gaoyang07
first init moss voice generator space demo
48336ae
import argparse
import functools
import importlib.util
import json
import os
from pathlib import Path
import re
import time
try:
import spaces
except ImportError:
class _SpacesFallback:
@staticmethod
def GPU(*_args, **_kwargs):
def _decorator(func):
return func
return _decorator
spaces = _SpacesFallback()
import gradio as gr
import numpy as np
import torch
from transformers import AutoModel, AutoProcessor
# Disable the broken cuDNN SDPA backend
torch.backends.cuda.enable_cudnn_sdp(False)
# Keep these enabled as fallbacks
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(True)
torch.backends.cuda.enable_math_sdp(True)
MODEL_PATH = "OpenMOSS-Team/MOSS-VoiceGenerator"
DEFAULT_ATTN_IMPLEMENTATION = "auto"
DEFAULT_MAX_NEW_TOKENS = 4096
PRELOAD_ENV_VAR = "MOSS_VOICE_GENERATOR_PRELOAD_AT_STARTUP"
EXAMPLE_TEXTS_JSONL_PATH = Path(__file__).resolve().parent / "text" / "moss_voice_generator_example_texts.jsonl"
def _parse_example_id(example_id: str) -> tuple[str, int] | None:
matched = re.fullmatch(r"(zh|en)/(\d+)", (example_id or "").strip())
if matched is None:
return None
return matched.group(1), int(matched.group(2))
def build_example_rows() -> list[tuple[str, str, str]]:
rows: list[tuple[str, int, str, str]] = []
with open(EXAMPLE_TEXTS_JSONL_PATH, "r", encoding="utf-8") as f:
for line in f:
if not line.strip():
continue
sample = json.loads(line)
parsed = _parse_example_id(sample.get("id", ""))
if parsed is None:
continue
language, index = parsed
instruction = str(sample.get("instruction", "")).strip()
text = str(sample.get("text", "")).strip()
rows.append((language, index, instruction, text))
language_order = {"zh": 0, "en": 1}
rows.sort(key=lambda item: (language_order.get(item[0], 99), item[1]))
return [(f"{language}/{index}", instruction, text) for language, index, instruction, text in rows]
EXAMPLE_ROWS = build_example_rows()
def apply_example_selection(evt: gr.SelectData):
if evt is None or evt.index is None:
return gr.update(), gr.update()
if isinstance(evt.index, (tuple, list)):
row_idx = int(evt.index[0])
else:
row_idx = int(evt.index)
if row_idx < 0 or row_idx >= len(EXAMPLE_ROWS):
return gr.update(), gr.update()
_, instruction_value, text_value = EXAMPLE_ROWS[row_idx]
return instruction_value, text_value
def resolve_attn_implementation(requested: str, device: torch.device, dtype: torch.dtype) -> str | None:
requested_norm = (requested or "").strip().lower()
if requested_norm in {"none"}:
return None
if requested_norm not in {"", "auto"}:
return requested
# Prefer FlashAttention 2 when package + device conditions are met.
if (
device.type == "cuda"
and importlib.util.find_spec("flash_attn") is not None
and dtype in {torch.float16, torch.bfloat16}
):
major, _ = torch.cuda.get_device_capability(device)
if major >= 8:
return "flash_attention_2"
# CUDA fallback: use PyTorch SDPA kernels.
if device.type == "cuda":
return "sdpa"
# CPU fallback.
return "eager"
@functools.lru_cache(maxsize=1)
def load_backend(model_path: str, device_str: str, attn_implementation: str):
device = torch.device(device_str if torch.cuda.is_available() else "cpu")
dtype = torch.bfloat16 if device.type == "cuda" else torch.float32
resolved_attn_implementation = resolve_attn_implementation(
requested=attn_implementation,
device=device,
dtype=dtype,
)
processor = AutoProcessor.from_pretrained(
model_path,
trust_remote_code=True,
normalize_inputs=True,
)
if hasattr(processor, "audio_tokenizer"):
processor.audio_tokenizer = processor.audio_tokenizer.to(device)
processor.audio_tokenizer.eval()
model_kwargs = {
"trust_remote_code": True,
"torch_dtype": dtype,
}
if resolved_attn_implementation:
model_kwargs["attn_implementation"] = resolved_attn_implementation
model = AutoModel.from_pretrained(model_path, **model_kwargs).to(device)
model.eval()
sample_rate = int(getattr(processor.model_config, "sampling_rate", 24000))
return model, processor, device, sample_rate
def build_conversation(text: str, instruction: str, processor):
text = (text or "").strip()
instruction = (instruction or "").strip()
if not text:
raise ValueError("Please enter text to synthesize.")
if not instruction:
raise ValueError("Please enter a voice instruction.")
return [[processor.build_user_message(text=text, instruction=instruction)]]
@spaces.GPU(duration=180)
def run_inference(
text: str,
instruction: str,
temperature: float,
top_p: float,
top_k: int,
repetition_penalty: float,
max_new_tokens: int,
model_path: str,
device: str,
attn_implementation: str,
):
started_at = time.monotonic()
model, processor, torch_device, sample_rate = load_backend(
model_path=model_path,
device_str=device,
attn_implementation=attn_implementation,
)
conversations = build_conversation(
text=text,
instruction=instruction,
processor=processor,
)
batch = processor(conversations, mode="generation")
input_ids = batch["input_ids"].to(torch_device)
attention_mask = batch["attention_mask"].to(torch_device)
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=int(max_new_tokens),
audio_temperature=float(temperature),
audio_top_p=float(top_p),
audio_top_k=int(top_k),
audio_repetition_penalty=float(repetition_penalty),
)
messages = processor.decode(outputs)
if not messages or messages[0] is None:
raise RuntimeError("The model did not return a decodable audio result.")
audio = messages[0].audio_codes_list[0]
if isinstance(audio, torch.Tensor):
audio_np = audio.detach().float().cpu().numpy()
else:
audio_np = np.asarray(audio, dtype=np.float32)
if audio_np.ndim > 1:
audio_np = audio_np.reshape(-1)
audio_np = audio_np.astype(np.float32, copy=False)
elapsed = time.monotonic() - started_at
status = (
f"Done | elapsed: {elapsed:.2f}s | "
f"max_new_tokens={int(max_new_tokens)}, "
f"audio_temperature={float(temperature):.2f}, audio_top_p={float(top_p):.2f}, "
f"audio_top_k={int(top_k)}, audio_repetition_penalty={float(repetition_penalty):.2f}"
)
return (sample_rate, audio_np), status
def build_demo(args: argparse.Namespace):
custom_css = """
:root {
--bg: #f6f7f8;
--panel: #ffffff;
--ink: #111418;
--muted: #4d5562;
--line: #e5e7eb;
--accent: #0f766e;
}
.gradio-container {
background: linear-gradient(180deg, #f7f8fa 0%, #f3f5f7 100%);
color: var(--ink);
}
.app-card {
border: 1px solid var(--line);
border-radius: 16px;
background: var(--panel);
padding: 14px;
}
.app-title {
font-size: 22px;
font-weight: 700;
margin-bottom: 6px;
letter-spacing: 0.2px;
}
.app-subtitle {
color: var(--muted);
font-size: 14px;
margin-bottom: 8px;
}
#output_audio {
padding-bottom: 12px;
margin-bottom: 8px;
overflow: hidden !important;
}
#output_audio > .wrap {
overflow: hidden !important;
}
#output_audio audio {
margin-bottom: 6px;
}
#run-btn {
background: var(--accent);
border: none;
}
"""
with gr.Blocks(title="MOSS-VoiceGenerator Demo", css=custom_css) as demo:
gr.Markdown(
"""
<div class="app-card">
<div class="app-title">MOSS-VoiceGenerator</div>
<div class="app-subtitle">Design expressive voices from instruction + text without reference audio.</div>
</div>
"""
)
with gr.Row(equal_height=False):
with gr.Column(scale=3):
instruction = gr.Textbox(
label="Voice Instruction",
lines=5,
placeholder="Example: Warm, gentle female narrator voice with calm pacing and clear articulation.",
)
text = gr.Textbox(
label="Text",
lines=8,
placeholder="Enter the text content to synthesize with the instruction-defined voice.",
)
with gr.Accordion("Sampling Parameters (Audio)", open=True):
temperature = gr.Slider(
minimum=0.1,
maximum=3.0,
step=0.05,
value=1.5,
label="temperature",
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
step=0.01,
value=0.6,
label="top_p",
)
top_k = gr.Slider(
minimum=1,
maximum=200,
step=1,
value=50,
label="top_k",
)
repetition_penalty = gr.Slider(
minimum=0.8,
maximum=2.0,
step=0.05,
value=1.1,
label="repetition_penalty",
)
max_new_tokens = gr.Slider(
minimum=256,
maximum=8192,
step=128,
value=DEFAULT_MAX_NEW_TOKENS,
label="max_new_tokens",
)
run_btn = gr.Button("Generate Voice", variant="primary", elem_id="run-btn")
with gr.Column(scale=2):
output_audio = gr.Audio(label="Output Audio", type="numpy", elem_id="output_audio")
status = gr.Textbox(label="Status", lines=4, interactive=False)
examples_table = gr.Dataframe(
headers=["Voice Instruction", "Example Text"],
value=[[example_instruction, example_text] for _, example_instruction, example_text in EXAMPLE_ROWS],
datatype=["str", "str"],
row_count=(len(EXAMPLE_ROWS), "fixed"),
col_count=(2, "fixed"),
interactive=False,
wrap=True,
label="Examples (click a row to fill inputs)",
)
examples_table.select(
fn=apply_example_selection,
inputs=[],
outputs=[instruction, text],
)
run_btn.click(
fn=run_inference,
inputs=[
text,
instruction,
temperature,
top_p,
top_k,
repetition_penalty,
max_new_tokens,
gr.State(args.model_path),
gr.State(args.device),
gr.State(args.attn_implementation),
],
outputs=[output_audio, status],
)
return demo
def resolve_runtime_attn(args: argparse.Namespace) -> argparse.Namespace:
runtime_device = torch.device(args.device if torch.cuda.is_available() else "cpu")
runtime_dtype = torch.bfloat16 if runtime_device.type == "cuda" else torch.float32
args.attn_implementation = resolve_attn_implementation(
requested=args.attn_implementation,
device=runtime_device,
dtype=runtime_dtype,
) or "none"
return args
def parse_bool_env(name: str, default: bool) -> bool:
value = os.getenv(name)
if value is None:
return default
return value.strip().lower() in {"1", "true", "yes", "y", "on"}
def parse_port(value: str | None, default: int) -> int:
if not value:
return default
try:
return int(value)
except ValueError:
return default
def main():
parser = argparse.ArgumentParser(description="MOSS-VoiceGenerator Gradio Demo")
parser.add_argument("--model_path", type=str, default=MODEL_PATH)
parser.add_argument("--device", type=str, default="cuda:0")
parser.add_argument("--attn_implementation", type=str, default=DEFAULT_ATTN_IMPLEMENTATION)
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument(
"--port",
type=int,
default=int(os.getenv("GRADIO_SERVER_PORT", os.getenv("PORT", "7860"))),
)
parser.add_argument("--share", action="store_true")
args = parser.parse_args()
args.host = os.getenv("GRADIO_SERVER_NAME", args.host)
args.port = parse_port(os.getenv("GRADIO_SERVER_PORT", os.getenv("PORT")), args.port)
args = resolve_runtime_attn(args)
print(f"[INFO] Using attn_implementation={args.attn_implementation}", flush=True)
preload_enabled = parse_bool_env(PRELOAD_ENV_VAR, default=not bool(os.getenv("SPACE_ID")))
if preload_enabled:
preload_started_at = time.monotonic()
print(
f"[Startup] Preloading backend: model={args.model_path}, device={args.device}, attn={args.attn_implementation}",
flush=True,
)
load_backend(
model_path=args.model_path,
device_str=args.device,
attn_implementation=args.attn_implementation,
)
print(
f"[Startup] Backend preload finished in {time.monotonic() - preload_started_at:.2f}s",
flush=True,
)
else:
print(
f"[Startup] Skipping preload (set {PRELOAD_ENV_VAR}=1 to enable).",
flush=True,
)
demo = build_demo(args)
demo.queue(max_size=16, default_concurrency_limit=1).launch(
server_name=args.host,
server_port=args.port,
share=args.share,
ssr_mode=False,
)
if __name__ == "__main__":
main()