | |
| import importlib.util | |
| import json | |
| import os | |
| from pathlib import Path | |
| import re | |
| import time | |
| try: | |
| import spaces | |
| except ImportError: | |
| class _SpacesFallback: | |
| def GPU(*_args, **_kwargs): | |
| def _decorator(func): | |
| return func | |
| return _decorator | |
| spaces = _SpacesFallback() | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| from transformers import AutoModel, AutoProcessor | |
| # Disable the broken cuDNN SDPA backend | |
| torch.backends.cuda.enable_cudnn_sdp(False) | |
| # Keep these enabled as fallbacks | |
| torch.backends.cuda.enable_flash_sdp(True) | |
| torch.backends.cuda.enable_mem_efficient_sdp(True) | |
| torch.backends.cuda.enable_math_sdp(True) | |
| MODEL_PATH = "OpenMOSS-Team/MOSS-VoiceGenerator" | |
| DEFAULT_ATTN_IMPLEMENTATION = "auto" | |
| DEFAULT_MAX_NEW_TOKENS = 4096 | |
| PRELOAD_ENV_VAR = "MOSS_VOICE_GENERATOR_PRELOAD_AT_STARTUP" | |
| EXAMPLE_TEXTS_JSONL_PATH = Path(__file__).resolve().parent / "text" / "moss_voice_generator_example_texts.jsonl" | |
| def _parse_example_id(example_id: str) -> tuple[str, int] | None: | |
| matched = re.fullmatch(r"(zh|en)/(\d+)", (example_id or "").strip()) | |
| if matched is None: | |
| return None | |
| return matched.group(1), int(matched.group(2)) | |
| def build_example_rows() -> list[tuple[str, str, str]]: | |
| rows: list[tuple[str, int, str, str]] = [] | |
| with open(EXAMPLE_TEXTS_JSONL_PATH, "r", encoding="utf-8") as f: | |
| for line in f: | |
| if not line.strip(): | |
| continue | |
| sample = json.loads(line) | |
| parsed = _parse_example_id(sample.get("id", "")) | |
| if parsed is None: | |
| continue | |
| language, index = parsed | |
| instruction = str(sample.get("instruction", "")).strip() | |
| text = str(sample.get("text", "")).strip() | |
| rows.append((language, index, instruction, text)) | |
| language_order = {"zh": 0, "en": 1} | |
| rows.sort(key=lambda item: (language_order.get(item[0], 99), item[1])) | |
| return [(f"{language}/{index}", instruction, text) for language, index, instruction, text in rows] | |
| EXAMPLE_ROWS = build_example_rows() | |
| def apply_example_selection(evt: gr.SelectData): | |
| if evt is None or evt.index is None: | |
| return gr.update(), gr.update() | |
| if isinstance(evt.index, (tuple, list)): | |
| row_idx = int(evt.index[0]) | |
| else: | |
| row_idx = int(evt.index) | |
| if row_idx < 0 or row_idx >= len(EXAMPLE_ROWS): | |
| return gr.update(), gr.update() | |
| _, instruction_value, text_value = EXAMPLE_ROWS[row_idx] | |
| return instruction_value, text_value | |
| def resolve_attn_implementation(requested: str, device: torch.device, dtype: torch.dtype) -> str | None: | |
| requested_norm = (requested or "").strip().lower() | |
| if requested_norm in {"none"}: | |
| return None | |
| if requested_norm not in {"", "auto"}: | |
| return requested | |
| # Prefer FlashAttention 2 when package + device conditions are met. | |
| if ( | |
| device.type == "cuda" | |
| and importlib.util.find_spec("flash_attn") is not None | |
| and dtype in {torch.float16, torch.bfloat16} | |
| ): | |
| major, _ = torch.cuda.get_device_capability(device) | |
| if major >= 8: | |
| return "flash_attention_2" | |
| # CUDA fallback: use PyTorch SDPA kernels. | |
| if device.type == "cuda": | |
| return "sdpa" | |
| # CPU fallback. | |
| return "eager" | |
| def load_backend(model_path: str, device_str: str, attn_implementation: str): | |
| device = torch.device(device_str if torch.cuda.is_available() else "cpu") | |
| dtype = torch.bfloat16 if device.type == "cuda" else torch.float32 | |
| resolved_attn_implementation = resolve_attn_implementation( | |
| requested=attn_implementation, | |
| device=device, | |
| dtype=dtype, | |
| ) | |
| processor = AutoProcessor.from_pretrained( | |
| model_path, | |
| trust_remote_code=True, | |
| normalize_inputs=True, | |
| ) | |
| if hasattr(processor, "audio_tokenizer"): | |
| processor.audio_tokenizer = processor.audio_tokenizer.to(device) | |
| processor.audio_tokenizer.eval() | |
| model_kwargs = { | |
| "trust_remote_code": True, | |
| "torch_dtype": dtype, | |
| } | |
| if resolved_attn_implementation: | |
| model_kwargs["attn_implementation"] = resolved_attn_implementation | |
| model = AutoModel.from_pretrained(model_path, **model_kwargs).to(device) | |
| model.eval() | |
| sample_rate = int(getattr(processor.model_config, "sampling_rate", 24000)) | |
| return model, processor, device, sample_rate | |
| def build_conversation(text: str, instruction: str, processor): | |
| text = (text or "").strip() | |
| instruction = (instruction or "").strip() | |
| if not text: | |
| raise ValueError("Please enter text to synthesize.") | |
| if not instruction: | |
| raise ValueError("Please enter a voice instruction.") | |
| return [[processor.build_user_message(text=text, instruction=instruction)]] | |
| def run_inference( | |
| text: str, | |
| instruction: str, | |
| temperature: float, | |
| top_p: float, | |
| top_k: int, | |
| repetition_penalty: float, | |
| max_new_tokens: int, | |
| model_path: str, | |
| device: str, | |
| attn_implementation: str, | |
| ): | |
| started_at = time.monotonic() | |
| model, processor, torch_device, sample_rate = load_backend( | |
| model_path=model_path, | |
| device_str=device, | |
| attn_implementation=attn_implementation, | |
| ) | |
| conversations = build_conversation( | |
| text=text, | |
| instruction=instruction, | |
| processor=processor, | |
| ) | |
| batch = processor(conversations, mode="generation") | |
| input_ids = batch["input_ids"].to(torch_device) | |
| attention_mask = batch["attention_mask"].to(torch_device) | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| max_new_tokens=int(max_new_tokens), | |
| audio_temperature=float(temperature), | |
| audio_top_p=float(top_p), | |
| audio_top_k=int(top_k), | |
| audio_repetition_penalty=float(repetition_penalty), | |
| ) | |
| messages = processor.decode(outputs) | |
| if not messages or messages[0] is None: | |
| raise RuntimeError("The model did not return a decodable audio result.") | |
| audio = messages[0].audio_codes_list[0] | |
| if isinstance(audio, torch.Tensor): | |
| audio_np = audio.detach().float().cpu().numpy() | |
| else: | |
| audio_np = np.asarray(audio, dtype=np.float32) | |
| if audio_np.ndim > 1: | |
| audio_np = audio_np.reshape(-1) | |
| audio_np = audio_np.astype(np.float32, copy=False) | |
| elapsed = time.monotonic() - started_at | |
| status = ( | |
| f"Done | elapsed: {elapsed:.2f}s | " | |
| f"max_new_tokens={int(max_new_tokens)}, " | |
| f"audio_temperature={float(temperature):.2f}, audio_top_p={float(top_p):.2f}, " | |
| f"audio_top_k={int(top_k)}, audio_repetition_penalty={float(repetition_penalty):.2f}" | |
| ) | |
| return (sample_rate, audio_np), status | |
| def build_demo(args: argparse.Namespace): | |
| custom_css = """ | |
| :root { | |
| --bg: #f6f7f8; | |
| --panel: #ffffff; | |
| --ink: #111418; | |
| --muted: #4d5562; | |
| --line: #e5e7eb; | |
| --accent: #0f766e; | |
| } | |
| .gradio-container { | |
| background: linear-gradient(180deg, #f7f8fa 0%, #f3f5f7 100%); | |
| color: var(--ink); | |
| } | |
| .app-card { | |
| border: 1px solid var(--line); | |
| border-radius: 16px; | |
| background: var(--panel); | |
| padding: 14px; | |
| } | |
| .app-title { | |
| font-size: 22px; | |
| font-weight: 700; | |
| margin-bottom: 6px; | |
| letter-spacing: 0.2px; | |
| } | |
| .app-subtitle { | |
| color: var(--muted); | |
| font-size: 14px; | |
| margin-bottom: 8px; | |
| } | |
| #output_audio { | |
| padding-bottom: 12px; | |
| margin-bottom: 8px; | |
| overflow: hidden !important; | |
| } | |
| #output_audio > .wrap { | |
| overflow: hidden !important; | |
| } | |
| #output_audio audio { | |
| margin-bottom: 6px; | |
| } | |
| #run-btn { | |
| background: var(--accent); | |
| border: none; | |
| } | |
| """ | |
| with gr.Blocks(title="MOSS-VoiceGenerator Demo", css=custom_css) as demo: | |
| gr.Markdown( | |
| """ | |
| <div class="app-card"> | |
| <div class="app-title">MOSS-VoiceGenerator</div> | |
| <div class="app-subtitle">Design expressive voices from instruction + text without reference audio.</div> | |
| </div> | |
| """ | |
| ) | |
| with gr.Row(equal_height=False): | |
| with gr.Column(scale=3): | |
| instruction = gr.Textbox( | |
| label="Voice Instruction", | |
| lines=5, | |
| placeholder="Example: Warm, gentle female narrator voice with calm pacing and clear articulation.", | |
| ) | |
| text = gr.Textbox( | |
| label="Text", | |
| lines=8, | |
| placeholder="Enter the text content to synthesize with the instruction-defined voice.", | |
| ) | |
| with gr.Accordion("Sampling Parameters (Audio)", open=True): | |
| temperature = gr.Slider( | |
| minimum=0.1, | |
| maximum=3.0, | |
| step=0.05, | |
| value=1.5, | |
| label="temperature", | |
| ) | |
| top_p = gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| step=0.01, | |
| value=0.6, | |
| label="top_p", | |
| ) | |
| top_k = gr.Slider( | |
| minimum=1, | |
| maximum=200, | |
| step=1, | |
| value=50, | |
| label="top_k", | |
| ) | |
| repetition_penalty = gr.Slider( | |
| minimum=0.8, | |
| maximum=2.0, | |
| step=0.05, | |
| value=1.1, | |
| label="repetition_penalty", | |
| ) | |
| max_new_tokens = gr.Slider( | |
| minimum=256, | |
| maximum=8192, | |
| step=128, | |
| value=DEFAULT_MAX_NEW_TOKENS, | |
| label="max_new_tokens", | |
| ) | |
| run_btn = gr.Button("Generate Voice", variant="primary", elem_id="run-btn") | |
| with gr.Column(scale=2): | |
| output_audio = gr.Audio(label="Output Audio", type="numpy", elem_id="output_audio") | |
| status = gr.Textbox(label="Status", lines=4, interactive=False) | |
| examples_table = gr.Dataframe( | |
| headers=["Voice Instruction", "Example Text"], | |
| value=[[example_instruction, example_text] for _, example_instruction, example_text in EXAMPLE_ROWS], | |
| datatype=["str", "str"], | |
| row_count=(len(EXAMPLE_ROWS), "fixed"), | |
| col_count=(2, "fixed"), | |
| interactive=False, | |
| wrap=True, | |
| label="Examples (click a row to fill inputs)", | |
| ) | |
| examples_table.select( | |
| fn=apply_example_selection, | |
| inputs=[], | |
| outputs=[instruction, text], | |
| ) | |
| run_btn.click( | |
| fn=run_inference, | |
| inputs=[ | |
| text, | |
| instruction, | |
| temperature, | |
| top_p, | |
| top_k, | |
| repetition_penalty, | |
| max_new_tokens, | |
| gr.State(args.model_path), | |
| gr.State(args.device), | |
| gr.State(args.attn_implementation), | |
| ], | |
| outputs=[output_audio, status], | |
| ) | |
| return demo | |
| def resolve_runtime_attn(args: argparse.Namespace) -> argparse.Namespace: | |
| runtime_device = torch.device(args.device if torch.cuda.is_available() else "cpu") | |
| runtime_dtype = torch.bfloat16 if runtime_device.type == "cuda" else torch.float32 | |
| args.attn_implementation = resolve_attn_implementation( | |
| requested=args.attn_implementation, | |
| device=runtime_device, | |
| dtype=runtime_dtype, | |
| ) or "none" | |
| return args | |
| def parse_bool_env(name: str, default: bool) -> bool: | |
| value = os.getenv(name) | |
| if value is None: | |
| return default | |
| return value.strip().lower() in {"1", "true", "yes", "y", "on"} | |
| def parse_port(value: str | None, default: int) -> int: | |
| if not value: | |
| return default | |
| try: | |
| return int(value) | |
| except ValueError: | |
| return default | |
| def main(): | |
| parser = argparse.ArgumentParser(description="MOSS-VoiceGenerator Gradio Demo") | |
| parser.add_argument("--model_path", type=str, default=MODEL_PATH) | |
| parser.add_argument("--device", type=str, default="cuda:0") | |
| parser.add_argument("--attn_implementation", type=str, default=DEFAULT_ATTN_IMPLEMENTATION) | |
| parser.add_argument("--host", type=str, default="0.0.0.0") | |
| parser.add_argument( | |
| "--port", | |
| type=int, | |
| default=int(os.getenv("GRADIO_SERVER_PORT", os.getenv("PORT", "7860"))), | |
| ) | |
| parser.add_argument("--share", action="store_true") | |
| args = parser.parse_args() | |
| args.host = os.getenv("GRADIO_SERVER_NAME", args.host) | |
| args.port = parse_port(os.getenv("GRADIO_SERVER_PORT", os.getenv("PORT")), args.port) | |
| args = resolve_runtime_attn(args) | |
| print(f"[INFO] Using attn_implementation={args.attn_implementation}", flush=True) | |
| preload_enabled = parse_bool_env(PRELOAD_ENV_VAR, default=not bool(os.getenv("SPACE_ID"))) | |
| if preload_enabled: | |
| preload_started_at = time.monotonic() | |
| print( | |
| f"[Startup] Preloading backend: model={args.model_path}, device={args.device}, attn={args.attn_implementation}", | |
| flush=True, | |
| ) | |
| load_backend( | |
| model_path=args.model_path, | |
| device_str=args.device, | |
| attn_implementation=args.attn_implementation, | |
| ) | |
| print( | |
| f"[Startup] Backend preload finished in {time.monotonic() - preload_started_at:.2f}s", | |
| flush=True, | |
| ) | |
| else: | |
| print( | |
| f"[Startup] Skipping preload (set {PRELOAD_ENV_VAR}=1 to enable).", | |
| flush=True, | |
| ) | |
| demo = build_demo(args) | |
| demo.queue(max_size=16, default_concurrency_limit=1).launch( | |
| server_name=args.host, | |
| server_port=args.port, | |
| share=args.share, | |
| ssr_mode=False, | |
| ) | |
| if __name__ == "__main__": | |
| main() | |