File size: 7,968 Bytes
561f65d
 
387f325
561f65d
 
 
 
387f325
 
 
3937a09
561f65d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e6de6d
561f65d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3937a09
561f65d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
387f325
 
561f65d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
387f325
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# app.py
import json
import random
from pathlib import Path

import solara
import pandas as pd
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForCausalLM

# ---- Model (same as original Space) -----------------------------------------
MODEL_ID = "Qwen/Qwen3-0.6B"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(MODEL_ID)

# ---- App state ---------------------------------------------------------------
text_rx = solara.reactive("twinkle, twinkle, little ")
top10_rx = solara.reactive(pd.DataFrame(columns=["probs", "next token ID", "predicted next token"]))
selected_token_id_rx = solara.reactive(None)   # for neighborhood focus
notice_rx = solara.reactive("Enter text to see predictions.")
theme_css = solara.reactive("""
<style>
:root {
  --primary: #38bdf8;   /* light blue */
  --bg: #ffffff;        /* white */
  --text: #000000;      /* black */
  --muted: #6b7280;     /* gray-500 */
  --border: #e5e7eb;    /* gray-200 */
}
body { background: var(--bg); color: var(--text); }
h1, h2, h3 { color: var(--text); }
table td, table th { border-color: var(--border) !important; }
.solara-dataframe .MuiTableCell-root { font-size: 14px; }
.btn-primary { background: var(--primary); color: #000; border: 1px solid var(--primary); padding: 6px 10px; border-radius: 8px; }
.badge { display:inline-block; padding:2px 8px; border:1px solid var(--border); border-radius:999px; color:var(--text); }
</style>
""")

# ---- Load embedding assets (your files) --------------------------------------
ASSETS = Path("assets/embeddings")
COORDS_PATH = ASSETS / "pca_top5k_coords.json"
NEIGH_PATH = ASSETS / "neighbors_top5k_k40.json"

coords = {}
neighbors = {}
ids_set = set()

if COORDS_PATH.exists() and NEIGH_PATH.exists():
    with COORDS_PATH.open("r", encoding="utf-8") as f:
        coords = json.load(f)            # {token_id: [x, y], ...}
    with NEIGH_PATH.open("r", encoding="utf-8") as f:
        neighbors = json.load(f)         # {"neighbors": {token_id: [[nid, sim], ...]}}
    ids_set = set(map(int, coords.keys()))
else:
    notice_rx.set("Embedding files not found. Add assets/embeddings/*.json to enable the map.")

# ---- Helpers -----------------------------------------------------------------
def predict_top10(prompt: str) -> pd.DataFrame:
    if not prompt:
        return pd.DataFrame(columns=["probs", "next token ID", "predicted next token"])

    tokens = tokenizer.encode(prompt, return_tensors="pt")
    out = model.generate(
        tokens,
        max_new_tokens=1,
        output_scores=True,
        return_dict_in_generate=True,
        pad_token_id=tokenizer.eos_token_id,
        do_sample=False,  # greedy (deterministic)
        temperature=0.0,
        top_k=1,
        top_p=1.0,
    )
    scores = F.softmax(out.scores[0], dim=-1)      # [1, vocab]
    top_10 = torch.topk(scores, 10)

    df = pd.DataFrame()
    df["probs"] = top_10.values[0].detach().cpu().numpy()
    df["probs"] = [f"{p:.2%}" for p in df["probs"]]
    ids = [int(top_10.indices[0][i].detach().cpu().item()) for i in range(10)]
    df["next token ID"] = ids
    df["predicted next token"] = [tokenizer.decode([i]) for i in ids]
    return df

def get_neighbor_list(token_id: int, k: int = 18):
    if not ids_set or token_id not in ids_set:
        return []
    raw = neighbors.get("neighbors", {}).get(str(token_id), [])
    # raw item is [nid, sim]; keep top k
    return raw[:k]

# ---- Plot (Plotly scatter) ---------------------------------------------------
# We generate a static "all points" scatter once, then reuse it with highlights.
import plotly.graph_objects as go

def base_scatter():
    if not coords:
        return go.Figure().update_layout(
            height=440, margin=dict(l=10, r=10, t=10, b=10),
            paper_bgcolor="white", plot_bgcolor="white",
        )
    # unpack coordinates
    xs, ys, tids = [], [], []
    for tid_str, pt in coords.items():
        xs.append(pt[0]); ys.append(pt[1]); tids.append(int(tid_str))
    fig = go.Figure()
    fig.add_trace(go.Scattergl(
        x=xs, y=ys, mode="markers",
        marker=dict(size=3, opacity=0.85),
        text=[f"id {t}" for t in tids],
        hoverinfo="skip",  # keep hover minimal; we’ll show neighbors explicitly
    ))
    fig.update_layout(
        height=440, margin=dict(l=10, r=10, t=10, b=10),
        paper_bgcolor="white", plot_bgcolor="white",
        xaxis=dict(visible=False), yaxis=dict(visible=False),
    )
    return fig

base_fig = base_scatter()
fig_rx = solara.reactive(base_fig)

def highlight(token_id: int):
    """Return a new figure with neighbors + target highlighted."""
    fig = base_fig.to_dict()  # detach copy
    fig = go.Figure(fig)

    if not coords or token_id not in ids_set:
        return fig

    # Target
    tx, ty = coords[str(token_id)]
    fig.add_trace(go.Scattergl(
        x=[tx], y=[ty], mode="markers",
        marker=dict(size=8, line=dict(width=1), symbol="circle"),
        name="target",
    ))

    # Neighbors
    nbrs = get_neighbor_list(token_id)
    if nbrs:
        nx = [coords[str(nid)][0] for nid, _ in nbrs]
        ny = [coords[str(nid)][1] for nid, _ in nbrs]
        fig.add_trace(go.Scattergl(
            x=nx, y=ny, mode="markers",
            marker=dict(size=6, symbol="circle-open"),
            name="neighbors",
        ))
    fig.update_layout(showlegend=False)
    return fig

# ---- UI actions --------------------------------------------------------------
def on_append_cell(column, row_index):
    # append chosen next token to the text input
    df = top10_rx.value
    if row_index < len(df):
        token_id = int(df.iloc[row_index]["next token ID"])
        decoded = tokenizer.decode([token_id])
        text_rx.set(text_rx.value + decoded)
        selected_token_id_rx.set(token_id)
        # Update plot
        fig_rx.set(highlight(token_id))

cell_actions = [solara.CellAction(icon="mdi-plus", name="Append & highlight", on_click=on_append_cell)]

def on_predict():
    df = predict_top10(text_rx.value)
    top10_rx.set(df)
    notice_rx.set("Click a candidate to append it and highlight its neighborhood.")
    # also set selected to the top-1 for convenience
    if len(df) > 0:
        tid = int(df.iloc[0]["next token ID"])
        selected_token_id_rx.set(tid)
        fig_rx.set(highlight(tid))

def on_show_neighborhood():
    # take last token in the prompt (if any), otherwise do nothing
    ids = tokenizer.encode(text_rx.value)
    if ids:
        token_id = int(ids[-1])
        selected_token_id_rx.set(token_id)
        fig_rx.set(highlight(token_id))

# ---- Page --------------------------------------------------------------------
@solara.component
def Page():
    solara.HTML(tag="div", unsafe_inner_html=theme_css.value)  # inject CSS theme

    with solara.Column(margin=12, gap="16px"):
        solara.Markdown("# Next-Token Predictor + Semantic Neighborhood")
        solara.Markdown(
            "Type text, then **Predict** to see the next-token distribution. "
            "Click a candidate to append it and highlight its **semantic neighborhood**."
        )
        with solara.Row(gap="8px"):
            solara.InputText("Enter text", value=text_rx, continuous_update=True, style={"minWidth": "520px"})
            solara.Button("Predict", on_click=on_predict, classes=["btn-primary"])
            solara.Button("Show neighborhood of last token", on_click=on_show_neighborhood)

        solara.Markdown(f"*{notice_rx.value}*")

        # Top-10 table
        solara.Markdown("### Prediction")
        solara.DataFrame(top10_rx.value, items_per_page=10, cell_actions=cell_actions)

        # Neighborhood panel
        solara.Markdown("### Semantic Neighborhood")
        if not coords:
            solara.Markdown("> Embedding map unavailable – add `assets/embeddings/*.json`.")
        else:
            solara.FigurePlotly(fig_rx.value)

Page()