Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update README.md
#7
by
nayml
- opened
- .DS_Store +0 -0
- README.md +2 -4
- __lib__/__init__.py +0 -0
- __lib__/app.py +0 -1455
- __lib__/i18n/__init__.py +0 -36
- __lib__/i18n/ar.pyc +0 -0
- __lib__/i18n/da.pyc +0 -0
- __lib__/i18n/de.pyc +0 -0
- __lib__/i18n/en.pyc +0 -0
- __lib__/i18n/es.pyc +0 -0
- __lib__/i18n/fi.pyc +0 -0
- __lib__/i18n/fr.pyc +0 -0
- __lib__/i18n/he.pyc +0 -0
- __lib__/i18n/hi.pyc +0 -0
- __lib__/i18n/id.pyc +0 -0
- __lib__/i18n/it.pyc +0 -0
- __lib__/i18n/ja.pyc +0 -0
- __lib__/i18n/nl.pyc +0 -0
- __lib__/i18n/no.pyc +0 -0
- __lib__/i18n/pt.pyc +0 -0
- __lib__/i18n/ru.pyc +0 -0
- __lib__/i18n/sv.pyc +0 -0
- __lib__/i18n/tr.pyc +0 -0
- __lib__/i18n/uk.pyc +0 -0
- __lib__/i18n/vi.pyc +0 -0
- __lib__/i18n/zh.pyc +0 -0
- __lib__/nfsw.pyc +0 -0
- __lib__/pipeline.pyc +0 -0
- __lib__/util.pyc +0 -0
- app.py +1439 -51
- nfsw.py +262 -0
- pipeline.py +0 -1934
- push.sh +13 -0
- util.py +729 -0
.DS_Store
CHANGED
|
Binary files a/.DS_Store and b/.DS_Store differ
|
|
|
README.md
CHANGED
|
@@ -4,13 +4,11 @@ emoji: 🐨
|
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
-
python_version: "3.13"
|
| 12 |
short_description: AI-powered image editing tool
|
| 13 |
---
|
| 14 |
|
| 15 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 16 |
-
|
|
|
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.48.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
|
|
|
| 11 |
short_description: AI-powered image editing tool
|
| 12 |
---
|
| 13 |
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
__lib__/__init__.py
DELETED
|
File without changes
|
__lib__/app.py
DELETED
|
@@ -1,1455 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import threading
|
| 3 |
-
import os
|
| 4 |
-
import shutil
|
| 5 |
-
import tempfile
|
| 6 |
-
import time
|
| 7 |
-
import json
|
| 8 |
-
from util import process_image_edit, download_and_check_result_nsfw, GoodWebsiteUrl
|
| 9 |
-
from nfsw import NSFWDetector
|
| 10 |
-
|
| 11 |
-
# Google Gemini URL for restricted languages
|
| 12 |
-
GOOGLE_GEMINI_URL = "https://aistudio.google.com/models/gemini-2-5-flash-image"
|
| 13 |
-
|
| 14 |
-
# i18n - Load from encrypted modules
|
| 15 |
-
import sys
|
| 16 |
-
from pathlib import Path
|
| 17 |
-
|
| 18 |
-
# Add i18n module to path
|
| 19 |
-
_i18n_module_path = Path(__file__).parent / "i18n"
|
| 20 |
-
if str(_i18n_module_path) not in sys.path:
|
| 21 |
-
sys.path.insert(0, str(_i18n_module_path))
|
| 22 |
-
|
| 23 |
-
# Import encrypted i18n loader
|
| 24 |
-
from i18n import translations as _translations
|
| 25 |
-
translations = _translations
|
| 26 |
-
|
| 27 |
-
def load_translations():
|
| 28 |
-
"""Compatibility function - translations are already loaded"""
|
| 29 |
-
return translations
|
| 30 |
-
|
| 31 |
-
def t(key, lang="en"):
|
| 32 |
-
return translations.get(lang, {}).get(key, key)
|
| 33 |
-
|
| 34 |
-
# Configuration parameters
|
| 35 |
-
# a = b
|
| 36 |
-
TIP_TRY_N = 1 # Show like button tip after x tries
|
| 37 |
-
FREE_TRY_N = 4 # Free phase: first 15 tries without restrictions
|
| 38 |
-
SLOW_TRY_N = 6 # Slow phase start: 25 tries
|
| 39 |
-
SLOW2_TRY_N = 10 # Slow phase start: 32 tries
|
| 40 |
-
RATE_LIMIT_60 = 14 # Full restriction: blocked after 40 tries
|
| 41 |
-
|
| 42 |
-
# Time window configuration (minutes)
|
| 43 |
-
PHASE_1_WINDOW = 6 # 15-25 tries: 5 minutes
|
| 44 |
-
PHASE_2_WINDOW = 13 # 25-32 tries: 10 minutes
|
| 45 |
-
PHASE_3_WINDOW = 20 # 32-40 tries: 20 minutes
|
| 46 |
-
MAX_IMAGES_PER_WINDOW = 2 # Max images per time window
|
| 47 |
-
high_priority_n = 1 # 每个ip只有第一个任务是高优先级的
|
| 48 |
-
|
| 49 |
-
IP_Dict = {}
|
| 50 |
-
# IP generation statistics and time window tracking
|
| 51 |
-
IP_Generation_Count = {} # Record total generation count for each IP
|
| 52 |
-
IP_Rate_Limit_Track = {} # Record generation count and timestamp in current time window for each IP
|
| 53 |
-
IP_Country_Cache = {} # Cache IP country information to avoid repeated queries
|
| 54 |
-
|
| 55 |
-
# Country usage statistics
|
| 56 |
-
Country_Usage_Stats = {} # Track usage count by country
|
| 57 |
-
Total_Request_Count = 0 # Total request counter for periodic printing
|
| 58 |
-
PRINT_STATS_INTERVAL = 10 # Print stats every N requests
|
| 59 |
-
|
| 60 |
-
# Async IP query tracking
|
| 61 |
-
IP_Query_Results = {} # Track async query results
|
| 62 |
-
# Active task tracking (within recent time window)
|
| 63 |
-
Active_Tasks = {} # {client_ip: {"start": timestamp}}
|
| 64 |
-
|
| 65 |
-
# Restricted countries list (these countries have lower usage limits)
|
| 66 |
-
RESTRICTED_COUNTRIES = ["印度", "巴基斯坦", "俄罗斯", "中国", "伊朗"]
|
| 67 |
-
RESTRICTED_COUNTRY_LIMIT = 1 # Max usage for restricted countries
|
| 68 |
-
|
| 69 |
-
country_dict = {
|
| 70 |
-
"zh": ["中国"],
|
| 71 |
-
"hi": ["印度"],
|
| 72 |
-
"fi": ["芬兰"],
|
| 73 |
-
"en": ["美国", "澳大利亚", "英国", "加拿大", "新西兰", "爱尔兰"],
|
| 74 |
-
"es": ["西班牙", "墨西哥", "阿根廷", "哥伦比亚", "智利", "秘鲁"],
|
| 75 |
-
"pt": ["葡萄牙", "巴西"],
|
| 76 |
-
"fr": ["法国", "摩纳哥"],
|
| 77 |
-
"de": ["德国", "奥地利", ],
|
| 78 |
-
"it": ["意大利", "圣马力诺", "梵蒂冈"],
|
| 79 |
-
"ja": ["日本"],
|
| 80 |
-
"ru": ["俄罗斯"],
|
| 81 |
-
"uk": ["乌克兰"],
|
| 82 |
-
"ar": ["沙特阿拉伯", "埃及", "阿拉伯联合酋长国", "摩洛哥"],
|
| 83 |
-
"nl":["荷兰"],
|
| 84 |
-
"no":["挪威"],
|
| 85 |
-
"sv":["瑞典"],
|
| 86 |
-
"id":["印度尼西亚"],
|
| 87 |
-
"vi": ["越南"],
|
| 88 |
-
"he": ["以色列"],
|
| 89 |
-
"tr": ["土耳其"],
|
| 90 |
-
"da": ["丹麦"],
|
| 91 |
-
}
|
| 92 |
-
|
| 93 |
-
def query_ip_country(client_ip):
|
| 94 |
-
"""
|
| 95 |
-
Query IP address geo information with robust error handling
|
| 96 |
-
|
| 97 |
-
Features:
|
| 98 |
-
- 3 second timeout limit
|
| 99 |
-
- Comprehensive error handling
|
| 100 |
-
- Automatic fallback to default values
|
| 101 |
-
- Cache mechanism to avoid repeated queries
|
| 102 |
-
|
| 103 |
-
Returns:
|
| 104 |
-
dict: {"country": str, "region": str, "city": str}
|
| 105 |
-
"""
|
| 106 |
-
# Check cache first - no API call for subsequent visits
|
| 107 |
-
if client_ip in IP_Country_Cache:
|
| 108 |
-
print(f"Using cached IP data for {client_ip}")
|
| 109 |
-
return IP_Country_Cache[client_ip]
|
| 110 |
-
|
| 111 |
-
# Validate IP address
|
| 112 |
-
if not client_ip or client_ip in ["127.0.0.1", "localhost", "::1"]:
|
| 113 |
-
print(f"Invalid or local IP address: {client_ip}, using default")
|
| 114 |
-
default_geo = {"country": "Unknown", "region": "Unknown", "city": "Unknown"}
|
| 115 |
-
IP_Country_Cache[client_ip] = default_geo
|
| 116 |
-
return default_geo
|
| 117 |
-
|
| 118 |
-
# First time visit - query API with robust error handling
|
| 119 |
-
print(f"Querying IP geolocation for {client_ip}...")
|
| 120 |
-
|
| 121 |
-
try:
|
| 122 |
-
import requests
|
| 123 |
-
from requests.exceptions import Timeout, ConnectionError, RequestException
|
| 124 |
-
|
| 125 |
-
api_url = f"https://api.vore.top/api/IPdata?ip={client_ip}"
|
| 126 |
-
|
| 127 |
-
# Make request with 3 second timeout
|
| 128 |
-
response = requests.get(api_url, timeout=3)
|
| 129 |
-
|
| 130 |
-
if response.status_code == 200:
|
| 131 |
-
data = response.json()
|
| 132 |
-
if data.get("code") == 200 and "ipdata" in data:
|
| 133 |
-
ipdata = data["ipdata"]
|
| 134 |
-
geo_info = {
|
| 135 |
-
"country": ipdata.get("info1", "Unknown"),
|
| 136 |
-
"region": ipdata.get("info2", "Unknown"),
|
| 137 |
-
"city": ipdata.get("info3", "Unknown")
|
| 138 |
-
}
|
| 139 |
-
IP_Country_Cache[client_ip] = geo_info
|
| 140 |
-
print(f"Successfully detected location for {client_ip}: {geo_info['country']}")
|
| 141 |
-
return geo_info
|
| 142 |
-
else:
|
| 143 |
-
print(f"API returned invalid data for {client_ip}: {data}")
|
| 144 |
-
else:
|
| 145 |
-
print(f"API request failed with status {response.status_code} for {client_ip}")
|
| 146 |
-
|
| 147 |
-
except Timeout:
|
| 148 |
-
print(f"Timeout (>3s) querying IP location for {client_ip}, using default")
|
| 149 |
-
except ConnectionError:
|
| 150 |
-
print(f"Network connection error for IP {client_ip}, using default")
|
| 151 |
-
except RequestException as e:
|
| 152 |
-
print(f"Request error for IP {client_ip}: {e}, using default")
|
| 153 |
-
except Exception as e:
|
| 154 |
-
print(f"Unexpected error querying IP {client_ip}: {e}, using default")
|
| 155 |
-
|
| 156 |
-
# All failures lead here - cache default and return
|
| 157 |
-
default_geo = {"country": "Unknown", "region": "Unknown", "city": "Unknown"}
|
| 158 |
-
IP_Country_Cache[client_ip] = default_geo
|
| 159 |
-
print(f"Cached default location for {client_ip}")
|
| 160 |
-
return default_geo
|
| 161 |
-
|
| 162 |
-
def query_ip_country_async(client_ip):
|
| 163 |
-
"""
|
| 164 |
-
Async version that returns immediately with default, then updates cache in background
|
| 165 |
-
|
| 166 |
-
Returns:
|
| 167 |
-
tuple: (immediate_lang, geo_info_or_none)
|
| 168 |
-
"""
|
| 169 |
-
# If already cached, return immediately
|
| 170 |
-
if client_ip in IP_Country_Cache:
|
| 171 |
-
geo_info = IP_Country_Cache[client_ip]
|
| 172 |
-
lang = get_lang_from_country(geo_info["country"])
|
| 173 |
-
return lang, geo_info
|
| 174 |
-
|
| 175 |
-
# Return default immediately, query in background
|
| 176 |
-
return "en", None
|
| 177 |
-
|
| 178 |
-
def get_lang_from_country(country):
|
| 179 |
-
"""
|
| 180 |
-
Map country name to language code with comprehensive validation
|
| 181 |
-
|
| 182 |
-
Features:
|
| 183 |
-
- Handles invalid/empty input
|
| 184 |
-
- Case-insensitive matching
|
| 185 |
-
- Detailed logging
|
| 186 |
-
- Always returns valid language code
|
| 187 |
-
|
| 188 |
-
Args:
|
| 189 |
-
country (str): Country name
|
| 190 |
-
|
| 191 |
-
Returns:
|
| 192 |
-
str: Language code (always valid, defaults to "en")
|
| 193 |
-
"""
|
| 194 |
-
# Input validation
|
| 195 |
-
if not country or not isinstance(country, str) or country.strip() == "":
|
| 196 |
-
print(f"Invalid country provided: '{country}', defaulting to English")
|
| 197 |
-
return "en"
|
| 198 |
-
|
| 199 |
-
# Normalize country name
|
| 200 |
-
country = country.strip()
|
| 201 |
-
if country.lower() == "unknown":
|
| 202 |
-
print(f"Unknown country, defaulting to English")
|
| 203 |
-
return "en"
|
| 204 |
-
|
| 205 |
-
try:
|
| 206 |
-
# Search in country dictionary with case-sensitive match first
|
| 207 |
-
for lang, countries in country_dict.items():
|
| 208 |
-
if country in countries:
|
| 209 |
-
print(f"Matched country '{country}' to language '{lang}'")
|
| 210 |
-
return lang
|
| 211 |
-
|
| 212 |
-
# If no exact match, try case-insensitive match
|
| 213 |
-
country_lower = country.lower()
|
| 214 |
-
for lang, countries in country_dict.items():
|
| 215 |
-
for country_variant in countries:
|
| 216 |
-
if country_variant.lower() == country_lower:
|
| 217 |
-
print(f"Case-insensitive match: country '{country}' to language '{lang}'")
|
| 218 |
-
return lang
|
| 219 |
-
|
| 220 |
-
# No match found
|
| 221 |
-
print(f"Country '{country}' not found in country_dict, defaulting to English")
|
| 222 |
-
return "en"
|
| 223 |
-
|
| 224 |
-
except Exception as e:
|
| 225 |
-
print(f"Error matching country '{country}': {e}, defaulting to English")
|
| 226 |
-
return "en"
|
| 227 |
-
|
| 228 |
-
def get_lang_from_ip(client_ip):
|
| 229 |
-
"""
|
| 230 |
-
Get language based on IP geolocation with comprehensive error handling
|
| 231 |
-
|
| 232 |
-
Features:
|
| 233 |
-
- Validates input IP address
|
| 234 |
-
- Handles all possible exceptions
|
| 235 |
-
- Always returns a valid language code
|
| 236 |
-
- Defaults to English on any failure
|
| 237 |
-
- Includes detailed logging
|
| 238 |
-
|
| 239 |
-
Args:
|
| 240 |
-
client_ip (str): Client IP address
|
| 241 |
-
|
| 242 |
-
Returns:
|
| 243 |
-
str: Language code (always valid, defaults to "en")
|
| 244 |
-
"""
|
| 245 |
-
# Input validation
|
| 246 |
-
if not client_ip or not isinstance(client_ip, str):
|
| 247 |
-
print(f"Invalid IP address provided: {client_ip}, defaulting to English")
|
| 248 |
-
return "en"
|
| 249 |
-
|
| 250 |
-
try:
|
| 251 |
-
# Query geolocation info (has its own error handling and 3s timeout)
|
| 252 |
-
geo_info = query_ip_country(client_ip)
|
| 253 |
-
|
| 254 |
-
if not geo_info or not isinstance(geo_info, dict):
|
| 255 |
-
print(f"No geolocation data for {client_ip}, defaulting to English")
|
| 256 |
-
return "en"
|
| 257 |
-
|
| 258 |
-
# Extract country with fallback
|
| 259 |
-
country = geo_info.get("country", "Unknown")
|
| 260 |
-
if not country or country == "Unknown":
|
| 261 |
-
print(f"Unknown country for IP {client_ip}, defaulting to English")
|
| 262 |
-
return "en"
|
| 263 |
-
|
| 264 |
-
# Map country to language
|
| 265 |
-
detected_lang = get_lang_from_country(country)
|
| 266 |
-
|
| 267 |
-
# Validate language code
|
| 268 |
-
if not detected_lang or not isinstance(detected_lang, str) or len(detected_lang) != 2:
|
| 269 |
-
print(f"Invalid language code '{detected_lang}' for {client_ip}, defaulting to English")
|
| 270 |
-
return "en"
|
| 271 |
-
|
| 272 |
-
print(f"IP {client_ip} -> Country: {country} -> Language: {detected_lang}")
|
| 273 |
-
return detected_lang
|
| 274 |
-
|
| 275 |
-
except Exception as e:
|
| 276 |
-
print(f"Unexpected error getting language from IP {client_ip}: {e}, defaulting to English")
|
| 277 |
-
return "en" # Always return a valid language code
|
| 278 |
-
|
| 279 |
-
def is_restricted_country_ip(client_ip):
|
| 280 |
-
"""
|
| 281 |
-
Check if IP is from a restricted country
|
| 282 |
-
|
| 283 |
-
Returns:
|
| 284 |
-
bool: True if from restricted country
|
| 285 |
-
"""
|
| 286 |
-
geo_info = query_ip_country(client_ip)
|
| 287 |
-
country = geo_info["country"]
|
| 288 |
-
return country in RESTRICTED_COUNTRIES
|
| 289 |
-
|
| 290 |
-
def get_ip_max_limit(client_ip):
|
| 291 |
-
"""
|
| 292 |
-
Get max usage limit for IP based on country
|
| 293 |
-
|
| 294 |
-
Returns:
|
| 295 |
-
int: Max usage limit
|
| 296 |
-
"""
|
| 297 |
-
if is_restricted_country_ip(client_ip):
|
| 298 |
-
return RESTRICTED_COUNTRY_LIMIT
|
| 299 |
-
else:
|
| 300 |
-
return RATE_LIMIT_60
|
| 301 |
-
|
| 302 |
-
def get_ip_generation_count(client_ip):
|
| 303 |
-
"""
|
| 304 |
-
Get IP generation count
|
| 305 |
-
"""
|
| 306 |
-
if client_ip not in IP_Generation_Count:
|
| 307 |
-
IP_Generation_Count[client_ip] = 0
|
| 308 |
-
return IP_Generation_Count[client_ip]
|
| 309 |
-
|
| 310 |
-
def increment_ip_generation_count(client_ip):
|
| 311 |
-
"""
|
| 312 |
-
Increment IP generation count
|
| 313 |
-
"""
|
| 314 |
-
if client_ip not in IP_Generation_Count:
|
| 315 |
-
IP_Generation_Count[client_ip] = 0
|
| 316 |
-
IP_Generation_Count[client_ip] += 1
|
| 317 |
-
return IP_Generation_Count[client_ip]
|
| 318 |
-
|
| 319 |
-
def get_ip_phase(client_ip):
|
| 320 |
-
"""
|
| 321 |
-
Get current phase for IP
|
| 322 |
-
|
| 323 |
-
Returns:
|
| 324 |
-
str: 'free', 'rate_limit_1', 'rate_limit_2', 'rate_limit_3', 'blocked'
|
| 325 |
-
"""
|
| 326 |
-
count = get_ip_generation_count(client_ip)
|
| 327 |
-
max_limit = get_ip_max_limit(client_ip)
|
| 328 |
-
|
| 329 |
-
# For restricted countries, check if they've reached their limit
|
| 330 |
-
if is_restricted_country_ip(client_ip):
|
| 331 |
-
if count >= max_limit:
|
| 332 |
-
return 'blocked'
|
| 333 |
-
elif count >= max_limit - 2: # Last 2 attempts
|
| 334 |
-
return 'rate_limit_3'
|
| 335 |
-
elif count >= max_limit - 3: # 3rd attempt from end
|
| 336 |
-
return 'rate_limit_2'
|
| 337 |
-
elif count >= max_limit - 4: # 4th attempt from end
|
| 338 |
-
return 'rate_limit_1'
|
| 339 |
-
else:
|
| 340 |
-
return 'free'
|
| 341 |
-
|
| 342 |
-
# For normal countries, use standard limits
|
| 343 |
-
if count < FREE_TRY_N:
|
| 344 |
-
return 'free'
|
| 345 |
-
elif count < SLOW_TRY_N:
|
| 346 |
-
return 'rate_limit_1' # NSFW blur + 5 minutes 2 images
|
| 347 |
-
elif count < SLOW2_TRY_N:
|
| 348 |
-
return 'rate_limit_2' # NSFW blur + 10 minutes 2 images
|
| 349 |
-
elif count < max_limit:
|
| 350 |
-
return 'rate_limit_3' # NSFW blur + 20 minutes 2 images
|
| 351 |
-
else:
|
| 352 |
-
return 'blocked' # Generation blocked
|
| 353 |
-
|
| 354 |
-
def check_rate_limit_for_phase(client_ip, phase):
|
| 355 |
-
"""
|
| 356 |
-
Check rate limit for specific phase
|
| 357 |
-
|
| 358 |
-
Returns:
|
| 359 |
-
tuple: (is_limited, wait_time_minutes, current_count)
|
| 360 |
-
"""
|
| 361 |
-
if phase not in ['rate_limit_1', 'rate_limit_2', 'rate_limit_3']:
|
| 362 |
-
return False, 0, 0
|
| 363 |
-
|
| 364 |
-
# Determine time window
|
| 365 |
-
if phase == 'rate_limit_1':
|
| 366 |
-
window_minutes = PHASE_1_WINDOW
|
| 367 |
-
elif phase == 'rate_limit_2':
|
| 368 |
-
window_minutes = PHASE_2_WINDOW
|
| 369 |
-
else: # rate_limit_3
|
| 370 |
-
window_minutes = PHASE_3_WINDOW
|
| 371 |
-
|
| 372 |
-
current_time = time.time()
|
| 373 |
-
window_key = f"{client_ip}_{phase}"
|
| 374 |
-
|
| 375 |
-
# Clean expired records
|
| 376 |
-
if window_key in IP_Rate_Limit_Track:
|
| 377 |
-
track_data = IP_Rate_Limit_Track[window_key]
|
| 378 |
-
# Check if within current time window
|
| 379 |
-
if current_time - track_data['start_time'] > window_minutes * 60:
|
| 380 |
-
# Time window expired, reset
|
| 381 |
-
IP_Rate_Limit_Track[window_key] = {
|
| 382 |
-
'count': 0,
|
| 383 |
-
'start_time': current_time,
|
| 384 |
-
'last_generation': current_time
|
| 385 |
-
}
|
| 386 |
-
else:
|
| 387 |
-
# Initialize
|
| 388 |
-
IP_Rate_Limit_Track[window_key] = {
|
| 389 |
-
'count': 0,
|
| 390 |
-
'start_time': current_time,
|
| 391 |
-
'last_generation': current_time
|
| 392 |
-
}
|
| 393 |
-
|
| 394 |
-
track_data = IP_Rate_Limit_Track[window_key]
|
| 395 |
-
|
| 396 |
-
# Check if exceeded limit
|
| 397 |
-
if track_data['count'] >= MAX_IMAGES_PER_WINDOW:
|
| 398 |
-
# Calculate remaining wait time
|
| 399 |
-
elapsed = current_time - track_data['start_time']
|
| 400 |
-
wait_time = (window_minutes * 60) - elapsed
|
| 401 |
-
wait_minutes = max(0, wait_time / 60)
|
| 402 |
-
return True, wait_minutes, track_data['count']
|
| 403 |
-
|
| 404 |
-
return False, 0, track_data['count']
|
| 405 |
-
|
| 406 |
-
def update_country_stats(client_ip):
|
| 407 |
-
"""
|
| 408 |
-
Update country usage statistics and print periodically
|
| 409 |
-
"""
|
| 410 |
-
global Total_Request_Count, Country_Usage_Stats
|
| 411 |
-
|
| 412 |
-
# Get country info
|
| 413 |
-
geo_info = IP_Country_Cache.get(client_ip, {"country": "Unknown", "region": "Unknown", "city": "Unknown"})
|
| 414 |
-
country = geo_info["country"]
|
| 415 |
-
|
| 416 |
-
# Update country stats
|
| 417 |
-
if country not in Country_Usage_Stats:
|
| 418 |
-
Country_Usage_Stats[country] = 0
|
| 419 |
-
Country_Usage_Stats[country] += 1
|
| 420 |
-
|
| 421 |
-
# Increment total request counter
|
| 422 |
-
Total_Request_Count += 1
|
| 423 |
-
|
| 424 |
-
# Print stats every N requests
|
| 425 |
-
if Total_Request_Count % PRINT_STATS_INTERVAL == 0:
|
| 426 |
-
print("\n" + "="*60)
|
| 427 |
-
print(f"📊 国家使用统计 (总请求数: {Total_Request_Count})")
|
| 428 |
-
print("="*60)
|
| 429 |
-
|
| 430 |
-
# Sort by usage count (descending)
|
| 431 |
-
sorted_stats = sorted(Country_Usage_Stats.items(), key=lambda x: x[1], reverse=True)
|
| 432 |
-
|
| 433 |
-
for country_name, count in sorted_stats:
|
| 434 |
-
percentage = (count / Total_Request_Count) * 100
|
| 435 |
-
print(f" {country_name}: {count} 次 ({percentage:.1f}%)")
|
| 436 |
-
|
| 437 |
-
print("="*60 + "\n")
|
| 438 |
-
|
| 439 |
-
def record_generation_attempt(client_ip, phase):
|
| 440 |
-
"""
|
| 441 |
-
Record generation attempt
|
| 442 |
-
"""
|
| 443 |
-
# Increment total count
|
| 444 |
-
increment_ip_generation_count(client_ip)
|
| 445 |
-
|
| 446 |
-
# Update country statistics
|
| 447 |
-
update_country_stats(client_ip)
|
| 448 |
-
|
| 449 |
-
# Record time window count
|
| 450 |
-
if phase in ['rate_limit_1', 'rate_limit_2', 'rate_limit_3']:
|
| 451 |
-
window_key = f"{client_ip}_{phase}"
|
| 452 |
-
current_time = time.time()
|
| 453 |
-
|
| 454 |
-
if window_key in IP_Rate_Limit_Track:
|
| 455 |
-
IP_Rate_Limit_Track[window_key]['count'] += 1
|
| 456 |
-
IP_Rate_Limit_Track[window_key]['last_generation'] = current_time
|
| 457 |
-
else:
|
| 458 |
-
IP_Rate_Limit_Track[window_key] = {
|
| 459 |
-
'count': 1,
|
| 460 |
-
'start_time': current_time,
|
| 461 |
-
'last_generation': current_time
|
| 462 |
-
}
|
| 463 |
-
|
| 464 |
-
def apply_gaussian_blur_to_image_url(image_url, blur_strength=50):
|
| 465 |
-
"""
|
| 466 |
-
Apply Gaussian blur to image URL
|
| 467 |
-
|
| 468 |
-
Args:
|
| 469 |
-
image_url (str): Original image URL
|
| 470 |
-
blur_strength (int): Blur strength, default 50 (heavy blur)
|
| 471 |
-
|
| 472 |
-
Returns:
|
| 473 |
-
PIL.Image: Blurred PIL Image object
|
| 474 |
-
"""
|
| 475 |
-
try:
|
| 476 |
-
import requests
|
| 477 |
-
from PIL import Image, ImageFilter
|
| 478 |
-
import io
|
| 479 |
-
|
| 480 |
-
# Download image
|
| 481 |
-
response = requests.get(image_url, timeout=30)
|
| 482 |
-
if response.status_code != 200:
|
| 483 |
-
return None
|
| 484 |
-
|
| 485 |
-
# Convert to PIL Image
|
| 486 |
-
image_data = io.BytesIO(response.content)
|
| 487 |
-
image = Image.open(image_data)
|
| 488 |
-
|
| 489 |
-
# Apply heavy Gaussian blur
|
| 490 |
-
blurred_image = image.filter(ImageFilter.GaussianBlur(radius=blur_strength))
|
| 491 |
-
|
| 492 |
-
return blurred_image
|
| 493 |
-
|
| 494 |
-
except Exception as e:
|
| 495 |
-
print(f"⚠️ Failed to apply Gaussian blur: {e}")
|
| 496 |
-
return None
|
| 497 |
-
|
| 498 |
-
# Initialize NSFW detector (download from Hugging Face)
|
| 499 |
-
try:
|
| 500 |
-
nsfw_detector = NSFWDetector() # Auto download falconsai_yolov9_nsfw_model_quantized.pt from Hugging Face
|
| 501 |
-
print("✅ NSFW detector initialized successfully")
|
| 502 |
-
except Exception as e:
|
| 503 |
-
print(f"❌ NSFW detector initialization failed: {e}")
|
| 504 |
-
nsfw_detector = None
|
| 505 |
-
|
| 506 |
-
def edit_image_interface(input_image, prompt, lang, request: gr.Request, progress=gr.Progress()):
|
| 507 |
-
"""
|
| 508 |
-
Interface function for processing image editing with phase-based limitations
|
| 509 |
-
"""
|
| 510 |
-
# 默认禁用“Use as Input”按钮,待成功生成后再开启
|
| 511 |
-
use_as_input_state = gr.update(interactive=False)
|
| 512 |
-
try:
|
| 513 |
-
# Extract user IP
|
| 514 |
-
client_ip = request.client.host
|
| 515 |
-
x_forwarded_for = dict(request.headers).get('x-forwarded-for')
|
| 516 |
-
if x_forwarded_for:
|
| 517 |
-
client_ip = x_forwarded_for
|
| 518 |
-
if client_ip not in IP_Dict:
|
| 519 |
-
IP_Dict[client_ip] = 0
|
| 520 |
-
IP_Dict[client_ip] += 1
|
| 521 |
-
|
| 522 |
-
if input_image is None:
|
| 523 |
-
return None, t("error_upload_first", lang), gr.update(visible=False), use_as_input_state
|
| 524 |
-
|
| 525 |
-
if not prompt or prompt.strip() == "":
|
| 526 |
-
return None, t("error_enter_prompt", lang), gr.update(visible=False), use_as_input_state
|
| 527 |
-
|
| 528 |
-
# Check if prompt length is greater than 3 characters
|
| 529 |
-
if len(prompt.strip()) <= 3:
|
| 530 |
-
return None, t("error_prompt_too_short", lang), gr.update(visible=False), use_as_input_state
|
| 531 |
-
except Exception as e:
|
| 532 |
-
print(f"⚠️ Unexpected error: {e}", flush=True)
|
| 533 |
-
return None, t("error_processing_failed", lang), gr.update(visible=False), use_as_input_state
|
| 534 |
-
|
| 535 |
-
# Concurrency guard: block if there is an active task within last 3 minutes
|
| 536 |
-
try:
|
| 537 |
-
now_ts = time.time()
|
| 538 |
-
active_info = Active_Tasks.get(client_ip)
|
| 539 |
-
if active_info:
|
| 540 |
-
start_ts = active_info.get("start", 0)
|
| 541 |
-
if now_ts - start_ts <= 180:
|
| 542 |
-
return None, "You already have a task in progress. Please wait for it to finish before submitting a new one.", gr.update(visible=False, value=None), use_as_input_state
|
| 543 |
-
else:
|
| 544 |
-
# Cleanup stale record
|
| 545 |
-
Active_Tasks.pop(client_ip, None)
|
| 546 |
-
except Exception as e:
|
| 547 |
-
print(f"⚠️ Concurrency guard check failed: {e}")
|
| 548 |
-
|
| 549 |
-
# Get user current phase
|
| 550 |
-
current_phase = get_ip_phase(client_ip)
|
| 551 |
-
current_count = get_ip_generation_count(client_ip)
|
| 552 |
-
geo_info = IP_Country_Cache.get(client_ip, {"country": "Unknown", "region": "Unknown", "city": "Unknown"})
|
| 553 |
-
is_restricted = is_restricted_country_ip(client_ip)
|
| 554 |
-
|
| 555 |
-
print(f"📊 User phase info - IP: {client_ip}, Location: {geo_info['country']}/{geo_info['region']}/{geo_info['city']}, Phase: {current_phase}, Count: {current_count}, Restricted: {is_restricted}")
|
| 556 |
-
|
| 557 |
-
# Check if user reached the like button tip threshold
|
| 558 |
-
# For restricted countries, show like tip from the first attempt
|
| 559 |
-
show_like_tip = (current_count >= 1) if is_restricted else (current_count >= TIP_TRY_N)
|
| 560 |
-
|
| 561 |
-
# Check if completely blocked
|
| 562 |
-
if current_phase == 'blocked':
|
| 563 |
-
# Generate blocked limit button with different URL for restricted countries
|
| 564 |
-
if is_restricted or lang in ["hi", "ru", "zh"]:
|
| 565 |
-
blocked_url = GOOGLE_GEMINI_URL
|
| 566 |
-
else:
|
| 567 |
-
blocked_url = 'https://omnicreator.net/#generator'
|
| 568 |
-
|
| 569 |
-
blocked_button_html = f"""
|
| 570 |
-
<div style='display: flex; justify-content: center; gap: 15px; margin: 10px 0 5px 0; padding: 0px;'>
|
| 571 |
-
<a href='{blocked_url}' target='_blank' style='
|
| 572 |
-
display: inline-flex;
|
| 573 |
-
align-items: center;
|
| 574 |
-
justify-content: center;
|
| 575 |
-
padding: 16px 32px;
|
| 576 |
-
background: linear-gradient(135deg, #e74c3c 0%, #c0392b 100%);
|
| 577 |
-
color: white;
|
| 578 |
-
text-decoration: none;
|
| 579 |
-
border-radius: 12px;
|
| 580 |
-
font-weight: 600;
|
| 581 |
-
font-size: 16px;
|
| 582 |
-
text-align: center;
|
| 583 |
-
min-width: 200px;
|
| 584 |
-
box-shadow: 0 4px 15px rgba(231, 76, 60, 0.4);
|
| 585 |
-
transition: all 0.3s ease;
|
| 586 |
-
border: none;
|
| 587 |
-
'>🚀 Unlimited Generation</a>
|
| 588 |
-
</div>
|
| 589 |
-
"""
|
| 590 |
-
|
| 591 |
-
# Use same message for all users to avoid discrimination perception
|
| 592 |
-
blocked_message = t("error_free_limit_reached", lang)
|
| 593 |
-
|
| 594 |
-
return None, blocked_message, gr.update(value=blocked_button_html, visible=True), use_as_input_state
|
| 595 |
-
|
| 596 |
-
# Check rate limit (applies to rate_limit phases)
|
| 597 |
-
if current_phase in ['rate_limit_1', 'rate_limit_2', 'rate_limit_3']:
|
| 598 |
-
is_limited, wait_minutes, window_count = check_rate_limit_for_phase(client_ip, current_phase)
|
| 599 |
-
if is_limited:
|
| 600 |
-
wait_minutes_int = int(wait_minutes) + 1
|
| 601 |
-
# Generate rate limit button with different URL for restricted countries
|
| 602 |
-
if is_restricted or lang in ["hi", "ru", "zh"]:
|
| 603 |
-
rate_limit_url = GOOGLE_GEMINI_URL
|
| 604 |
-
else:
|
| 605 |
-
rate_limit_url = 'https://omnicreator.net/#generator'
|
| 606 |
-
|
| 607 |
-
rate_limit_button_html = f"""
|
| 608 |
-
<div style='display: flex; justify-content: center; gap: 15px; margin: 10px 0 5px 0; padding: 0px;'>
|
| 609 |
-
<a href='{rate_limit_url}' target='_blank' style='
|
| 610 |
-
display: inline-flex;
|
| 611 |
-
align-items: center;
|
| 612 |
-
justify-content: center;
|
| 613 |
-
padding: 16px 32px;
|
| 614 |
-
background: linear-gradient(135deg, #f39c12 0%, #e67e22 100%);
|
| 615 |
-
color: white;
|
| 616 |
-
text-decoration: none;
|
| 617 |
-
border-radius: 12px;
|
| 618 |
-
font-weight: 600;
|
| 619 |
-
font-size: 16px;
|
| 620 |
-
text-align: center;
|
| 621 |
-
min-width: 200px;
|
| 622 |
-
box-shadow: 0 4px 15px rgba(243, 156, 18, 0.4);
|
| 623 |
-
transition: all 0.3s ease;
|
| 624 |
-
border: none;
|
| 625 |
-
'>⏰ Skip Wait - Unlimited Generation</a>
|
| 626 |
-
</div>
|
| 627 |
-
"""
|
| 628 |
-
return None, t("error_free_limit_wait", lang).format(wait_minutes_int=wait_minutes_int), gr.update(value=rate_limit_button_html, visible=True), use_as_input_state
|
| 629 |
-
|
| 630 |
-
# Handle NSFW detection based on phase
|
| 631 |
-
is_nsfw_task = False # Track if this task involves NSFW content
|
| 632 |
-
|
| 633 |
-
# Skip NSFW detection in free phase
|
| 634 |
-
if current_phase != 'free' and nsfw_detector is not None and input_image is not None:
|
| 635 |
-
try:
|
| 636 |
-
nsfw_result = nsfw_detector.predict_pil_label_only(input_image)
|
| 637 |
-
|
| 638 |
-
if nsfw_result.lower() == "nsfw":
|
| 639 |
-
is_nsfw_task = True
|
| 640 |
-
use_as_input_state = gr.update(interactive=False)
|
| 641 |
-
print(f"🔍 Input NSFW detected in {current_phase} phase: ❌❌❌ {nsfw_result} - IP: {client_ip} (will blur result)")
|
| 642 |
-
else:
|
| 643 |
-
print(f"🔍 Input NSFW check passed: ✅✅✅ {nsfw_result} - IP: {client_ip}")
|
| 644 |
-
|
| 645 |
-
except Exception as e:
|
| 646 |
-
print(f"⚠️ Input NSFW detection failed: {e}")
|
| 647 |
-
# Allow continuation when detection fails
|
| 648 |
-
|
| 649 |
-
result_url = None
|
| 650 |
-
status_message = ""
|
| 651 |
-
use_as_input_state = gr.update(interactive=True)
|
| 652 |
-
|
| 653 |
-
def progress_callback(message):
|
| 654 |
-
try:
|
| 655 |
-
nonlocal status_message
|
| 656 |
-
status_message = message
|
| 657 |
-
# Add error handling to prevent progress update failure
|
| 658 |
-
if progress is not None:
|
| 659 |
-
# Enhanced progress display with better formatting
|
| 660 |
-
if "Queue:" in message or "tasks ahead" in message:
|
| 661 |
-
# Queue status - show with different progress value to indicate waiting
|
| 662 |
-
progress(0.1, desc=message)
|
| 663 |
-
elif "Processing" in message or "AI is processing" in message:
|
| 664 |
-
# Processing status
|
| 665 |
-
progress(0.7, desc=message)
|
| 666 |
-
elif "Generating" in message or "Almost done" in message:
|
| 667 |
-
# Generation status
|
| 668 |
-
progress(0.9, desc=message)
|
| 669 |
-
else:
|
| 670 |
-
# Default status
|
| 671 |
-
progress(0.5, desc=message)
|
| 672 |
-
except Exception as e:
|
| 673 |
-
print(f"⚠️ Progress update failed: {e}")
|
| 674 |
-
|
| 675 |
-
try:
|
| 676 |
-
# Determine priority before recording generation attempt
|
| 677 |
-
# First high_priority_n tasks for each IP get priority=1
|
| 678 |
-
task_priority = 1 if current_count < high_priority_n else 0
|
| 679 |
-
|
| 680 |
-
# Record active task start (for concurrency guard)
|
| 681 |
-
Active_Tasks[client_ip] = {"start": time.time()}
|
| 682 |
-
|
| 683 |
-
# Record generation attempt (before actual generation to ensure correct count)
|
| 684 |
-
record_generation_attempt(client_ip, current_phase)
|
| 685 |
-
updated_count = get_ip_generation_count(client_ip)
|
| 686 |
-
|
| 687 |
-
print(f"✅ Processing started - IP: {client_ip}, phase: {current_phase}, total count: {updated_count}, priority: {task_priority}, prompt: {prompt.strip()}", flush=True)
|
| 688 |
-
|
| 689 |
-
# Call image editing processing function with priority
|
| 690 |
-
input_image_url, result_url, message, task_uuid = process_image_edit(input_image, prompt.strip(), None, progress_callback, priority=task_priority, client_ip=client_ip)
|
| 691 |
-
|
| 692 |
-
# Check if HF user limit exceeded
|
| 693 |
-
if message and message.startswith("HF_LIMIT_EXCEEDED:"):
|
| 694 |
-
error_message = message.replace("HF_LIMIT_EXCEEDED:", "")
|
| 695 |
-
# Generate HF limit exceeded button (similar to blocked status)
|
| 696 |
-
hf_limit_url = 'https://omnicreator.net/#generator'
|
| 697 |
-
|
| 698 |
-
hf_limit_button_html = f"""
|
| 699 |
-
<div style='display: flex; justify-content: center; gap: 15px; margin: 10px 0 5px 0; padding: 0px;'>
|
| 700 |
-
<a href='{hf_limit_url}' target='_blank' style='
|
| 701 |
-
display: inline-flex;
|
| 702 |
-
align-items: center;
|
| 703 |
-
justify-content: center;
|
| 704 |
-
padding: 16px 32px;
|
| 705 |
-
background: linear-gradient(135deg, #e74c3c 0%, #c0392b 100%);
|
| 706 |
-
color: white;
|
| 707 |
-
text-decoration: none;
|
| 708 |
-
border-radius: 12px;
|
| 709 |
-
font-weight: 600;
|
| 710 |
-
font-size: 16px;
|
| 711 |
-
text-align: center;
|
| 712 |
-
min-width: 200px;
|
| 713 |
-
box-shadow: 0 4px 15px rgba(231, 76, 60, 0.4);
|
| 714 |
-
transition: all 0.3s ease;
|
| 715 |
-
border: none;
|
| 716 |
-
'>🚀 Unlimited Generation</a>
|
| 717 |
-
</div>
|
| 718 |
-
"""
|
| 719 |
-
|
| 720 |
-
# Use translated message or default
|
| 721 |
-
limit_message = error_message if error_message else t("error_free_limit_reached", lang)
|
| 722 |
-
|
| 723 |
-
return None, limit_message, gr.update(value=hf_limit_button_html, visible=True), use_as_input_state
|
| 724 |
-
|
| 725 |
-
if result_url:
|
| 726 |
-
print(f"✅ Processing completed successfully - IP: {client_ip}, result_url: {result_url}, task_uuid: {task_uuid}", flush=True)
|
| 727 |
-
|
| 728 |
-
# Detect result image NSFW content (only in rate limit phases)
|
| 729 |
-
if nsfw_detector is not None and current_phase != 'free':
|
| 730 |
-
try:
|
| 731 |
-
if progress is not None:
|
| 732 |
-
progress(0.9, desc=t("status_checking_result", lang))
|
| 733 |
-
|
| 734 |
-
is_nsfw, nsfw_error = download_and_check_result_nsfw(result_url, nsfw_detector)
|
| 735 |
-
|
| 736 |
-
if nsfw_error:
|
| 737 |
-
print(f"⚠️ Result image NSFW detection error - IP: {client_ip}, error: {nsfw_error}")
|
| 738 |
-
elif is_nsfw:
|
| 739 |
-
is_nsfw_task = True # Mark task as NSFW
|
| 740 |
-
print(f"🔍 Result image NSFW detected in {current_phase} phase: ❌❌❌ - IP: {client_ip} (will blur result)")
|
| 741 |
-
else:
|
| 742 |
-
print(f"🔍 Result image NSFW check passed: ✅✅✅ - IP: {client_ip}")
|
| 743 |
-
|
| 744 |
-
except Exception as e:
|
| 745 |
-
print(f"⚠️ Result image NSFW detection exception - IP: {client_ip}, error: {str(e)}")
|
| 746 |
-
|
| 747 |
-
# Apply blur if this is an NSFW task in rate limit phases
|
| 748 |
-
should_blur = False
|
| 749 |
-
|
| 750 |
-
if current_phase in ['rate_limit_1', 'rate_limit_2', 'rate_limit_3'] and is_nsfw_task:
|
| 751 |
-
should_blur = True
|
| 752 |
-
|
| 753 |
-
# Apply blur processing
|
| 754 |
-
if should_blur:
|
| 755 |
-
if progress is not None:
|
| 756 |
-
progress(0.95, desc=t("status_applying_filter", lang))
|
| 757 |
-
|
| 758 |
-
blurred_image = apply_gaussian_blur_to_image_url(result_url)
|
| 759 |
-
if blurred_image is not None:
|
| 760 |
-
final_result = blurred_image # Return PIL Image object
|
| 761 |
-
final_message = t("warning_content_filter", lang)
|
| 762 |
-
print(f"🔒 Applied Gaussian blur for NSFW content - IP: {client_ip}")
|
| 763 |
-
else:
|
| 764 |
-
# Blur failed, return original URL with warning
|
| 765 |
-
final_result = result_url
|
| 766 |
-
final_message = t("warning_content_review", lang)
|
| 767 |
-
|
| 768 |
-
# Disable use-as-input when NSFW content is detected
|
| 769 |
-
use_as_input_state = gr.update(interactive=False)
|
| 770 |
-
|
| 771 |
-
# Generate NSFW button for blurred content with different URL for restricted countries
|
| 772 |
-
if is_restricted or lang in ["hi", "ru", "zh"]:
|
| 773 |
-
nsfw_url = GOOGLE_GEMINI_URL
|
| 774 |
-
else:
|
| 775 |
-
nsfw_url = 'https://omnicreator.net/#generator'
|
| 776 |
-
|
| 777 |
-
banner_html = """
|
| 778 |
-
<div style='margin: 14px auto 0; max-width: 640px; background: linear-gradient(120deg, #f0f4ff 0%, #e5edff 50%, #f7fbff 100%); border: 1px solid #cbd5ff; border-radius: 14px; padding: 14px 18px; box-shadow: 0 10px 25px rgba(88, 101, 242, 0.18); text-align: center;'>
|
| 779 |
-
<div style='font-size: 15px; font-weight: 800; color: #1f2a44; display: flex; align-items: center; justify-content: center; gap: 8px;'>
|
| 780 |
-
🚀 Omni Image Editor 2.0 is live!
|
| 781 |
-
</div>
|
| 782 |
-
<a href='https://huggingface.co/spaces/selfit-camera/Omni-Image-Editor' target='_blank' style='display: inline-flex; align-items: center; justify-content: center; margin-top: 6px; padding: 10px 18px; background: #5865f2; color: white; border-radius: 10px; font-weight: 800; text-decoration: none; box-shadow: 0 6px 18px rgba(88, 101, 242, 0.35);'>
|
| 783 |
-
Try the Hugging Face Space demo (free)
|
| 784 |
-
</a>
|
| 785 |
-
<div style='font-size: 13px; color: #4a5568; margin-top: 6px; font-weight: 600;'>This is a free HF Space demo for Omni Image Editor 2.0.</div>
|
| 786 |
-
</div>
|
| 787 |
-
"""
|
| 788 |
-
|
| 789 |
-
nsfw_action_buttons_html = f"""
|
| 790 |
-
<div style='text-align: center; margin: 18px 0 10px 0;'>
|
| 791 |
-
<a href='{nsfw_url}' target='_blank' style='
|
| 792 |
-
display: inline-flex;
|
| 793 |
-
align-items: center;
|
| 794 |
-
justify-content: center;
|
| 795 |
-
padding: 16px 32px;
|
| 796 |
-
background: linear-gradient(135deg, #ff6b6b 0%, #feca57 100%);
|
| 797 |
-
color: white;
|
| 798 |
-
text-decoration: none;
|
| 799 |
-
border-radius: 12px;
|
| 800 |
-
font-weight: 700;
|
| 801 |
-
font-size: 16px;
|
| 802 |
-
min-width: 220px;
|
| 803 |
-
box-shadow: 0 8px 25px rgba(255, 107, 107, 0.35);
|
| 804 |
-
transition: all 0.3s ease;
|
| 805 |
-
border: none;
|
| 806 |
-
'>🔥 Unlimited Creative Generation</a>
|
| 807 |
-
</div>
|
| 808 |
-
{banner_html}
|
| 809 |
-
"""
|
| 810 |
-
return final_result, final_message, gr.update(value=nsfw_action_buttons_html, visible=True), use_as_input_state
|
| 811 |
-
else:
|
| 812 |
-
final_result = result_url
|
| 813 |
-
final_message = t("status_completed_message", lang).format(message=message)
|
| 814 |
-
|
| 815 |
-
try:
|
| 816 |
-
if progress is not None:
|
| 817 |
-
progress(1.0, desc=t("status_processing_completed", lang))
|
| 818 |
-
except Exception as e:
|
| 819 |
-
print(f"⚠️ Final progress update failed: {e}")
|
| 820 |
-
|
| 821 |
-
# Generate action buttons HTML
|
| 822 |
-
banner_html = """
|
| 823 |
-
<div style='margin: 14px auto 0; max-width: 640px; background: linear-gradient(120deg, #f0f4ff 0%, #e5edff 50%, #f7fbff 100%); border: 1px solid #cbd5ff; border-radius: 14px; padding: 14px 18px; box-shadow: 0 10px 25px rgba(88, 101, 242, 0.18); text-align: center;'>
|
| 824 |
-
<div style='font-size: 15px; font-weight: 800; color: #1f2a44; display: flex; align-items: center; justify-content: center; gap: 8px;'>
|
| 825 |
-
🚀 Omni Image Editor 2.0 is live!
|
| 826 |
-
</div>
|
| 827 |
-
<a href='https://huggingface.co/spaces/selfit-camera/Omni-Image-Editor' target='_blank' style='display: inline-flex; align-items: center; justify-content: center; margin-top: 6px; padding: 10px 18px; background: #5865f2; color: white; border-radius: 10px; font-weight: 800; text-decoration: none; box-shadow: 0 6px 18px rgba(88, 101, 242, 0.35);'>
|
| 828 |
-
Try the Hugging Face Space demo (free)
|
| 829 |
-
</a>
|
| 830 |
-
<div style='font-size: 13px; color: #4a5568; margin-top: 6px; font-weight: 600;'>This is a free HF Space demo for Omni Image Editor 2.0.</div>
|
| 831 |
-
</div>
|
| 832 |
-
"""
|
| 833 |
-
|
| 834 |
-
action_buttons_html = ""
|
| 835 |
-
|
| 836 |
-
# 根据 TIP_TRY_N(受限地区从第一次起就触发)展示点赞提示
|
| 837 |
-
if show_like_tip:
|
| 838 |
-
action_buttons_html = """
|
| 839 |
-
<div style='display: flex; justify-content: center; margin: 15px 0 5px 0; padding: 0px;'>
|
| 840 |
-
<div style='
|
| 841 |
-
display: inline-flex;
|
| 842 |
-
align-items: center;
|
| 843 |
-
justify-content: center;
|
| 844 |
-
padding: 12px 24px;
|
| 845 |
-
background: linear-gradient(135deg, #7c3aed 0%, #6366f1 100%);
|
| 846 |
-
color: white;
|
| 847 |
-
text-decoration: none;
|
| 848 |
-
border-radius: 10px;
|
| 849 |
-
font-weight: 600;
|
| 850 |
-
font-size: 14px;
|
| 851 |
-
text-align: center;
|
| 852 |
-
max-width: 400px;
|
| 853 |
-
box-shadow: 0 3px 12px rgba(255, 107, 107, 0.3);
|
| 854 |
-
border: none;
|
| 855 |
-
'>👉 Click the ❤️ Like button to unlock more free trial attempts!</div>
|
| 856 |
-
</div>
|
| 857 |
-
"""
|
| 858 |
-
|
| 859 |
-
# Always show the Omni Image Editor 2.0 banner under the result image
|
| 860 |
-
action_buttons_html = f"{action_buttons_html}{banner_html}"
|
| 861 |
-
|
| 862 |
-
return final_result, final_message, gr.update(value=action_buttons_html, visible=True), use_as_input_state
|
| 863 |
-
else:
|
| 864 |
-
print(f"❌ Processing failed - IP: {client_ip}, error: {message}", flush=True)
|
| 865 |
-
return None, t("error_processing_failed", lang).format(message=message), gr.update(visible=False), use_as_input_state
|
| 866 |
-
|
| 867 |
-
except Exception as e:
|
| 868 |
-
print(f"❌ Processing exception - IP: {client_ip}, error: {str(e)}")
|
| 869 |
-
return None, t("error_processing_exception", lang).format(error=str(e)), gr.update(visible=False), use_as_input_state
|
| 870 |
-
finally:
|
| 871 |
-
# Task finished (success or failure) — clear active marker to allow next submission immediately
|
| 872 |
-
Active_Tasks.pop(client_ip, None)
|
| 873 |
-
|
| 874 |
-
# Create Gradio interface
|
| 875 |
-
def create_app():
|
| 876 |
-
with gr.Blocks(
|
| 877 |
-
title="Image Editor 1.0",
|
| 878 |
-
theme=gr.themes.Soft(),
|
| 879 |
-
css="""
|
| 880 |
-
.main-container {
|
| 881 |
-
max-width: 1200px;
|
| 882 |
-
margin: 0 auto;
|
| 883 |
-
}
|
| 884 |
-
.news-banner-row {
|
| 885 |
-
margin: 10px auto 15px auto;
|
| 886 |
-
padding: 0 10px;
|
| 887 |
-
max-width: 1200px;
|
| 888 |
-
width: 100% !important;
|
| 889 |
-
}
|
| 890 |
-
.news-banner-row .gr-row {
|
| 891 |
-
display: flex !important;
|
| 892 |
-
align-items: center !important;
|
| 893 |
-
width: 100% !important;
|
| 894 |
-
}
|
| 895 |
-
.news-banner-row .gr-column:first-child {
|
| 896 |
-
flex: 1 !important; /* 占据所有剩余空间 */
|
| 897 |
-
display: flex !important;
|
| 898 |
-
justify-content: center !important; /* 在其空间内居中 */
|
| 899 |
-
}
|
| 900 |
-
.banner-lang-selector {
|
| 901 |
-
margin-left: auto !important;
|
| 902 |
-
display: flex !important;
|
| 903 |
-
justify-content: flex-end !important;
|
| 904 |
-
align-items: center !important;
|
| 905 |
-
position: relative !important;
|
| 906 |
-
z-index: 10 !important;
|
| 907 |
-
}
|
| 908 |
-
.banner-lang-selector .gr-dropdown {
|
| 909 |
-
background: white !important;
|
| 910 |
-
border: 1px solid #ddd !important;
|
| 911 |
-
border-radius: 8px !important;
|
| 912 |
-
padding: 8px 16px !important;
|
| 913 |
-
font-size: 14px !important;
|
| 914 |
-
font-weight: 500 !important;
|
| 915 |
-
color: #333 !important;
|
| 916 |
-
cursor: pointer !important;
|
| 917 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1) !important;
|
| 918 |
-
min-width: 140px !important;
|
| 919 |
-
max-width: 160px !important;
|
| 920 |
-
transition: all 0.2s ease !important;
|
| 921 |
-
}
|
| 922 |
-
.banner-lang-selector .gr-dropdown:hover {
|
| 923 |
-
border-color: #999 !important;
|
| 924 |
-
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.15) !important;
|
| 925 |
-
}
|
| 926 |
-
@media (max-width: 768px) {
|
| 927 |
-
.news-banner-row {
|
| 928 |
-
padding: 0 15px !important;
|
| 929 |
-
}
|
| 930 |
-
.news-banner-row .gr-row {
|
| 931 |
-
display: flex !important;
|
| 932 |
-
flex-direction: column !important;
|
| 933 |
-
gap: 10px !important;
|
| 934 |
-
position: static !important;
|
| 935 |
-
}
|
| 936 |
-
.news-banner-row .gr-column:first-child {
|
| 937 |
-
position: static !important;
|
| 938 |
-
pointer-events: auto !important;
|
| 939 |
-
}
|
| 940 |
-
.banner-lang-selector {
|
| 941 |
-
margin-left: 0 !important;
|
| 942 |
-
justify-content: center !important;
|
| 943 |
-
}
|
| 944 |
-
}
|
| 945 |
-
.upload-area {
|
| 946 |
-
border: 2px dashed #ccc;
|
| 947 |
-
border-radius: 10px;
|
| 948 |
-
padding: 20px;
|
| 949 |
-
text-align: center;
|
| 950 |
-
}
|
| 951 |
-
.result-area {
|
| 952 |
-
margin-top: 20px;
|
| 953 |
-
padding: 20px;
|
| 954 |
-
border-radius: 10px;
|
| 955 |
-
background-color: #f8f9fa;
|
| 956 |
-
}
|
| 957 |
-
.use-as-input-btn {
|
| 958 |
-
margin-top: 10px;
|
| 959 |
-
width: 100%;
|
| 960 |
-
}
|
| 961 |
-
""",
|
| 962 |
-
# Improve concurrency performance configuration
|
| 963 |
-
head="""
|
| 964 |
-
<script>
|
| 965 |
-
// Reduce client-side state update frequency, avoid excessive SSE connections
|
| 966 |
-
if (window.gradio) {
|
| 967 |
-
window.gradio.update_frequency = 2000; // Update every 2 seconds
|
| 968 |
-
}
|
| 969 |
-
</script>
|
| 970 |
-
"""
|
| 971 |
-
) as app:
|
| 972 |
-
|
| 973 |
-
lang_state = gr.State("en")
|
| 974 |
-
|
| 975 |
-
# Main title - centered
|
| 976 |
-
header_title = gr.HTML(f"""
|
| 977 |
-
<div style="text-align: center; margin: 20px auto 10px auto; max-width: 800px;">
|
| 978 |
-
<h1 style="color: #2c3e50; margin: 0; font-size: 3.5em; font-weight: 800; letter-spacing: 3px; text-shadow: 2px 2px 4px rgba(0,0,0,0.1);">
|
| 979 |
-
{t('header_title', 'en')}
|
| 980 |
-
</h1>
|
| 981 |
-
</div>
|
| 982 |
-
""")
|
| 983 |
-
|
| 984 |
-
with gr.Row(elem_classes=["news-banner-row"]):
|
| 985 |
-
with gr.Column(scale=1, min_width=400):
|
| 986 |
-
# Banner is initially visible (will be hidden for zh/hi/ru languages on load)
|
| 987 |
-
news_banner = gr.HTML(f"""
|
| 988 |
-
<style>
|
| 989 |
-
@keyframes breathe {{
|
| 990 |
-
0%, 100% {{ transform: scale(1); }}
|
| 991 |
-
50% {{ transform: scale(1.02); }}
|
| 992 |
-
}}
|
| 993 |
-
.breathing-banner {{
|
| 994 |
-
animation: breathe 3s ease-in-out infinite;
|
| 995 |
-
}}
|
| 996 |
-
</style>
|
| 997 |
-
<div class="breathing-banner" style="
|
| 998 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 999 |
-
margin: 0 auto;
|
| 1000 |
-
padding: 8px 40px;
|
| 1001 |
-
border-radius: 20px;
|
| 1002 |
-
max-width: 800px;
|
| 1003 |
-
box-shadow: 0 2px 8px rgba(102, 126, 234, 0.3);
|
| 1004 |
-
text-align: center;
|
| 1005 |
-
width: fit-content;
|
| 1006 |
-
">
|
| 1007 |
-
<span style="color: white; font-weight: 600; font-size: 1.0em;">
|
| 1008 |
-
🎉 NEW:
|
| 1009 |
-
<a href="https://huggingface.co/spaces/selfit-camera/Omni-Image-Editor" target="_blank" style="
|
| 1010 |
-
color: white;
|
| 1011 |
-
text-decoration: none;
|
| 1012 |
-
border-bottom: 1px solid rgba(255,255,255,0.5);
|
| 1013 |
-
transition: all 0.3s ease;
|
| 1014 |
-
margin: 0 8px;
|
| 1015 |
-
" onmouseover="this.style.borderBottom='1px solid white'"
|
| 1016 |
-
onmouseout="this.style.borderBottom='1px solid rgba(255,255,255,0.5)'">
|
| 1017 |
-
Image Editor 2.0
|
| 1018 |
-
</a>
|
| 1019 |
-
is Online Now ! More free trials, better quality!
|
| 1020 |
-
</span>
|
| 1021 |
-
</div>
|
| 1022 |
-
""", visible=True)
|
| 1023 |
-
|
| 1024 |
-
with gr.Column(scale=0, min_width=160, elem_classes=["banner-lang-selector"]):
|
| 1025 |
-
# Lock UI to English only; allow_custom_value avoids Gradio errors if any non-en value is set programmatically
|
| 1026 |
-
lang_dropdown = gr.Dropdown(
|
| 1027 |
-
choices=[
|
| 1028 |
-
("English", "en"),
|
| 1029 |
-
],
|
| 1030 |
-
value="en",
|
| 1031 |
-
label="🌐",
|
| 1032 |
-
show_label=True,
|
| 1033 |
-
interactive=True,
|
| 1034 |
-
container=False,
|
| 1035 |
-
allow_custom_value=True,
|
| 1036 |
-
)
|
| 1037 |
-
|
| 1038 |
-
with gr.Tabs() as tabs:
|
| 1039 |
-
with gr.Tab(t("global_editor_tab", "en")) as global_tab:
|
| 1040 |
-
with gr.Row():
|
| 1041 |
-
with gr.Column(scale=1):
|
| 1042 |
-
upload_image_header = gr.Markdown(t("upload_image_header", "en"))
|
| 1043 |
-
input_image = gr.Image(
|
| 1044 |
-
label=t("upload_image_label", "en"),
|
| 1045 |
-
type="pil",
|
| 1046 |
-
height=512,
|
| 1047 |
-
elem_classes=["upload-area"]
|
| 1048 |
-
)
|
| 1049 |
-
|
| 1050 |
-
editing_instructions_header = gr.Markdown(t("editing_instructions_header", "en"))
|
| 1051 |
-
prompt_input = gr.Textbox(
|
| 1052 |
-
label=t("prompt_input_label", "en"),
|
| 1053 |
-
placeholder=t("prompt_input_placeholder", "en"),
|
| 1054 |
-
lines=3,
|
| 1055 |
-
max_lines=5
|
| 1056 |
-
)
|
| 1057 |
-
|
| 1058 |
-
edit_button = gr.Button(
|
| 1059 |
-
t("start_editing_button", "en"),
|
| 1060 |
-
variant="primary",
|
| 1061 |
-
size="lg"
|
| 1062 |
-
)
|
| 1063 |
-
|
| 1064 |
-
with gr.Column(scale=1):
|
| 1065 |
-
editing_result_header = gr.Markdown(t("editing_result_header", "en"))
|
| 1066 |
-
output_image = gr.Image(
|
| 1067 |
-
label=t("output_image_label", "en"),
|
| 1068 |
-
height=320,
|
| 1069 |
-
elem_classes=["result-area"]
|
| 1070 |
-
)
|
| 1071 |
-
|
| 1072 |
-
use_as_input_btn = gr.Button(
|
| 1073 |
-
t("use_as_input_button", "en"),
|
| 1074 |
-
variant="secondary",
|
| 1075 |
-
size="sm",
|
| 1076 |
-
elem_classes=["use-as-input-btn"]
|
| 1077 |
-
)
|
| 1078 |
-
|
| 1079 |
-
status_output = gr.Textbox(
|
| 1080 |
-
label=t("status_output_label", "en"),
|
| 1081 |
-
lines=2,
|
| 1082 |
-
max_lines=3,
|
| 1083 |
-
interactive=False
|
| 1084 |
-
)
|
| 1085 |
-
|
| 1086 |
-
action_buttons = gr.HTML(visible=False)
|
| 1087 |
-
|
| 1088 |
-
prompt_examples_header = gr.Markdown(t("prompt_examples_header", "en"))
|
| 1089 |
-
with gr.Row():
|
| 1090 |
-
example_prompts = [
|
| 1091 |
-
"Set the background to a grand opera stage with red curtains",
|
| 1092 |
-
"Change the outfit into a traditional Chinese hanfu with flowing sleeves",
|
| 1093 |
-
"Give the character blue dragon-like eyes with glowing pupils",
|
| 1094 |
-
"Change lighting to soft dreamy pastel glow",
|
| 1095 |
-
"Change pose to sitting cross-legged on the ground"
|
| 1096 |
-
]
|
| 1097 |
-
|
| 1098 |
-
for prompt in example_prompts:
|
| 1099 |
-
gr.Button(
|
| 1100 |
-
prompt,
|
| 1101 |
-
size="sm"
|
| 1102 |
-
).click(
|
| 1103 |
-
lambda p=prompt: p,
|
| 1104 |
-
outputs=prompt_input
|
| 1105 |
-
)
|
| 1106 |
-
|
| 1107 |
-
edit_button.click(
|
| 1108 |
-
fn=edit_image_interface,
|
| 1109 |
-
inputs=[input_image, prompt_input, lang_state],
|
| 1110 |
-
outputs=[output_image, status_output, action_buttons, use_as_input_btn],
|
| 1111 |
-
show_progress=True,
|
| 1112 |
-
concurrency_limit=20
|
| 1113 |
-
)
|
| 1114 |
-
|
| 1115 |
-
def simple_use_as_input(output_img):
|
| 1116 |
-
if output_img is not None:
|
| 1117 |
-
return output_img
|
| 1118 |
-
return None
|
| 1119 |
-
|
| 1120 |
-
use_as_input_btn.click(
|
| 1121 |
-
fn=simple_use_as_input,
|
| 1122 |
-
inputs=[output_image],
|
| 1123 |
-
outputs=[input_image]
|
| 1124 |
-
)
|
| 1125 |
-
|
| 1126 |
-
# SEO Content Section
|
| 1127 |
-
seo_html = gr.HTML()
|
| 1128 |
-
|
| 1129 |
-
def get_seo_html(lang):
|
| 1130 |
-
# 中文、印度语、俄语不显示SEO部分
|
| 1131 |
-
if lang in ["zh", "hi", "ru"]:
|
| 1132 |
-
return ""
|
| 1133 |
-
|
| 1134 |
-
return f"""
|
| 1135 |
-
<div style="width: 100%; margin: 50px 0; padding: 0 20px;">
|
| 1136 |
-
|
| 1137 |
-
<div style="text-align: center; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 40px; border-radius: 20px; margin: 40px 0;">
|
| 1138 |
-
<h2 style="margin: 0 0 20px 0; font-size: 2.2em; font-weight: 700;">
|
| 1139 |
-
🎨 {t('seo_unlimited_title', lang)}
|
| 1140 |
-
</h2>
|
| 1141 |
-
<p style="margin: 0 0 25px 0; font-size: 1.2em; opacity: 0.95; line-height: 1.6;">
|
| 1142 |
-
{t('seo_unlimited_desc', lang)}
|
| 1143 |
-
</p>
|
| 1144 |
-
|
| 1145 |
-
<div style="display: flex; justify-content: center; gap: 25px; flex-wrap: wrap; margin: 30px 0;">
|
| 1146 |
-
<a href="https://omnicreator.net/#generator" target="_blank" style="
|
| 1147 |
-
display: inline-flex;
|
| 1148 |
-
align-items: center;
|
| 1149 |
-
justify-content: center;
|
| 1150 |
-
padding: 20px 40px;
|
| 1151 |
-
background: linear-gradient(135deg, #ff6b6b 0%, #feca57 100%);
|
| 1152 |
-
color: white;
|
| 1153 |
-
text-decoration: none;
|
| 1154 |
-
border-radius: 15px;
|
| 1155 |
-
font-weight: 700;
|
| 1156 |
-
font-size: 18px;
|
| 1157 |
-
text-align: center;
|
| 1158 |
-
min-width: 250px;
|
| 1159 |
-
box-shadow: 0 8px 25px rgba(255, 107, 107, 0.4);
|
| 1160 |
-
transition: all 0.3s ease;
|
| 1161 |
-
border: none;
|
| 1162 |
-
transform: scale(1);
|
| 1163 |
-
" onmouseover="this.style.transform='scale(1.05)'" onmouseout="this.style.transform='scale(1)'">
|
| 1164 |
-
🚀 {t('seo_unlimited_button', lang)}
|
| 1165 |
-
</a>
|
| 1166 |
-
|
| 1167 |
-
</div>
|
| 1168 |
-
|
| 1169 |
-
<p style="color: rgba(255,255,255,0.9); font-size: 1em; margin: 20px 0 0 0;">
|
| 1170 |
-
{t('seo_unlimited_footer', lang)}
|
| 1171 |
-
</p>
|
| 1172 |
-
</div>
|
| 1173 |
-
|
| 1174 |
-
<div style="text-align: center; margin: 25px auto; background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); padding: 35px; border-radius: 20px; box-shadow: 0 10px 30px rgba(0,0,0,0.1);">
|
| 1175 |
-
<h2 style="color: #2c3e50; margin: 0 0 20px 0; font-size: 1.9em; font-weight: 700;">
|
| 1176 |
-
⭐ {t('seo_professional_title', lang)}
|
| 1177 |
-
</h2>
|
| 1178 |
-
<p style="color: #555; font-size: 1.1em; line-height: 1.6; margin: 0 0 20px 0; padding: 0 20px;">
|
| 1179 |
-
{t('seo_professional_desc', lang)}
|
| 1180 |
-
</p>
|
| 1181 |
-
</div>
|
| 1182 |
-
|
| 1183 |
-
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 25px; margin: 40px 0;">
|
| 1184 |
-
|
| 1185 |
-
<div style="background: white; padding: 30px; border-radius: 15px; box-shadow: 0 5px 20px rgba(0,0,0,0.08); border-left: 5px solid #e74c3c;">
|
| 1186 |
-
<h3 style="color: #e74c3c; margin: 0 0 15px 0; font-size: 1.4em; font-weight: 600;">
|
| 1187 |
-
🎯 {t('seo_feature1_title', lang)}
|
| 1188 |
-
</h3>
|
| 1189 |
-
<p style="color: #666; margin: 0; line-height: 1.6; font-size: 1em;">
|
| 1190 |
-
{t('seo_feature1_desc', lang)}
|
| 1191 |
-
</p>
|
| 1192 |
-
</div>
|
| 1193 |
-
|
| 1194 |
-
<div style="background: white; padding: 30px; border-radius: 15px; box-shadow: 0 5px 20px rgba(0,0,0,0.08); border-left: 5px solid #3498db;">
|
| 1195 |
-
<h3 style="color: #3498db; margin: 0 0 15px 0; font-size: 1.4em; font-weight: 600;">
|
| 1196 |
-
🔓 {t('seo_feature2_title', lang)}
|
| 1197 |
-
</h3>
|
| 1198 |
-
<p style="color: #666; margin: 0; line-height: 1.6; font-size: 1em;">
|
| 1199 |
-
{t('seo_feature2_desc', lang)}
|
| 1200 |
-
</p>
|
| 1201 |
-
</div>
|
| 1202 |
-
|
| 1203 |
-
<div style="background: white; padding: 30px; border-radius: 15px; box-shadow: 0 5px 20px rgba(0,0,0,0.08); border-left: 5px solid #27ae60;">
|
| 1204 |
-
<h3 style="color: #27ae60; margin: 0 0 15px 0; font-size: 1.4em; font-weight: 600;">
|
| 1205 |
-
⚡ {t('seo_feature3_title', lang)}
|
| 1206 |
-
</h3>
|
| 1207 |
-
<p style="color: #666; margin: 0; line-height: 1.6; font-size: 1em;">
|
| 1208 |
-
{t('seo_feature3_desc', lang)}
|
| 1209 |
-
</p>
|
| 1210 |
-
</div>
|
| 1211 |
-
|
| 1212 |
-
<div style="background: white; padding: 30px; border-radius: 15px; box-shadow: 0 5px 20px rgba(0,0,0,0.08); border-left: 5px solid #9b59b6;">
|
| 1213 |
-
<h3 style="color: #9b59b6; margin: 0 0 15px 0; font-size: 1.4em; font-weight: 600;">
|
| 1214 |
-
🎨 {t('seo_feature4_title', lang)}
|
| 1215 |
-
</h3>
|
| 1216 |
-
<p style="color: #666; margin: 0; line-height: 1.6; font-size: 1em;">
|
| 1217 |
-
{t('seo_feature4_desc', lang)}
|
| 1218 |
-
</p>
|
| 1219 |
-
</div>
|
| 1220 |
-
|
| 1221 |
-
<div style="background: white; padding: 30px; border-radius: 15px; box-shadow: 0 5px 20px rgba(0,0,0,0.08); border-left: 5px solid #f39c12;">
|
| 1222 |
-
<h3 style="color: #f39c12; margin: 0 0 15px 0; font-size: 1.4em; font-weight: 600;">
|
| 1223 |
-
💎 {t('seo_feature5_title', lang)}
|
| 1224 |
-
</h3>
|
| 1225 |
-
<p style="color: #666; margin: 0; line-height: 1.6; font-size: 1em;">
|
| 1226 |
-
{t('seo_feature5_desc', lang)}
|
| 1227 |
-
</p>
|
| 1228 |
-
</div>
|
| 1229 |
-
|
| 1230 |
-
<div style="background: white; padding: 30px; border-radius: 15px; box-shadow: 0 5px 20px rgba(0,0,0,0.08); border-left: 5px solid #34495e;">
|
| 1231 |
-
<h3 style="color: #34495e; margin: 0 0 15px 0; font-size: 1.4em; font-weight: 600;">
|
| 1232 |
-
🌍 {t('seo_feature6_title', lang)}
|
| 1233 |
-
</h3>
|
| 1234 |
-
<p style="color: #666; margin: 0; line-height: 1.6; font-size: 1em;">
|
| 1235 |
-
{t('seo_feature6_desc', lang)}
|
| 1236 |
-
</p>
|
| 1237 |
-
</div>
|
| 1238 |
-
|
| 1239 |
-
</div>
|
| 1240 |
-
|
| 1241 |
-
<div style="background: linear-gradient(135deg, #ff9a9e 0%, #fecfef 50%, #fecfef 100%); padding: 30px; border-radius: 15px; margin: 40px 0;">
|
| 1242 |
-
<h3 style="color: #8b5cf6; text-align: center; margin: 0 0 25px 0; font-size: 1.5em; font-weight: 700;">
|
| 1243 |
-
💡 {t('seo_protips_title', lang)}
|
| 1244 |
-
</h3>
|
| 1245 |
-
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 18px;">
|
| 1246 |
-
|
| 1247 |
-
<div style="background: rgba(255,255,255,0.85); padding: 18px; border-radius: 12px;">
|
| 1248 |
-
<strong style="color: #8b5cf6; font-size: 1.1em;">📝 {t('seo_protip1_title', lang)}</strong>
|
| 1249 |
-
<p style="color: #555; margin: 5px 0 0 0; line-height: 1.5;">{t('seo_protip1_desc', lang)}</p>
|
| 1250 |
-
</div>
|
| 1251 |
-
|
| 1252 |
-
<div style="background: rgba(255,255,255,0.85); padding: 18px; border-radius: 12px;">
|
| 1253 |
-
<strong style="color: #8b5cf6; font-size: 1.1em;">🎯 {t('seo_protip2_title', lang)}</strong>
|
| 1254 |
-
<p style="color: #555; margin: 5px 0 0 0; line-height: 1.5;">{t('seo_protip2_desc', lang)}</p>
|
| 1255 |
-
</div>
|
| 1256 |
-
|
| 1257 |
-
<div style="background: rgba(255,255,255,0.85); padding: 18px; border-radius: 12px;">
|
| 1258 |
-
<strong style="color: #8b5cf6; font-size: 1.1em;">⚡ {t('seo_protip3_title', lang)}</strong>
|
| 1259 |
-
<p style="color: #555; margin: 5px 0 0 0; line-height: 1.5;">{t('seo_protip3_desc', lang)}</p>
|
| 1260 |
-
</div>
|
| 1261 |
-
|
| 1262 |
-
<div style="background: rgba(255,255,255,0.85); padding: 18px; border-radius: 12px;">
|
| 1263 |
-
<strong style="color: #8b5cf6; font-size: 1.1em;">🖼 {t('seo_protip4_title', lang)}</strong>
|
| 1264 |
-
<p style="color: #555; margin: 5px 0 0 0; line-height: 1.5;">{t('seo_protip4_desc', lang)}</p>
|
| 1265 |
-
</div>
|
| 1266 |
-
|
| 1267 |
-
</div>
|
| 1268 |
-
</div>
|
| 1269 |
-
|
| 1270 |
-
<div style="text-align: center; margin: 25px auto; background: linear-gradient(135deg, #a8edea 0%, #fed6e3 100%); padding: 35px; border-radius: 20px; box-shadow: 0 10px 30px rgba(0,0,0,0.1);">
|
| 1271 |
-
<h2 style="color: #2c3e50; margin: 0 0 20px 0; font-size: 1.8em; font-weight: 700;">
|
| 1272 |
-
🚀 {t('seo_needs_title', lang)}
|
| 1273 |
-
</h2>
|
| 1274 |
-
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 20px; margin: 25px 0; text-align: left;">
|
| 1275 |
-
|
| 1276 |
-
<div style="background: rgba(255,255,255,0.8); padding: 20px; border-radius: 12px;">
|
| 1277 |
-
<h4 style="color: #e74c3c; margin: 0 0 10px 0;">🎨 {t('seo_needs_art_title', lang)}</h4>
|
| 1278 |
-
<ul style="color: #555; margin: 0; padding-left: 18px; line-height: 1.6;">
|
| 1279 |
-
<li>{t('seo_needs_art_item1', lang)}</li>
|
| 1280 |
-
<li>{t('seo_needs_art_item2', lang)}</li>
|
| 1281 |
-
<li>{t('seo_needs_art_item3', lang)}</li>
|
| 1282 |
-
<li>{t('seo_needs_art_item4', lang)}</li>
|
| 1283 |
-
</ul>
|
| 1284 |
-
</div>
|
| 1285 |
-
|
| 1286 |
-
<div style="background: rgba(255,255,255,0.8); padding: 20px; border-radius: 12px;">
|
| 1287 |
-
<h4 style="color: #3498db; margin: 0 0 10px 0;">📸 {t('seo_needs_photo_title', lang)}</h4>
|
| 1288 |
-
<ul style="color: #555; margin: 0; padding-left: 18px; line-height: 1.6;">
|
| 1289 |
-
<li>{t('seo_needs_photo_item1', lang)}</li>
|
| 1290 |
-
<li>{t('seo_needs_photo_item2', lang)}</li>
|
| 1291 |
-
<li>{t('seo_needs_photo_item3', lang)}</li>
|
| 1292 |
-
<li>{t('seo_needs_photo_item4', lang)}</li>
|
| 1293 |
-
</ul>
|
| 1294 |
-
</div>
|
| 1295 |
-
|
| 1296 |
-
<div style="background: rgba(255,255,255,0.8); padding: 20px; border-radius: 12px;">
|
| 1297 |
-
<h4 style="color: #27ae60; margin: 0 0 10px 0;">🛍️ {t('seo_needs_ecom_title', lang)}</h4>
|
| 1298 |
-
<ul style="color: #555; margin: 0; padding-left: 18px; line-height: 1.6;">
|
| 1299 |
-
<li>{t('seo_needs_ecom_item1', lang)}</li>
|
| 1300 |
-
<li>{t('seo_needs_ecom_item2', lang)}</li>
|
| 1301 |
-
<li>{t('seo_needs_ecom_item3', lang)}</li>
|
| 1302 |
-
<li>{t('seo_needs_ecom_item4', lang)}</li>
|
| 1303 |
-
</ul>
|
| 1304 |
-
</div>
|
| 1305 |
-
|
| 1306 |
-
<div style="background: rgba(255,255,255,0.8); padding: 20px; border-radius: 12px;">
|
| 1307 |
-
<h4 style="color: #9b59b6; margin: 0 0 10px 0;">📱 {t('seo_needs_social_title', lang)}</h4>
|
| 1308 |
-
<ul style="color: #555; margin: 0; padding-left: 18px; line-height: 1.6;">
|
| 1309 |
-
<li>{t('seo_needs_social_item1', lang)}</li>
|
| 1310 |
-
<li>{t('seo_needs_social_item2', lang)}</li>
|
| 1311 |
-
<li>{t('seo_needs_social_item3', lang)}</li>
|
| 1312 |
-
<li>{t('seo_needs_social_item4', lang)}</li>
|
| 1313 |
-
</ul>
|
| 1314 |
-
</div>
|
| 1315 |
-
|
| 1316 |
-
</div>
|
| 1317 |
-
</div>
|
| 1318 |
-
|
| 1319 |
-
</div>
|
| 1320 |
-
"""
|
| 1321 |
-
|
| 1322 |
-
all_ui_components = [
|
| 1323 |
-
header_title, news_banner,
|
| 1324 |
-
global_tab, upload_image_header, input_image, editing_instructions_header, prompt_input, edit_button,
|
| 1325 |
-
editing_result_header, output_image, use_as_input_btn, status_output, prompt_examples_header,
|
| 1326 |
-
seo_html,
|
| 1327 |
-
]
|
| 1328 |
-
|
| 1329 |
-
def update_ui_lang(lang):
|
| 1330 |
-
# Hide banner for zh, hi, ru languages
|
| 1331 |
-
show_banner = lang not in ["zh", "hi", "ru"]
|
| 1332 |
-
|
| 1333 |
-
return {
|
| 1334 |
-
header_title: gr.update(value=f"""
|
| 1335 |
-
<div style="text-align: center; margin: 20px auto 10px auto; max-width: 800px;">
|
| 1336 |
-
<h1 style="color: #2c3e50; margin: 0; font-size: 3.5em; font-weight: 800; letter-spacing: 3px; text-shadow: 2px 2px 4px rgba(0,0,0,0.1);">
|
| 1337 |
-
{t('header_title', lang)}
|
| 1338 |
-
</h1>
|
| 1339 |
-
</div>"""),
|
| 1340 |
-
news_banner: gr.update(visible=show_banner),
|
| 1341 |
-
global_tab: gr.update(label=t("global_editor_tab", lang)),
|
| 1342 |
-
upload_image_header: gr.update(value=t("upload_image_header", lang)),
|
| 1343 |
-
input_image: gr.update(label=t("upload_image_label", lang)),
|
| 1344 |
-
editing_instructions_header: gr.update(value=t("editing_instructions_header", lang)),
|
| 1345 |
-
prompt_input: gr.update(label=t("prompt_input_label", lang), placeholder=t("prompt_input_placeholder", lang)),
|
| 1346 |
-
edit_button: gr.update(value=t("start_editing_button", lang)),
|
| 1347 |
-
editing_result_header: gr.update(value=t("editing_result_header", lang)),
|
| 1348 |
-
output_image: gr.update(label=t("output_image_label", lang)),
|
| 1349 |
-
use_as_input_btn: gr.update(value=t("use_as_input_button", lang)),
|
| 1350 |
-
status_output: gr.update(label=t("status_output_label", lang)),
|
| 1351 |
-
prompt_examples_header: gr.update(value=t("prompt_examples_header", lang)),
|
| 1352 |
-
seo_html: gr.update(value=get_seo_html(lang)),
|
| 1353 |
-
}
|
| 1354 |
-
|
| 1355 |
-
def on_lang_change(lang):
|
| 1356 |
-
# Force UI to stay in English regardless of dropdown value
|
| 1357 |
-
return "en", *update_ui_lang("en").values()
|
| 1358 |
-
|
| 1359 |
-
lang_dropdown.change(
|
| 1360 |
-
on_lang_change,
|
| 1361 |
-
inputs=[lang_dropdown],
|
| 1362 |
-
outputs=[lang_state] + all_ui_components
|
| 1363 |
-
)
|
| 1364 |
-
|
| 1365 |
-
# IP query state for async loading
|
| 1366 |
-
ip_query_state = gr.State({"status": "pending", "ip": None, "lang": "en"})
|
| 1367 |
-
|
| 1368 |
-
def on_load_immediate(request: gr.Request):
|
| 1369 |
-
"""
|
| 1370 |
-
Load page with language based on robust IP detection
|
| 1371 |
-
|
| 1372 |
-
Features:
|
| 1373 |
-
- Multiple fallback layers for IP extraction
|
| 1374 |
-
- Comprehensive error handling
|
| 1375 |
-
- Always returns valid language (defaults to English)
|
| 1376 |
-
- Detailed logging for debugging
|
| 1377 |
-
"""
|
| 1378 |
-
# Extract client IP with multiple fallback methods
|
| 1379 |
-
client_ip = None
|
| 1380 |
-
try:
|
| 1381 |
-
# Primary method: direct client host
|
| 1382 |
-
client_ip = request.client.host
|
| 1383 |
-
|
| 1384 |
-
# Secondary method: check forwarded headers
|
| 1385 |
-
headers = dict(request.headers) if hasattr(request, 'headers') else {}
|
| 1386 |
-
x_forwarded_for = headers.get('x-forwarded-for') or headers.get('X-Forwarded-For')
|
| 1387 |
-
if x_forwarded_for:
|
| 1388 |
-
# Take first IP from comma-separated list
|
| 1389 |
-
client_ip = x_forwarded_for.split(',')[0].strip()
|
| 1390 |
-
|
| 1391 |
-
# Alternative headers
|
| 1392 |
-
if not client_ip or client_ip in ["127.0.0.1", "localhost"]:
|
| 1393 |
-
client_ip = headers.get('x-real-ip') or headers.get('X-Real-IP') or client_ip
|
| 1394 |
-
|
| 1395 |
-
except Exception as e:
|
| 1396 |
-
print(f"Error extracting client IP: {e}, using default")
|
| 1397 |
-
client_ip = "unknown"
|
| 1398 |
-
|
| 1399 |
-
# Validate extracted IP
|
| 1400 |
-
if not client_ip:
|
| 1401 |
-
client_ip = "unknown"
|
| 1402 |
-
|
| 1403 |
-
print(f"Loading page for IP: {client_ip}")
|
| 1404 |
-
|
| 1405 |
-
# Determine language with robust error handling
|
| 1406 |
-
try:
|
| 1407 |
-
# Check if IP is already cached (second+ visit)
|
| 1408 |
-
if client_ip in IP_Country_Cache:
|
| 1409 |
-
# Use cached data - but force English UI
|
| 1410 |
-
cached_lang = "en"
|
| 1411 |
-
print(f"Using cached language (forced to en) for IP: {client_ip}")
|
| 1412 |
-
query_state = {"ip": client_ip, "cached": True}
|
| 1413 |
-
return cached_lang, cached_lang, query_state, *update_ui_lang(cached_lang).values()
|
| 1414 |
-
|
| 1415 |
-
# First visit: Query IP and determine language (max 3s timeout built-in)
|
| 1416 |
-
print(f"First visit - detecting language for IP: {client_ip}")
|
| 1417 |
-
# Always force English UI even if detection yields another language
|
| 1418 |
-
detected_lang = "en"
|
| 1419 |
-
|
| 1420 |
-
print(f"First visit - Final language forced to: {detected_lang} for IP: {client_ip}")
|
| 1421 |
-
query_state = {"ip": client_ip, "cached": False}
|
| 1422 |
-
return detected_lang, detected_lang, query_state, *update_ui_lang(detected_lang).values()
|
| 1423 |
-
|
| 1424 |
-
except Exception as e:
|
| 1425 |
-
# Ultimate fallback - always works
|
| 1426 |
-
print(f"Critical error in language detection for {client_ip}: {e}")
|
| 1427 |
-
print("Using English as ultimate fallback")
|
| 1428 |
-
query_state = {"ip": client_ip or "unknown", "cached": False, "error": str(e)}
|
| 1429 |
-
return "en", "en", query_state, *update_ui_lang("en").values()
|
| 1430 |
-
|
| 1431 |
-
|
| 1432 |
-
app.load(
|
| 1433 |
-
on_load_immediate,
|
| 1434 |
-
inputs=None,
|
| 1435 |
-
outputs=[lang_state, lang_dropdown, ip_query_state] + all_ui_components,
|
| 1436 |
-
)
|
| 1437 |
-
|
| 1438 |
-
return app
|
| 1439 |
-
|
| 1440 |
-
if __name__ == "__main__":
|
| 1441 |
-
app = create_app()
|
| 1442 |
-
# Improve queue configuration to handle high concurrency and prevent SSE connection issues
|
| 1443 |
-
app.queue(
|
| 1444 |
-
default_concurrency_limit=20, # Default concurrency limit
|
| 1445 |
-
max_size=50, # Maximum queue size
|
| 1446 |
-
api_open=False # Close API access to reduce resource consumption
|
| 1447 |
-
)
|
| 1448 |
-
app.launch(
|
| 1449 |
-
server_name="0.0.0.0",
|
| 1450 |
-
show_error=True, # Show detailed error information
|
| 1451 |
-
quiet=False, # Keep log output
|
| 1452 |
-
max_threads=40, # Increase thread pool size
|
| 1453 |
-
height=800,
|
| 1454 |
-
favicon_path=None # Reduce resource loading
|
| 1455 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__lib__/i18n/__init__.py
DELETED
|
@@ -1,36 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
i18n loader for encrypted translation files
|
| 3 |
-
"""
|
| 4 |
-
import sys
|
| 5 |
-
import importlib.util
|
| 6 |
-
from pathlib import Path
|
| 7 |
-
|
| 8 |
-
def load_pyc_module(module_name, pyc_path):
|
| 9 |
-
"""Load a .pyc module using importlib"""
|
| 10 |
-
spec = importlib.util.spec_from_file_location(module_name, pyc_path)
|
| 11 |
-
if spec is None or spec.loader is None:
|
| 12 |
-
raise ImportError(f"Cannot load module {module_name} from {pyc_path}")
|
| 13 |
-
module = importlib.util.module_from_spec(spec)
|
| 14 |
-
sys.modules[module_name] = module
|
| 15 |
-
spec.loader.exec_module(module)
|
| 16 |
-
return module
|
| 17 |
-
|
| 18 |
-
def load_translations():
|
| 19 |
-
"""Load all encrypted translation files"""
|
| 20 |
-
translations = {}
|
| 21 |
-
i18n_dir = Path(__file__).parent
|
| 22 |
-
|
| 23 |
-
# List all .pyc files in i18n directory
|
| 24 |
-
for pyc_file in i18n_dir.glob("*.pyc"):
|
| 25 |
-
lang = pyc_file.stem # Get language code from filename
|
| 26 |
-
try:
|
| 27 |
-
module = load_pyc_module(f"i18n_{lang}", pyc_file)
|
| 28 |
-
if hasattr(module, 'data'):
|
| 29 |
-
translations[lang] = module.data
|
| 30 |
-
except Exception as e:
|
| 31 |
-
print(f"Failed to load {pyc_file.name}: {e}")
|
| 32 |
-
|
| 33 |
-
return translations
|
| 34 |
-
|
| 35 |
-
# Auto-load translations when module is imported
|
| 36 |
-
translations = load_translations()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__lib__/i18n/ar.pyc
DELETED
|
Binary file (12.3 kB)
|
|
|
__lib__/i18n/da.pyc
DELETED
|
Binary file (9.79 kB)
|
|
|
__lib__/i18n/de.pyc
DELETED
|
Binary file (10.3 kB)
|
|
|
__lib__/i18n/en.pyc
DELETED
|
Binary file (9.08 kB)
|
|
|
__lib__/i18n/es.pyc
DELETED
|
Binary file (10.3 kB)
|
|
|
__lib__/i18n/fi.pyc
DELETED
|
Binary file (9.79 kB)
|
|
|
__lib__/i18n/fr.pyc
DELETED
|
Binary file (10.8 kB)
|
|
|
__lib__/i18n/he.pyc
DELETED
|
Binary file (11.5 kB)
|
|
|
__lib__/i18n/hi.pyc
DELETED
|
Binary file (16.9 kB)
|
|
|
__lib__/i18n/id.pyc
DELETED
|
Binary file (9.73 kB)
|
|
|
__lib__/i18n/it.pyc
DELETED
|
Binary file (10.1 kB)
|
|
|
__lib__/i18n/ja.pyc
DELETED
|
Binary file (11 kB)
|
|
|
__lib__/i18n/nl.pyc
DELETED
|
Binary file (9.85 kB)
|
|
|
__lib__/i18n/no.pyc
DELETED
|
Binary file (9.69 kB)
|
|
|
__lib__/i18n/pt.pyc
DELETED
|
Binary file (10.2 kB)
|
|
|
__lib__/i18n/ru.pyc
DELETED
|
Binary file (15 kB)
|
|
|
__lib__/i18n/sv.pyc
DELETED
|
Binary file (9.77 kB)
|
|
|
__lib__/i18n/tr.pyc
DELETED
|
Binary file (10.3 kB)
|
|
|
__lib__/i18n/uk.pyc
DELETED
|
Binary file (14.5 kB)
|
|
|
__lib__/i18n/vi.pyc
DELETED
|
Binary file (11.5 kB)
|
|
|
__lib__/i18n/zh.pyc
DELETED
|
Binary file (8.95 kB)
|
|
|
__lib__/nfsw.pyc
DELETED
|
Binary file (10 kB)
|
|
|
__lib__/pipeline.pyc
DELETED
|
Binary file (83.1 kB)
|
|
|
__lib__/util.pyc
DELETED
|
Binary file (18.6 kB)
|
|
|
app.py
CHANGED
|
@@ -1,60 +1,1448 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
import
|
| 6 |
-
|
| 7 |
-
import
|
| 8 |
-
|
| 9 |
-
# Add __lib__ to path to import compiled modules
|
| 10 |
-
lib_dir = Path(__file__).parent / "__lib__"
|
| 11 |
-
if not lib_dir.exists():
|
| 12 |
-
raise RuntimeError(f"Compiled library directory not found: {lib_dir}")
|
| 13 |
-
|
| 14 |
-
sys.path.insert(0, str(lib_dir))
|
| 15 |
-
|
| 16 |
-
def load_pyc_module(module_name, pyc_path):
|
| 17 |
-
"""Load a .pyc module using importlib"""
|
| 18 |
-
spec = importlib.util.spec_from_file_location(module_name, pyc_path)
|
| 19 |
-
if spec is None or spec.loader is None:
|
| 20 |
-
raise ImportError(f"Cannot load module {module_name} from {pyc_path}")
|
| 21 |
-
module = importlib.util.module_from_spec(spec)
|
| 22 |
-
sys.modules[module_name] = module
|
| 23 |
-
spec.loader.exec_module(module)
|
| 24 |
-
return module
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
try:
|
| 27 |
-
#
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
app.queue(
|
| 37 |
-
default_concurrency_limit=20,
|
| 38 |
-
max_size=50,
|
| 39 |
-
api_open=False
|
| 40 |
)
|
| 41 |
app.launch(
|
| 42 |
server_name="0.0.0.0",
|
| 43 |
-
show_error=True,
|
| 44 |
-
quiet=False,
|
| 45 |
-
max_threads=40,
|
| 46 |
height=800,
|
| 47 |
-
favicon_path=None
|
| 48 |
-
)
|
| 49 |
-
|
| 50 |
-
except ImportError as e:
|
| 51 |
-
print(f"Failed to import compiled modules: {e}")
|
| 52 |
-
print("Make sure to run build_encrypted.py first to compile the modules")
|
| 53 |
-
import traceback
|
| 54 |
-
traceback.print_exc()
|
| 55 |
-
sys.exit(1)
|
| 56 |
-
except Exception as e:
|
| 57 |
-
print(f"Error running app: {e}")
|
| 58 |
-
import traceback
|
| 59 |
-
traceback.print_exc()
|
| 60 |
-
sys.exit(1)
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import threading
|
| 3 |
+
import os
|
| 4 |
+
import shutil
|
| 5 |
+
import tempfile
|
| 6 |
+
import time
|
| 7 |
+
from util import process_image_edit, process_local_image_edit, download_and_check_result_nsfw
|
| 8 |
+
from nfsw import NSFWDetector
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# Configuration parameters
|
| 11 |
+
|
| 12 |
+
TIP_TRY_N = 8 # Show like button tip after 12 tries
|
| 13 |
+
FREE_TRY_N = 20 # Free phase: first 15 tries without restrictions
|
| 14 |
+
SLOW_TRY_N = 25 # Slow phase start: 25 tries
|
| 15 |
+
SLOW2_TRY_N = 32 # Slow phase start: 32 tries
|
| 16 |
+
RATE_LIMIT_60 = 40 # Full restriction: blocked after 40 tries
|
| 17 |
+
|
| 18 |
+
# Time window configuration (minutes)
|
| 19 |
+
PHASE_1_WINDOW = 5 # 15-25 tries: 5 minutes
|
| 20 |
+
PHASE_2_WINDOW = 10 # 25-32 tries: 10 minutes
|
| 21 |
+
PHASE_3_WINDOW = 20 # 32-40 tries: 20 minutes
|
| 22 |
+
MAX_IMAGES_PER_WINDOW = 2 # Max images per time window
|
| 23 |
+
|
| 24 |
+
IP_Dict = {}
|
| 25 |
+
# IP generation statistics and time window tracking
|
| 26 |
+
IP_Generation_Count = {} # Record total generation count for each IP
|
| 27 |
+
IP_Rate_Limit_Track = {} # Record generation count and timestamp in current time window for each IP
|
| 28 |
+
|
| 29 |
+
def get_ip_generation_count(client_ip):
|
| 30 |
+
"""
|
| 31 |
+
Get IP generation count
|
| 32 |
+
"""
|
| 33 |
+
if client_ip not in IP_Generation_Count:
|
| 34 |
+
IP_Generation_Count[client_ip] = 0
|
| 35 |
+
return IP_Generation_Count[client_ip]
|
| 36 |
+
|
| 37 |
+
def increment_ip_generation_count(client_ip):
|
| 38 |
+
"""
|
| 39 |
+
Increment IP generation count
|
| 40 |
+
"""
|
| 41 |
+
if client_ip not in IP_Generation_Count:
|
| 42 |
+
IP_Generation_Count[client_ip] = 0
|
| 43 |
+
IP_Generation_Count[client_ip] += 1
|
| 44 |
+
return IP_Generation_Count[client_ip]
|
| 45 |
+
|
| 46 |
+
def get_ip_phase(client_ip):
|
| 47 |
+
"""
|
| 48 |
+
Get current phase for IP
|
| 49 |
+
|
| 50 |
+
Returns:
|
| 51 |
+
str: 'free', 'rate_limit_1', 'rate_limit_2', 'rate_limit_3', 'blocked'
|
| 52 |
+
"""
|
| 53 |
+
count = get_ip_generation_count(client_ip)
|
| 54 |
+
|
| 55 |
+
if count < FREE_TRY_N:
|
| 56 |
+
return 'free'
|
| 57 |
+
elif count < SLOW_TRY_N:
|
| 58 |
+
return 'rate_limit_1' # NSFW blur + 5 minutes 2 images
|
| 59 |
+
elif count < SLOW2_TRY_N:
|
| 60 |
+
return 'rate_limit_2' # NSFW blur + 10 minutes 2 images
|
| 61 |
+
elif count < RATE_LIMIT_60:
|
| 62 |
+
return 'rate_limit_3' # NSFW blur + 20 minutes 2 images
|
| 63 |
+
else:
|
| 64 |
+
return 'blocked' # Generation blocked
|
| 65 |
+
|
| 66 |
+
def check_rate_limit_for_phase(client_ip, phase):
|
| 67 |
+
"""
|
| 68 |
+
Check rate limit for specific phase
|
| 69 |
+
|
| 70 |
+
Returns:
|
| 71 |
+
tuple: (is_limited, wait_time_minutes, current_count)
|
| 72 |
+
"""
|
| 73 |
+
if phase not in ['rate_limit_1', 'rate_limit_2', 'rate_limit_3']:
|
| 74 |
+
return False, 0, 0
|
| 75 |
+
|
| 76 |
+
# Determine time window
|
| 77 |
+
if phase == 'rate_limit_1':
|
| 78 |
+
window_minutes = PHASE_1_WINDOW
|
| 79 |
+
elif phase == 'rate_limit_2':
|
| 80 |
+
window_minutes = PHASE_2_WINDOW
|
| 81 |
+
else: # rate_limit_3
|
| 82 |
+
window_minutes = PHASE_3_WINDOW
|
| 83 |
+
|
| 84 |
+
current_time = time.time()
|
| 85 |
+
window_key = f"{client_ip}_{phase}"
|
| 86 |
+
|
| 87 |
+
# Clean expired records
|
| 88 |
+
if window_key in IP_Rate_Limit_Track:
|
| 89 |
+
track_data = IP_Rate_Limit_Track[window_key]
|
| 90 |
+
# Check if within current time window
|
| 91 |
+
if current_time - track_data['start_time'] > window_minutes * 60:
|
| 92 |
+
# Time window expired, reset
|
| 93 |
+
IP_Rate_Limit_Track[window_key] = {
|
| 94 |
+
'count': 0,
|
| 95 |
+
'start_time': current_time,
|
| 96 |
+
'last_generation': current_time
|
| 97 |
+
}
|
| 98 |
+
else:
|
| 99 |
+
# Initialize
|
| 100 |
+
IP_Rate_Limit_Track[window_key] = {
|
| 101 |
+
'count': 0,
|
| 102 |
+
'start_time': current_time,
|
| 103 |
+
'last_generation': current_time
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
track_data = IP_Rate_Limit_Track[window_key]
|
| 107 |
+
|
| 108 |
+
# Check if exceeded limit
|
| 109 |
+
if track_data['count'] >= MAX_IMAGES_PER_WINDOW:
|
| 110 |
+
# Calculate remaining wait time
|
| 111 |
+
elapsed = current_time - track_data['start_time']
|
| 112 |
+
wait_time = (window_minutes * 60) - elapsed
|
| 113 |
+
wait_minutes = max(0, wait_time / 60)
|
| 114 |
+
return True, wait_minutes, track_data['count']
|
| 115 |
+
|
| 116 |
+
return False, 0, track_data['count']
|
| 117 |
+
|
| 118 |
+
def record_generation_attempt(client_ip, phase):
|
| 119 |
+
"""
|
| 120 |
+
Record generation attempt
|
| 121 |
+
"""
|
| 122 |
+
# Increment total count
|
| 123 |
+
increment_ip_generation_count(client_ip)
|
| 124 |
+
|
| 125 |
+
# Record time window count
|
| 126 |
+
if phase in ['rate_limit_1', 'rate_limit_2', 'rate_limit_3']:
|
| 127 |
+
window_key = f"{client_ip}_{phase}"
|
| 128 |
+
current_time = time.time()
|
| 129 |
+
|
| 130 |
+
if window_key in IP_Rate_Limit_Track:
|
| 131 |
+
IP_Rate_Limit_Track[window_key]['count'] += 1
|
| 132 |
+
IP_Rate_Limit_Track[window_key]['last_generation'] = current_time
|
| 133 |
+
else:
|
| 134 |
+
IP_Rate_Limit_Track[window_key] = {
|
| 135 |
+
'count': 1,
|
| 136 |
+
'start_time': current_time,
|
| 137 |
+
'last_generation': current_time
|
| 138 |
+
}
|
| 139 |
+
|
| 140 |
+
def apply_gaussian_blur_to_image_url(image_url, blur_strength=50):
|
| 141 |
+
"""
|
| 142 |
+
Apply Gaussian blur to image URL
|
| 143 |
+
|
| 144 |
+
Args:
|
| 145 |
+
image_url (str): Original image URL
|
| 146 |
+
blur_strength (int): Blur strength, default 50 (heavy blur)
|
| 147 |
+
|
| 148 |
+
Returns:
|
| 149 |
+
PIL.Image: Blurred PIL Image object
|
| 150 |
+
"""
|
| 151 |
+
try:
|
| 152 |
+
import requests
|
| 153 |
+
from PIL import Image, ImageFilter
|
| 154 |
+
import io
|
| 155 |
+
|
| 156 |
+
# Download image
|
| 157 |
+
response = requests.get(image_url, timeout=30)
|
| 158 |
+
if response.status_code != 200:
|
| 159 |
+
return None
|
| 160 |
+
|
| 161 |
+
# Convert to PIL Image
|
| 162 |
+
image_data = io.BytesIO(response.content)
|
| 163 |
+
image = Image.open(image_data)
|
| 164 |
+
|
| 165 |
+
# Apply heavy Gaussian blur
|
| 166 |
+
blurred_image = image.filter(ImageFilter.GaussianBlur(radius=blur_strength))
|
| 167 |
+
|
| 168 |
+
return blurred_image
|
| 169 |
+
|
| 170 |
+
except Exception as e:
|
| 171 |
+
print(f"⚠️ Failed to apply Gaussian blur: {e}")
|
| 172 |
+
return None
|
| 173 |
+
|
| 174 |
+
# Initialize NSFW detector (download from Hugging Face)
|
| 175 |
try:
|
| 176 |
+
nsfw_detector = NSFWDetector() # Auto download falconsai_yolov9_nsfw_model_quantized.pt from Hugging Face
|
| 177 |
+
print("✅ NSFW detector initialized successfully")
|
| 178 |
+
except Exception as e:
|
| 179 |
+
print(f"❌ NSFW detector initialization failed: {e}")
|
| 180 |
+
nsfw_detector = None
|
| 181 |
+
|
| 182 |
+
def edit_image_interface(input_image, prompt, request: gr.Request, progress=gr.Progress()):
|
| 183 |
+
"""
|
| 184 |
+
Interface function for processing image editing with phase-based limitations
|
| 185 |
+
"""
|
| 186 |
+
try:
|
| 187 |
+
# Extract user IP
|
| 188 |
+
client_ip = request.client.host
|
| 189 |
+
x_forwarded_for = dict(request.headers).get('x-forwarded-for')
|
| 190 |
+
if x_forwarded_for:
|
| 191 |
+
client_ip = x_forwarded_for
|
| 192 |
+
if client_ip not in IP_Dict:
|
| 193 |
+
IP_Dict[client_ip] = 0
|
| 194 |
+
IP_Dict[client_ip] += 1
|
| 195 |
+
|
| 196 |
+
if input_image is None:
|
| 197 |
+
return None, "Please upload an image first", gr.update(visible=False)
|
| 198 |
+
|
| 199 |
+
if not prompt or prompt.strip() == "":
|
| 200 |
+
return None, "Please enter editing prompt", gr.update(visible=False)
|
| 201 |
+
|
| 202 |
+
# Check if prompt length is greater than 3 characters
|
| 203 |
+
if len(prompt.strip()) <= 3:
|
| 204 |
+
return None, "❌ Editing prompt must be more than 3 characters", gr.update(visible=False)
|
| 205 |
+
except Exception as e:
|
| 206 |
+
print(f"⚠️ Request preprocessing error: {e}")
|
| 207 |
+
return None, "❌ Request processing error", gr.update(visible=False)
|
| 208 |
+
|
| 209 |
+
# Get user current phase
|
| 210 |
+
current_phase = get_ip_phase(client_ip)
|
| 211 |
+
current_count = get_ip_generation_count(client_ip)
|
| 212 |
+
|
| 213 |
+
print(f"📊 User phase info - IP: {client_ip}, current phase: {current_phase}, generation count: {current_count}")
|
| 214 |
+
|
| 215 |
+
# Check if user reached the like button tip threshold
|
| 216 |
+
show_like_tip = (current_count >= TIP_TRY_N)
|
| 217 |
+
|
| 218 |
+
# Check if completely blocked
|
| 219 |
+
if current_phase == 'blocked':
|
| 220 |
+
# Generate blocked limit button
|
| 221 |
+
blocked_button_html = f"""
|
| 222 |
+
<div style='display: flex; justify-content: center; gap: 15px; margin: 10px 0 5px 0; padding: 0px;'>
|
| 223 |
+
<a href='https://omnicreator.net/#generator' target='_blank' style='
|
| 224 |
+
display: inline-flex;
|
| 225 |
+
align-items: center;
|
| 226 |
+
justify-content: center;
|
| 227 |
+
padding: 16px 32px;
|
| 228 |
+
background: linear-gradient(135deg, #e74c3c 0%, #c0392b 100%);
|
| 229 |
+
color: white;
|
| 230 |
+
text-decoration: none;
|
| 231 |
+
border-radius: 12px;
|
| 232 |
+
font-weight: 600;
|
| 233 |
+
font-size: 16px;
|
| 234 |
+
text-align: center;
|
| 235 |
+
min-width: 200px;
|
| 236 |
+
box-shadow: 0 4px 15px rgba(231, 76, 60, 0.4);
|
| 237 |
+
transition: all 0.3s ease;
|
| 238 |
+
border: none;
|
| 239 |
+
'>🚀 Unlimited Generation</a>
|
| 240 |
+
</div>
|
| 241 |
+
"""
|
| 242 |
+
return None, f"❌ You have reached Hugging Face's free generation limit. Please visit https://omnicreator.net/#generator for unlimited generation", gr.update(value=blocked_button_html, visible=True)
|
| 243 |
+
|
| 244 |
+
# Check rate limit (applies to rate_limit phases)
|
| 245 |
+
if current_phase in ['rate_limit_1', 'rate_limit_2', 'rate_limit_3']:
|
| 246 |
+
is_limited, wait_minutes, window_count = check_rate_limit_for_phase(client_ip, current_phase)
|
| 247 |
+
if is_limited:
|
| 248 |
+
wait_minutes_int = int(wait_minutes) + 1
|
| 249 |
+
# Generate rate limit button
|
| 250 |
+
rate_limit_button_html = f"""
|
| 251 |
+
<div style='display: flex; justify-content: center; gap: 15px; margin: 10px 0 5px 0; padding: 0px;'>
|
| 252 |
+
<a href='https://omnicreator.net/#generator' target='_blank' style='
|
| 253 |
+
display: inline-flex;
|
| 254 |
+
align-items: center;
|
| 255 |
+
justify-content: center;
|
| 256 |
+
padding: 16px 32px;
|
| 257 |
+
background: linear-gradient(135deg, #f39c12 0%, #e67e22 100%);
|
| 258 |
+
color: white;
|
| 259 |
+
text-decoration: none;
|
| 260 |
+
border-radius: 12px;
|
| 261 |
+
font-weight: 600;
|
| 262 |
+
font-size: 16px;
|
| 263 |
+
text-align: center;
|
| 264 |
+
min-width: 200px;
|
| 265 |
+
box-shadow: 0 4px 15px rgba(243, 156, 18, 0.4);
|
| 266 |
+
transition: all 0.3s ease;
|
| 267 |
+
border: none;
|
| 268 |
+
'>⏰ Skip Wait - Unlimited Generation</a>
|
| 269 |
+
</div>
|
| 270 |
+
"""
|
| 271 |
+
return None, f"❌ You have reached Hugging Face's free generation limit. Please visit https://omnicreator.net/#generator for unlimited generation, or wait {wait_minutes_int} minutes before generating again", gr.update(value=rate_limit_button_html, visible=True)
|
| 272 |
+
|
| 273 |
+
# Handle NSFW detection based on phase
|
| 274 |
+
is_nsfw_task = False # Track if this task involves NSFW content
|
| 275 |
+
|
| 276 |
+
# Skip NSFW detection in free phase
|
| 277 |
+
if current_phase != 'free' and nsfw_detector is not None and input_image is not None:
|
| 278 |
+
try:
|
| 279 |
+
nsfw_result = nsfw_detector.predict_pil_label_only(input_image)
|
| 280 |
+
|
| 281 |
+
if nsfw_result.lower() == "nsfw":
|
| 282 |
+
is_nsfw_task = True
|
| 283 |
+
print(f"🔍 Input NSFW detected in {current_phase} phase: ❌❌❌ {nsfw_result} - IP: {client_ip} (will blur result)")
|
| 284 |
+
else:
|
| 285 |
+
print(f"🔍 Input NSFW check passed: ✅✅✅ {nsfw_result} - IP: {client_ip}")
|
| 286 |
+
|
| 287 |
+
except Exception as e:
|
| 288 |
+
print(f"⚠️ Input NSFW detection failed: {e}")
|
| 289 |
+
# Allow continuation when detection fails
|
| 290 |
+
|
| 291 |
+
result_url = None
|
| 292 |
+
status_message = ""
|
| 293 |
+
|
| 294 |
+
def progress_callback(message):
|
| 295 |
+
try:
|
| 296 |
+
nonlocal status_message
|
| 297 |
+
status_message = message
|
| 298 |
+
# Add error handling to prevent progress update failure
|
| 299 |
+
if progress is not None:
|
| 300 |
+
# Enhanced progress display with better formatting
|
| 301 |
+
if "Queue:" in message or "tasks ahead" in message:
|
| 302 |
+
# Queue status - show with different progress value to indicate waiting
|
| 303 |
+
progress(0.1, desc=message)
|
| 304 |
+
elif "Processing" in message or "AI is processing" in message:
|
| 305 |
+
# Processing status
|
| 306 |
+
progress(0.7, desc=message)
|
| 307 |
+
elif "Generating" in message or "Almost done" in message:
|
| 308 |
+
# Generation status
|
| 309 |
+
progress(0.9, desc=message)
|
| 310 |
+
else:
|
| 311 |
+
# Default status
|
| 312 |
+
progress(0.5, desc=message)
|
| 313 |
+
except Exception as e:
|
| 314 |
+
print(f"⚠️ Progress update failed: {e}")
|
| 315 |
+
|
| 316 |
+
try:
|
| 317 |
+
# Record generation attempt (before actual generation to ensure correct count)
|
| 318 |
+
record_generation_attempt(client_ip, current_phase)
|
| 319 |
+
updated_count = get_ip_generation_count(client_ip)
|
| 320 |
+
|
| 321 |
+
print(f"✅ Processing started - IP: {client_ip}, phase: {current_phase}, total count: {updated_count}, prompt: {prompt.strip()}", flush=True)
|
| 322 |
+
|
| 323 |
+
# Call image editing processing function
|
| 324 |
+
result_url, message, task_uuid = process_image_edit(input_image, prompt.strip(), None, progress_callback)
|
| 325 |
+
|
| 326 |
+
if result_url:
|
| 327 |
+
print(f"✅ Processing completed successfully - IP: {client_ip}, result_url: {result_url}, task_uuid: {task_uuid}", flush=True)
|
| 328 |
+
|
| 329 |
+
# Detect result image NSFW content (only in rate limit phases)
|
| 330 |
+
if nsfw_detector is not None and current_phase != 'free':
|
| 331 |
+
try:
|
| 332 |
+
if progress is not None:
|
| 333 |
+
progress(0.9, desc="Checking result image...")
|
| 334 |
+
|
| 335 |
+
is_nsfw, nsfw_error = download_and_check_result_nsfw(result_url, nsfw_detector)
|
| 336 |
+
|
| 337 |
+
if nsfw_error:
|
| 338 |
+
print(f"⚠️ Result image NSFW detection error - IP: {client_ip}, error: {nsfw_error}")
|
| 339 |
+
elif is_nsfw:
|
| 340 |
+
is_nsfw_task = True # Mark task as NSFW
|
| 341 |
+
print(f"🔍 Result image NSFW detected in {current_phase} phase: ❌❌❌ - IP: {client_ip} (will blur result)")
|
| 342 |
+
else:
|
| 343 |
+
print(f"🔍 Result image NSFW check passed: ✅✅✅ - IP: {client_ip}")
|
| 344 |
+
|
| 345 |
+
except Exception as e:
|
| 346 |
+
print(f"��️ Result image NSFW detection exception - IP: {client_ip}, error: {str(e)}")
|
| 347 |
+
|
| 348 |
+
# Apply blur if this is an NSFW task in rate limit phases
|
| 349 |
+
should_blur = False
|
| 350 |
+
|
| 351 |
+
if current_phase in ['rate_limit_1', 'rate_limit_2', 'rate_limit_3'] and is_nsfw_task:
|
| 352 |
+
should_blur = True
|
| 353 |
+
|
| 354 |
+
# Apply blur processing
|
| 355 |
+
if should_blur:
|
| 356 |
+
if progress is not None:
|
| 357 |
+
progress(0.95, desc="Applying content filter...")
|
| 358 |
+
|
| 359 |
+
blurred_image = apply_gaussian_blur_to_image_url(result_url)
|
| 360 |
+
if blurred_image is not None:
|
| 361 |
+
final_result = blurred_image # Return PIL Image object
|
| 362 |
+
final_message = f"⚠️ NSFW content detected, content filter applied. NSFW content is prohibited by Hugging Face, but you can generate unlimited content at our official website https://omnicreator.net/#generator"
|
| 363 |
+
print(f"🔒 Applied Gaussian blur for NSFW content - IP: {client_ip}")
|
| 364 |
+
else:
|
| 365 |
+
# Blur failed, return original URL with warning
|
| 366 |
+
final_result = result_url
|
| 367 |
+
final_message = f"⚠️ NSFW content detected, but content filter failed. Please visit https://omnicreator.net/#generator for better experience"
|
| 368 |
+
|
| 369 |
+
# Generate NSFW button for blurred content
|
| 370 |
+
nsfw_action_buttons_html = f"""
|
| 371 |
+
<div style='display: flex; justify-content: center; gap: 15px; margin: 10px 0 5px 0; padding: 0px;'>
|
| 372 |
+
<a href='https://omnicreator.net/#generator' target='_blank' style='
|
| 373 |
+
display: inline-flex;
|
| 374 |
+
align-items: center;
|
| 375 |
+
justify-content: center;
|
| 376 |
+
padding: 16px 32px;
|
| 377 |
+
background: linear-gradient(135deg, #ff6b6b 0%, #feca57 100%);
|
| 378 |
+
color: white;
|
| 379 |
+
text-decoration: none;
|
| 380 |
+
border-radius: 12px;
|
| 381 |
+
font-weight: 600;
|
| 382 |
+
font-size: 16px;
|
| 383 |
+
text-align: center;
|
| 384 |
+
min-width: 200px;
|
| 385 |
+
box-shadow: 0 4px 15px rgba(255, 107, 107, 0.4);
|
| 386 |
+
transition: all 0.3s ease;
|
| 387 |
+
border: none;
|
| 388 |
+
'>🔥 Unlimited NSFW Generation</a>
|
| 389 |
+
</div>
|
| 390 |
+
"""
|
| 391 |
+
return final_result, final_message, gr.update(value=nsfw_action_buttons_html, visible=True)
|
| 392 |
+
else:
|
| 393 |
+
final_result = result_url
|
| 394 |
+
final_message = "✅ " + message
|
| 395 |
+
|
| 396 |
+
try:
|
| 397 |
+
if progress is not None:
|
| 398 |
+
progress(1.0, desc="Processing completed")
|
| 399 |
+
except Exception as e:
|
| 400 |
+
print(f"⚠️ Final progress update failed: {e}")
|
| 401 |
+
|
| 402 |
+
# Generate action buttons HTML like Trump AI Voice
|
| 403 |
+
action_buttons_html = ""
|
| 404 |
+
if task_uuid:
|
| 405 |
+
task_detail_url = f"https://omnicreator.net/my-creations/task/{task_uuid}"
|
| 406 |
+
action_buttons_html = f"""
|
| 407 |
+
<div style='display: flex; justify-content: center; gap: 15px; margin: 10px 0 5px 0; padding: 0px;'>
|
| 408 |
+
<a href='{task_detail_url}' target='_blank' style='
|
| 409 |
+
display: inline-flex;
|
| 410 |
+
align-items: center;
|
| 411 |
+
justify-content: center;
|
| 412 |
+
padding: 16px 32px;
|
| 413 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 414 |
+
color: white;
|
| 415 |
+
text-decoration: none;
|
| 416 |
+
border-radius: 12px;
|
| 417 |
+
font-weight: 600;
|
| 418 |
+
font-size: 16px;
|
| 419 |
+
text-align: center;
|
| 420 |
+
min-width: 160px;
|
| 421 |
+
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4);
|
| 422 |
+
transition: all 0.3s ease;
|
| 423 |
+
border: none;
|
| 424 |
+
'>🖼 Download HD Image</a>
|
| 425 |
+
<a href='https://omnicreator.net/#generator' target='_blank' style='
|
| 426 |
+
display: inline-flex;
|
| 427 |
+
align-items: center;
|
| 428 |
+
justify-content: center;
|
| 429 |
+
padding: 16px 32px;
|
| 430 |
+
background: linear-gradient(135deg, #11998e 0%, #38ef7d 100%);
|
| 431 |
+
color: white;
|
| 432 |
+
text-decoration: none;
|
| 433 |
+
border-radius: 12px;
|
| 434 |
+
font-weight: 600;
|
| 435 |
+
font-size: 16px;
|
| 436 |
+
text-align: center;
|
| 437 |
+
min-width: 160px;
|
| 438 |
+
box-shadow: 0 4px 15px rgba(17, 153, 142, 0.4);
|
| 439 |
+
transition: all 0.3s ease;
|
| 440 |
+
border: none;
|
| 441 |
+
'>🚀 Unlimited Generation</a>
|
| 442 |
+
</div>
|
| 443 |
+
"""
|
| 444 |
+
|
| 445 |
+
# Add popup script if needed (using different approach)
|
| 446 |
+
if show_like_tip:
|
| 447 |
+
action_buttons_html += """
|
| 448 |
+
<div style='display: flex; justify-content: center; margin: 15px 0 5px 0; padding: 0px;'>
|
| 449 |
+
<div style='
|
| 450 |
+
display: inline-flex;
|
| 451 |
+
align-items: center;
|
| 452 |
+
justify-content: center;
|
| 453 |
+
padding: 12px 24px;
|
| 454 |
+
background: linear-gradient(135deg, #ff6b6b 0%, #feca57 100%);
|
| 455 |
+
color: white;
|
| 456 |
+
border-radius: 10px;
|
| 457 |
+
font-weight: 600;
|
| 458 |
+
font-size: 14px;
|
| 459 |
+
text-align: center;
|
| 460 |
+
max-width: 400px;
|
| 461 |
+
box-shadow: 0 3px 12px rgba(255, 107, 107, 0.3);
|
| 462 |
+
border: none;
|
| 463 |
+
'>👉 Click the ❤️ Like button to unlock more free trial attempts!</div>
|
| 464 |
+
</div>
|
| 465 |
+
"""
|
| 466 |
+
|
| 467 |
+
return final_result, final_message, gr.update(value=action_buttons_html, visible=True)
|
| 468 |
+
else:
|
| 469 |
+
print(f"❌ Processing failed - IP: {client_ip}, error: {message}", flush=True)
|
| 470 |
+
return None, "❌ " + message, gr.update(visible=False)
|
| 471 |
+
|
| 472 |
+
except Exception as e:
|
| 473 |
+
print(f"❌ Processing exception - IP: {client_ip}, error: {str(e)}")
|
| 474 |
+
return None, f"❌ Error occurred during processing: {str(e)}", gr.update(visible=False)
|
| 475 |
+
|
| 476 |
+
def local_edit_interface(image_dict, prompt, reference_image, request: gr.Request, progress=gr.Progress()):
|
| 477 |
+
"""
|
| 478 |
+
Handle local editing requests (with phase-based limitations)
|
| 479 |
+
"""
|
| 480 |
+
try:
|
| 481 |
+
# Extract user IP
|
| 482 |
+
client_ip = request.client.host
|
| 483 |
+
x_forwarded_for = dict(request.headers).get('x-forwarded-for')
|
| 484 |
+
if x_forwarded_for:
|
| 485 |
+
client_ip = x_forwarded_for
|
| 486 |
+
if client_ip not in IP_Dict:
|
| 487 |
+
IP_Dict[client_ip] = 0
|
| 488 |
+
IP_Dict[client_ip] += 1
|
| 489 |
+
|
| 490 |
+
if image_dict is None:
|
| 491 |
+
return None, "Please upload an image and draw the area to edit", gr.update(visible=False)
|
| 492 |
+
|
| 493 |
+
# Handle different input formats for ImageEditor
|
| 494 |
+
if isinstance(image_dict, dict):
|
| 495 |
+
# ImageEditor dict format
|
| 496 |
+
if "background" not in image_dict or "layers" not in image_dict:
|
| 497 |
+
return None, "Please draw the area to edit on the image", gr.update(visible=False)
|
| 498 |
+
|
| 499 |
+
base_image = image_dict["background"]
|
| 500 |
+
layers = image_dict["layers"]
|
| 501 |
+
|
| 502 |
+
# Special handling: if background is None but composite exists, use composite
|
| 503 |
+
if base_image is None and "composite" in image_dict and image_dict["composite"] is not None:
|
| 504 |
+
print("🔧 Background is None, using composite instead")
|
| 505 |
+
base_image = image_dict["composite"]
|
| 506 |
+
else:
|
| 507 |
+
# Simple case: Direct PIL Image (from example)
|
| 508 |
+
base_image = image_dict
|
| 509 |
+
layers = []
|
| 510 |
+
|
| 511 |
+
# Check for special example case - bypass mask requirement
|
| 512 |
+
is_example_case = prompt and prompt.startswith("EXAMPLE_PANDA_CAT_")
|
| 513 |
+
|
| 514 |
+
# Debug: check current state
|
| 515 |
+
if is_example_case:
|
| 516 |
+
print(f"🔍 Example case detected - base_image is None: {base_image is None}")
|
| 517 |
+
|
| 518 |
+
# Special handling for example case: load image directly from file
|
| 519 |
+
if is_example_case and base_image is None:
|
| 520 |
+
try:
|
| 521 |
+
from PIL import Image
|
| 522 |
+
import os
|
| 523 |
+
|
| 524 |
+
main_path = "datas/panda01.jpeg"
|
| 525 |
+
print(f"🔍 Trying to load: {main_path}, exists: {os.path.exists(main_path)}")
|
| 526 |
+
|
| 527 |
+
if os.path.exists(main_path):
|
| 528 |
+
base_image = Image.open(main_path)
|
| 529 |
+
print(f"✅ Successfully loaded example image: {base_image.size}")
|
| 530 |
+
else:
|
| 531 |
+
return None, f"❌ Example image not found: {main_path}", gr.update(visible=False)
|
| 532 |
+
except Exception as e:
|
| 533 |
+
return None, f"❌ Failed to load example image: {str(e)}", gr.update(visible=False)
|
| 534 |
+
|
| 535 |
+
# Additional check for base_image
|
| 536 |
+
if base_image is None:
|
| 537 |
+
if is_example_case:
|
| 538 |
+
print(f"❌ Example case but base_image still None!")
|
| 539 |
+
return None, "❌ No image found. Please upload an image first.", gr.update(visible=False)
|
| 540 |
+
|
| 541 |
+
if not layers and not is_example_case:
|
| 542 |
+
return None, "Please draw the area to edit on the image", gr.update(visible=False)
|
| 543 |
+
|
| 544 |
+
if not prompt or prompt.strip() == "":
|
| 545 |
+
return None, "Please enter editing prompt", gr.update(visible=False)
|
| 546 |
+
|
| 547 |
+
# Check prompt length
|
| 548 |
+
if len(prompt.strip()) <= 3:
|
| 549 |
+
return None, "❌ Editing prompt must be more than 3 characters", gr.update(visible=False)
|
| 550 |
+
except Exception as e:
|
| 551 |
+
print(f"⚠️ Local edit request preprocessing error: {e}")
|
| 552 |
+
return None, "❌ Request processing error", gr.update(visible=False)
|
| 553 |
+
|
| 554 |
+
# Get user current phase
|
| 555 |
+
current_phase = get_ip_phase(client_ip)
|
| 556 |
+
current_count = get_ip_generation_count(client_ip)
|
| 557 |
+
|
| 558 |
+
print(f"📊 Local edit user phase info - IP: {client_ip}, current phase: {current_phase}, generation count: {current_count}")
|
| 559 |
+
|
| 560 |
+
# Check if user reached the like button tip threshold
|
| 561 |
+
show_like_tip = (current_count >= TIP_TRY_N)
|
| 562 |
|
| 563 |
+
# Check if completely blocked
|
| 564 |
+
if current_phase == 'blocked':
|
| 565 |
+
# Generate blocked limit button
|
| 566 |
+
blocked_button_html = f"""
|
| 567 |
+
<div style='display: flex; justify-content: center; gap: 15px; margin: 10px 0 5px 0; padding: 0px;'>
|
| 568 |
+
<a href='https://omnicreator.net/#generator' target='_blank' style='
|
| 569 |
+
display: inline-flex;
|
| 570 |
+
align-items: center;
|
| 571 |
+
justify-content: center;
|
| 572 |
+
padding: 16px 32px;
|
| 573 |
+
background: linear-gradient(135deg, #e74c3c 0%, #c0392b 100%);
|
| 574 |
+
color: white;
|
| 575 |
+
text-decoration: none;
|
| 576 |
+
border-radius: 12px;
|
| 577 |
+
font-weight: 600;
|
| 578 |
+
font-size: 16px;
|
| 579 |
+
text-align: center;
|
| 580 |
+
min-width: 200px;
|
| 581 |
+
box-shadow: 0 4px 15px rgba(231, 76, 60, 0.4);
|
| 582 |
+
transition: all 0.3s ease;
|
| 583 |
+
border: none;
|
| 584 |
+
'>🚀 Unlimited Generation</a>
|
| 585 |
+
</div>
|
| 586 |
+
"""
|
| 587 |
+
return None, f"❌ You have reached Hugging Face's free generation limit. Please visit https://omnicreator.net/#generator for unlimited generation", gr.update(value=blocked_button_html, visible=True)
|
| 588 |
+
|
| 589 |
+
# Check rate limit (applies to rate_limit phases)
|
| 590 |
+
if current_phase in ['rate_limit_1', 'rate_limit_2', 'rate_limit_3']:
|
| 591 |
+
is_limited, wait_minutes, window_count = check_rate_limit_for_phase(client_ip, current_phase)
|
| 592 |
+
if is_limited:
|
| 593 |
+
wait_minutes_int = int(wait_minutes) + 1
|
| 594 |
+
# Generate rate limit button
|
| 595 |
+
rate_limit_button_html = f"""
|
| 596 |
+
<div style='display: flex; justify-content: center; gap: 15px; margin: 10px 0 5px 0; padding: 0px;'>
|
| 597 |
+
<a href='https://omnicreator.net/#generator' target='_blank' style='
|
| 598 |
+
display: inline-flex;
|
| 599 |
+
align-items: center;
|
| 600 |
+
justify-content: center;
|
| 601 |
+
padding: 16px 32px;
|
| 602 |
+
background: linear-gradient(135deg, #f39c12 0%, #e67e22 100%);
|
| 603 |
+
color: white;
|
| 604 |
+
text-decoration: none;
|
| 605 |
+
border-radius: 12px;
|
| 606 |
+
font-weight: 600;
|
| 607 |
+
font-size: 16px;
|
| 608 |
+
text-align: center;
|
| 609 |
+
min-width: 200px;
|
| 610 |
+
box-shadow: 0 4px 15px rgba(243, 156, 18, 0.4);
|
| 611 |
+
transition: all 0.3s ease;
|
| 612 |
+
border: none;
|
| 613 |
+
'>⏰ Skip Wait - Unlimited Generation</a>
|
| 614 |
+
</div>
|
| 615 |
+
"""
|
| 616 |
+
return None, f"❌ You have reached Hugging Face's free generation limit. Please visit https://omnicreator.net/#generator for unlimited generation, or wait {wait_minutes_int} minutes before generating again", gr.update(value=rate_limit_button_html, visible=True)
|
| 617 |
+
|
| 618 |
+
# Handle NSFW detection based on phase
|
| 619 |
+
is_nsfw_task = False # Track if this task involves NSFW content
|
| 620 |
+
|
| 621 |
+
# Skip NSFW detection in free phase
|
| 622 |
+
if current_phase != 'free' and nsfw_detector is not None and base_image is not None:
|
| 623 |
+
try:
|
| 624 |
+
nsfw_result = nsfw_detector.predict_pil_label_only(base_image)
|
| 625 |
+
|
| 626 |
+
if nsfw_result.lower() == "nsfw":
|
| 627 |
+
is_nsfw_task = True
|
| 628 |
+
print(f"🔍 Local edit input NSFW detected in {current_phase} phase: ❌❌❌ {nsfw_result} - IP: {client_ip} (will blur result)")
|
| 629 |
+
else:
|
| 630 |
+
print(f"🔍 Local edit input NSFW check passed: ✅✅✅ {nsfw_result} - IP: {client_ip}")
|
| 631 |
+
|
| 632 |
+
except Exception as e:
|
| 633 |
+
print(f"⚠️ Local edit input NSFW detection failed: {e}")
|
| 634 |
+
# Allow continuation when detection fails
|
| 635 |
+
|
| 636 |
+
result_url = None
|
| 637 |
+
status_message = ""
|
| 638 |
+
|
| 639 |
+
def progress_callback(message):
|
| 640 |
+
try:
|
| 641 |
+
nonlocal status_message
|
| 642 |
+
status_message = message
|
| 643 |
+
# Add error handling to prevent progress update failure
|
| 644 |
+
if progress is not None:
|
| 645 |
+
# Enhanced progress display with better formatting for local editing
|
| 646 |
+
if "Queue:" in message or "tasks ahead" in message:
|
| 647 |
+
# Queue status - show with different progress value to indicate waiting
|
| 648 |
+
progress(0.1, desc=message)
|
| 649 |
+
elif "Processing" in message or "AI is processing" in message:
|
| 650 |
+
# Processing status
|
| 651 |
+
progress(0.7, desc=message)
|
| 652 |
+
elif "Generating" in message or "Almost done" in message:
|
| 653 |
+
# Generation status
|
| 654 |
+
progress(0.9, desc=message)
|
| 655 |
+
else:
|
| 656 |
+
# Default status
|
| 657 |
+
progress(0.5, desc=message)
|
| 658 |
+
except Exception as e:
|
| 659 |
+
print(f"⚠️ Local edit progress update failed: {e}")
|
| 660 |
+
|
| 661 |
+
try:
|
| 662 |
+
# Record generation attempt (before actual generation to ensure correct count)
|
| 663 |
+
record_generation_attempt(client_ip, current_phase)
|
| 664 |
+
updated_count = get_ip_generation_count(client_ip)
|
| 665 |
+
|
| 666 |
+
print(f"✅ Local editing started - IP: {client_ip}, phase: {current_phase}, total count: {updated_count}, prompt: {prompt.strip()}", flush=True)
|
| 667 |
+
|
| 668 |
+
# Clean prompt for API call
|
| 669 |
+
clean_prompt = prompt.strip()
|
| 670 |
+
if clean_prompt.startswith("EXAMPLE_PANDA_CAT_"):
|
| 671 |
+
clean_prompt = clean_prompt[18:] # Remove the prefix
|
| 672 |
+
|
| 673 |
+
# Call local image editing processing function
|
| 674 |
+
if is_example_case:
|
| 675 |
+
# For example case, pass special flag to use local mask file
|
| 676 |
+
result_url, message, task_uuid = process_local_image_edit(base_image, layers, clean_prompt, reference_image, progress_callback, use_example_mask="datas/panda01m.jpeg")
|
| 677 |
+
else:
|
| 678 |
+
# Normal case
|
| 679 |
+
result_url, message, task_uuid = process_local_image_edit(base_image, layers, clean_prompt, reference_image, progress_callback)
|
| 680 |
+
|
| 681 |
+
if result_url:
|
| 682 |
+
print(f"✅ Local editing completed successfully - IP: {client_ip}, result_url: {result_url}, task_uuid: {task_uuid}", flush=True)
|
| 683 |
+
|
| 684 |
+
# Detect result image NSFW content (only in rate limit phases)
|
| 685 |
+
if nsfw_detector is not None and current_phase != 'free':
|
| 686 |
+
try:
|
| 687 |
+
if progress is not None:
|
| 688 |
+
progress(0.9, desc="Checking result image...")
|
| 689 |
+
|
| 690 |
+
is_nsfw, nsfw_error = download_and_check_result_nsfw(result_url, nsfw_detector)
|
| 691 |
+
|
| 692 |
+
if nsfw_error:
|
| 693 |
+
print(f"⚠️ Local edit result image NSFW detection error - IP: {client_ip}, error: {nsfw_error}")
|
| 694 |
+
elif is_nsfw:
|
| 695 |
+
is_nsfw_task = True # Mark task as NSFW
|
| 696 |
+
print(f"🔍 Local edit result image NSFW detected in {current_phase} phase: ❌❌❌ - IP: {client_ip} (will blur result)")
|
| 697 |
+
else:
|
| 698 |
+
print(f"🔍 Local edit result image NSFW check passed: ✅✅✅ - IP: {client_ip}")
|
| 699 |
+
|
| 700 |
+
except Exception as e:
|
| 701 |
+
print(f"⚠️ Local edit result image NSFW detection exception - IP: {client_ip}, error: {str(e)}")
|
| 702 |
+
|
| 703 |
+
# Apply blur if this is an NSFW task in rate limit phases
|
| 704 |
+
should_blur = False
|
| 705 |
+
|
| 706 |
+
if current_phase in ['rate_limit_1', 'rate_limit_2', 'rate_limit_3'] and is_nsfw_task:
|
| 707 |
+
should_blur = True
|
| 708 |
+
|
| 709 |
+
# Apply blur processing
|
| 710 |
+
if should_blur:
|
| 711 |
+
if progress is not None:
|
| 712 |
+
progress(0.95, desc="Applying content filter...")
|
| 713 |
+
|
| 714 |
+
blurred_image = apply_gaussian_blur_to_image_url(result_url)
|
| 715 |
+
if blurred_image is not None:
|
| 716 |
+
final_result = blurred_image # Return PIL Image object
|
| 717 |
+
final_message = f"⚠️ NSFW content detected, content filter applied. NSFW content is prohibited by Hugging Face, but you can generate unlimited content at our official website https://omnicreator.net/#generator"
|
| 718 |
+
print(f"🔒 Local edit applied Gaussian blur for NSFW content - IP: {client_ip}")
|
| 719 |
+
else:
|
| 720 |
+
# Blur failed, return original URL with warning
|
| 721 |
+
final_result = result_url
|
| 722 |
+
final_message = f"⚠️ NSFW content detected, but content filter failed. Please visit https://omnicreator.net/#generator for better experience"
|
| 723 |
+
|
| 724 |
+
# Generate NSFW button for blurred content
|
| 725 |
+
nsfw_action_buttons_html = f"""
|
| 726 |
+
<div style='display: flex; justify-content: center; gap: 15px; margin: 10px 0 5px 0; padding: 0px;'>
|
| 727 |
+
<a href='https://omnicreator.net/#generator' target='_blank' style='
|
| 728 |
+
display: inline-flex;
|
| 729 |
+
align-items: center;
|
| 730 |
+
justify-content: center;
|
| 731 |
+
padding: 16px 32px;
|
| 732 |
+
background: linear-gradient(135deg, #ff6b6b 0%, #feca57 100%);
|
| 733 |
+
color: white;
|
| 734 |
+
text-decoration: none;
|
| 735 |
+
border-radius: 12px;
|
| 736 |
+
font-weight: 600;
|
| 737 |
+
font-size: 16px;
|
| 738 |
+
text-align: center;
|
| 739 |
+
min-width: 200px;
|
| 740 |
+
box-shadow: 0 4px 15px rgba(255, 107, 107, 0.4);
|
| 741 |
+
transition: all 0.3s ease;
|
| 742 |
+
border: none;
|
| 743 |
+
'>🔥 Unlimited NSFW Generation</a>
|
| 744 |
+
</div>
|
| 745 |
+
"""
|
| 746 |
+
return final_result, final_message, gr.update(value=nsfw_action_buttons_html, visible=True)
|
| 747 |
+
else:
|
| 748 |
+
final_result = result_url
|
| 749 |
+
final_message = "✅ " + message
|
| 750 |
+
|
| 751 |
+
try:
|
| 752 |
+
if progress is not None:
|
| 753 |
+
progress(1.0, desc="Processing completed")
|
| 754 |
+
except Exception as e:
|
| 755 |
+
print(f"⚠️ Local edit final progress update failed: {e}")
|
| 756 |
+
|
| 757 |
+
# Generate action buttons HTML like Trump AI Voice
|
| 758 |
+
action_buttons_html = ""
|
| 759 |
+
if task_uuid:
|
| 760 |
+
task_detail_url = f"https://omnicreator.net/my-creations/task/{task_uuid}"
|
| 761 |
+
action_buttons_html = f"""
|
| 762 |
+
<div style='display: flex; justify-content: center; gap: 15px; margin: 10px 0 5px 0; padding: 0px;'>
|
| 763 |
+
<a href='{task_detail_url}' target='_blank' style='
|
| 764 |
+
display: inline-flex;
|
| 765 |
+
align-items: center;
|
| 766 |
+
justify-content: center;
|
| 767 |
+
padding: 16px 32px;
|
| 768 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 769 |
+
color: white;
|
| 770 |
+
text-decoration: none;
|
| 771 |
+
border-radius: 12px;
|
| 772 |
+
font-weight: 600;
|
| 773 |
+
font-size: 16px;
|
| 774 |
+
text-align: center;
|
| 775 |
+
min-width: 160px;
|
| 776 |
+
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4);
|
| 777 |
+
transition: all 0.3s ease;
|
| 778 |
+
border: none;
|
| 779 |
+
'>🖼 Download HD Image</a>
|
| 780 |
+
<a href='https://omnicreator.net/#generator' target='_blank' style='
|
| 781 |
+
display: inline-flex;
|
| 782 |
+
align-items: center;
|
| 783 |
+
justify-content: center;
|
| 784 |
+
padding: 16px 32px;
|
| 785 |
+
background: linear-gradient(135deg, #11998e 0%, #38ef7d 100%);
|
| 786 |
+
color: white;
|
| 787 |
+
text-decoration: none;
|
| 788 |
+
border-radius: 12px;
|
| 789 |
+
font-weight: 600;
|
| 790 |
+
font-size: 16px;
|
| 791 |
+
text-align: center;
|
| 792 |
+
min-width: 160px;
|
| 793 |
+
box-shadow: 0 4px 15px rgba(17, 153, 142, 0.4);
|
| 794 |
+
transition: all 0.3s ease;
|
| 795 |
+
border: none;
|
| 796 |
+
'>🚀 Unlimited Generation</a>
|
| 797 |
+
</div>
|
| 798 |
+
"""
|
| 799 |
+
|
| 800 |
+
# Add popup script if needed (using different approach)
|
| 801 |
+
if show_like_tip:
|
| 802 |
+
action_buttons_html += """
|
| 803 |
+
<div style='display: flex; justify-content: center; margin: 15px 0 5px 0; padding: 0px;'>
|
| 804 |
+
<div style='
|
| 805 |
+
display: inline-flex;
|
| 806 |
+
align-items: center;
|
| 807 |
+
justify-content: center;
|
| 808 |
+
padding: 12px 24px;
|
| 809 |
+
background: linear-gradient(135deg, #ff6b6b 0%, #feca57 100%);
|
| 810 |
+
color: white;
|
| 811 |
+
border-radius: 10px;
|
| 812 |
+
font-weight: 600;
|
| 813 |
+
font-size: 14px;
|
| 814 |
+
text-align: center;
|
| 815 |
+
max-width: 400px;
|
| 816 |
+
box-shadow: 0 3px 12px rgba(255, 107, 107, 0.3);
|
| 817 |
+
border: none;
|
| 818 |
+
'>👉 Please consider clicking the ❤️ Like button to support this space!</div>
|
| 819 |
+
</div>
|
| 820 |
+
"""
|
| 821 |
+
|
| 822 |
+
return final_result, final_message, gr.update(value=action_buttons_html, visible=True)
|
| 823 |
+
else:
|
| 824 |
+
print(f"❌ Local editing processing failed - IP: {client_ip}, error: {message}", flush=True)
|
| 825 |
+
return None, "❌ " + message, gr.update(visible=False)
|
| 826 |
+
|
| 827 |
+
except Exception as e:
|
| 828 |
+
print(f"❌ Local editing exception - IP: {client_ip}, error: {str(e)}")
|
| 829 |
+
return None, f"❌ Error occurred during processing: {str(e)}", gr.update(visible=False)
|
| 830 |
+
|
| 831 |
+
# Create Gradio interface
|
| 832 |
+
def create_app():
|
| 833 |
+
with gr.Blocks(
|
| 834 |
+
title="AI Image Editor",
|
| 835 |
+
theme=gr.themes.Soft(),
|
| 836 |
+
css="""
|
| 837 |
+
.main-container {
|
| 838 |
+
max-width: 1200px;
|
| 839 |
+
margin: 0 auto;
|
| 840 |
+
}
|
| 841 |
+
.upload-area {
|
| 842 |
+
border: 2px dashed #ccc;
|
| 843 |
+
border-radius: 10px;
|
| 844 |
+
padding: 20px;
|
| 845 |
+
text-align: center;
|
| 846 |
+
}
|
| 847 |
+
.result-area {
|
| 848 |
+
margin-top: 20px;
|
| 849 |
+
padding: 20px;
|
| 850 |
+
border-radius: 10px;
|
| 851 |
+
background-color: #f8f9fa;
|
| 852 |
+
}
|
| 853 |
+
.use-as-input-btn {
|
| 854 |
+
margin-top: 10px;
|
| 855 |
+
width: 100%;
|
| 856 |
+
}
|
| 857 |
+
""",
|
| 858 |
+
# Improve concurrency performance configuration
|
| 859 |
+
head="""
|
| 860 |
+
<script>
|
| 861 |
+
// Reduce client-side state update frequency, avoid excessive SSE connections
|
| 862 |
+
if (window.gradio) {
|
| 863 |
+
window.gradio.update_frequency = 2000; // Update every 2 seconds
|
| 864 |
+
}
|
| 865 |
+
</script>
|
| 866 |
+
"""
|
| 867 |
+
) as app:
|
| 868 |
+
|
| 869 |
+
# Main title - styled like Trump AI Voice
|
| 870 |
+
gr.HTML("""
|
| 871 |
+
<div style="text-align: center; margin: 5px auto 0px auto; max-width: 800px;">
|
| 872 |
+
<h1 style="color: #2c3e50; margin: 0; font-size: 3.5em; font-weight: 800; letter-spacing: 3px; text-shadow: 2px 2px 4px rgba(0,0,0,0.1);">
|
| 873 |
+
🎨 AI Image Editor
|
| 874 |
+
</h1>
|
| 875 |
+
</div>
|
| 876 |
+
""", padding=False)
|
| 877 |
+
|
| 878 |
+
# 🌟 NEW: Multi-Image Editing Announcement Banner with breathing effect
|
| 879 |
+
gr.HTML("""
|
| 880 |
+
<style>
|
| 881 |
+
@keyframes breathe {
|
| 882 |
+
0%, 100% { transform: scale(1); }
|
| 883 |
+
50% { transform: scale(1.02); }
|
| 884 |
+
}
|
| 885 |
+
.breathing-banner {
|
| 886 |
+
animation: breathe 3s ease-in-out infinite;
|
| 887 |
+
}
|
| 888 |
+
</style>
|
| 889 |
+
<div class="breathing-banner" style="
|
| 890 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 891 |
+
margin: 5px auto 5px auto;
|
| 892 |
+
padding: 6px 40px;
|
| 893 |
+
border-radius: 20px;
|
| 894 |
+
max-width: 700px;
|
| 895 |
+
box-shadow: 0 2px 8px rgba(102, 126, 234, 0.3);
|
| 896 |
+
text-align: center;
|
| 897 |
+
">
|
| 898 |
+
<span style="color: white; font-weight: 600; font-size: 1.0em;">
|
| 899 |
+
🚀 NEWS:
|
| 900 |
+
<a href="https://huggingface.co/spaces/Selfit/Multi-Image-Edit" target="_blank" style="
|
| 901 |
+
color: white;
|
| 902 |
+
text-decoration: none;
|
| 903 |
+
border-bottom: 1px solid rgba(255,255,255,0.5);
|
| 904 |
+
transition: all 0.3s ease;
|
| 905 |
+
" onmouseover="this.style.borderBottom='1px solid white'"
|
| 906 |
+
onmouseout="this.style.borderBottom='1px solid rgba(255,255,255,0.5)'">
|
| 907 |
+
World's First Multi-Image Editing Tool →
|
| 908 |
+
</a>
|
| 909 |
+
</span>
|
| 910 |
+
</div>
|
| 911 |
+
""", padding=False)
|
| 912 |
+
|
| 913 |
+
with gr.Tabs():
|
| 914 |
+
with gr.Tab("🌍 Global Editor"):
|
| 915 |
+
with gr.Row():
|
| 916 |
+
with gr.Column(scale=1):
|
| 917 |
+
gr.Markdown("### 📸 Upload Image")
|
| 918 |
+
input_image = gr.Image(
|
| 919 |
+
label="Select image to edit",
|
| 920 |
+
type="pil",
|
| 921 |
+
height=512,
|
| 922 |
+
elem_classes=["upload-area"]
|
| 923 |
+
)
|
| 924 |
+
|
| 925 |
+
gr.Markdown("### ✍️ Editing Instructions")
|
| 926 |
+
prompt_input = gr.Textbox(
|
| 927 |
+
label="Enter editing prompt",
|
| 928 |
+
placeholder="For example: change background to beach, add rainbow, remove background, etc...",
|
| 929 |
+
lines=3,
|
| 930 |
+
max_lines=5
|
| 931 |
+
)
|
| 932 |
+
|
| 933 |
+
edit_button = gr.Button(
|
| 934 |
+
"🚀 Start Editing",
|
| 935 |
+
variant="primary",
|
| 936 |
+
size="lg"
|
| 937 |
+
)
|
| 938 |
+
|
| 939 |
+
with gr.Column(scale=1):
|
| 940 |
+
gr.Markdown("### 🎯 Editing Result")
|
| 941 |
+
output_image = gr.Image(
|
| 942 |
+
label="Edited image",
|
| 943 |
+
height=320,
|
| 944 |
+
elem_classes=["result-area"]
|
| 945 |
+
)
|
| 946 |
+
|
| 947 |
+
use_as_input_btn = gr.Button(
|
| 948 |
+
"🔄 Use as Input",
|
| 949 |
+
variant="secondary",
|
| 950 |
+
size="sm",
|
| 951 |
+
elem_classes=["use-as-input-btn"]
|
| 952 |
+
)
|
| 953 |
+
|
| 954 |
+
status_output = gr.Textbox(
|
| 955 |
+
label="Processing status",
|
| 956 |
+
lines=2,
|
| 957 |
+
max_lines=3,
|
| 958 |
+
interactive=False
|
| 959 |
+
)
|
| 960 |
+
|
| 961 |
+
action_buttons = gr.HTML(visible=False)
|
| 962 |
+
|
| 963 |
+
gr.Markdown("### 💡 Prompt Examples")
|
| 964 |
+
with gr.Row():
|
| 965 |
+
example_prompts = [
|
| 966 |
+
"Set the background to a grand opera stage with red curtains",
|
| 967 |
+
"Change the outfit into a traditional Chinese hanfu with flowing sleeves",
|
| 968 |
+
"Give the character blue dragon-like eyes with glowing pupils",
|
| 969 |
+
"Change lighting to soft dreamy pastel glow",
|
| 970 |
+
"Change pose to sitting cross-legged on the ground"
|
| 971 |
+
]
|
| 972 |
+
|
| 973 |
+
for prompt in example_prompts:
|
| 974 |
+
gr.Button(
|
| 975 |
+
prompt,
|
| 976 |
+
size="sm"
|
| 977 |
+
).click(
|
| 978 |
+
lambda p=prompt: p,
|
| 979 |
+
outputs=prompt_input
|
| 980 |
+
)
|
| 981 |
+
|
| 982 |
+
edit_button.click(
|
| 983 |
+
fn=edit_image_interface,
|
| 984 |
+
inputs=[input_image, prompt_input],
|
| 985 |
+
outputs=[output_image, status_output, action_buttons],
|
| 986 |
+
show_progress=True,
|
| 987 |
+
concurrency_limit=10,
|
| 988 |
+
api_name="global_edit"
|
| 989 |
+
)
|
| 990 |
+
|
| 991 |
+
def simple_use_as_input(output_img):
|
| 992 |
+
if output_img is not None:
|
| 993 |
+
return output_img
|
| 994 |
+
return None
|
| 995 |
+
|
| 996 |
+
use_as_input_btn.click(
|
| 997 |
+
fn=simple_use_as_input,
|
| 998 |
+
inputs=[output_image],
|
| 999 |
+
outputs=[input_image]
|
| 1000 |
+
)
|
| 1001 |
+
|
| 1002 |
+
with gr.Tab("🖌️ Local Inpaint"):
|
| 1003 |
+
with gr.Row():
|
| 1004 |
+
with gr.Column(scale=1):
|
| 1005 |
+
gr.Markdown("### 📸 Upload Image and Draw Mask")
|
| 1006 |
+
local_input_image = gr.ImageEditor(
|
| 1007 |
+
label="Upload image and draw mask",
|
| 1008 |
+
type="pil",
|
| 1009 |
+
height=512,
|
| 1010 |
+
brush=gr.Brush(colors=["#ff0000"], default_size=180),
|
| 1011 |
+
elem_classes=["upload-area"]
|
| 1012 |
+
)
|
| 1013 |
+
|
| 1014 |
+
gr.Markdown("### 🖼️ Reference Image(Optional)")
|
| 1015 |
+
local_reference_image = gr.Image(
|
| 1016 |
+
label="Upload reference image (optional)",
|
| 1017 |
+
type="pil",
|
| 1018 |
+
height=256
|
| 1019 |
+
)
|
| 1020 |
+
|
| 1021 |
+
gr.Markdown("### ✍️ Editing Instructions")
|
| 1022 |
+
local_prompt_input = gr.Textbox(
|
| 1023 |
+
label="Enter local editing prompt",
|
| 1024 |
+
placeholder="For example: change selected area hair to golden, add patterns to selected object, change selected area color, etc...",
|
| 1025 |
+
lines=3,
|
| 1026 |
+
max_lines=5
|
| 1027 |
+
)
|
| 1028 |
+
|
| 1029 |
+
local_edit_button = gr.Button(
|
| 1030 |
+
"🎯 Start Local Editing",
|
| 1031 |
+
variant="primary",
|
| 1032 |
+
size="lg"
|
| 1033 |
+
)
|
| 1034 |
+
|
| 1035 |
+
with gr.Column(scale=1):
|
| 1036 |
+
gr.Markdown("### 🎯 Editing Result")
|
| 1037 |
+
local_output_image = gr.Image(
|
| 1038 |
+
label="Local edited image",
|
| 1039 |
+
height=320,
|
| 1040 |
+
elem_classes=["result-area"]
|
| 1041 |
+
)
|
| 1042 |
+
|
| 1043 |
+
local_use_as_input_btn = gr.Button(
|
| 1044 |
+
"🔄 Use as Input",
|
| 1045 |
+
variant="secondary",
|
| 1046 |
+
size="sm",
|
| 1047 |
+
elem_classes=["use-as-input-btn"]
|
| 1048 |
+
)
|
| 1049 |
+
|
| 1050 |
+
local_status_output = gr.Textbox(
|
| 1051 |
+
label="Processing status",
|
| 1052 |
+
lines=2,
|
| 1053 |
+
max_lines=3,
|
| 1054 |
+
interactive=False
|
| 1055 |
+
)
|
| 1056 |
+
|
| 1057 |
+
local_action_buttons = gr.HTML(visible=False)
|
| 1058 |
+
|
| 1059 |
+
local_edit_button.click(
|
| 1060 |
+
fn=local_edit_interface,
|
| 1061 |
+
inputs=[local_input_image, local_prompt_input, local_reference_image],
|
| 1062 |
+
outputs=[local_output_image, local_status_output, local_action_buttons],
|
| 1063 |
+
show_progress=True,
|
| 1064 |
+
concurrency_limit=8,
|
| 1065 |
+
api_name="local_edit"
|
| 1066 |
+
)
|
| 1067 |
+
|
| 1068 |
+
def simple_local_use_as_input(output_img):
|
| 1069 |
+
if output_img is not None:
|
| 1070 |
+
return {
|
| 1071 |
+
"background": output_img,
|
| 1072 |
+
"layers": [],
|
| 1073 |
+
"composite": output_img
|
| 1074 |
+
}
|
| 1075 |
+
return None
|
| 1076 |
+
|
| 1077 |
+
local_use_as_input_btn.click(
|
| 1078 |
+
fn=simple_local_use_as_input,
|
| 1079 |
+
inputs=[local_output_image],
|
| 1080 |
+
outputs=[local_input_image]
|
| 1081 |
+
)
|
| 1082 |
+
|
| 1083 |
+
# Local inpaint example
|
| 1084 |
+
gr.Markdown("### 💡 Local Inpaint Example")
|
| 1085 |
+
|
| 1086 |
+
def load_local_example():
|
| 1087 |
+
"""Load panda to cat transformation example - simplified, mask handled in backend"""
|
| 1088 |
+
try:
|
| 1089 |
+
from PIL import Image
|
| 1090 |
+
import os
|
| 1091 |
+
|
| 1092 |
+
# Check file paths
|
| 1093 |
+
main_path = "datas/panda01.jpeg"
|
| 1094 |
+
ref_path = "datas/cat01.webp"
|
| 1095 |
+
|
| 1096 |
+
# Load main image
|
| 1097 |
+
if not os.path.exists(main_path):
|
| 1098 |
+
return None, None, "EXAMPLE_PANDA_CAT_let the cat ride on the panda"
|
| 1099 |
+
|
| 1100 |
+
main_img = Image.open(main_path)
|
| 1101 |
+
|
| 1102 |
+
# Load reference image
|
| 1103 |
+
if not os.path.exists(ref_path):
|
| 1104 |
+
ref_img = None
|
| 1105 |
+
else:
|
| 1106 |
+
ref_img = Image.open(ref_path)
|
| 1107 |
+
|
| 1108 |
+
# ImageEditor format
|
| 1109 |
+
editor_data = {
|
| 1110 |
+
"background": main_img,
|
| 1111 |
+
"layers": [],
|
| 1112 |
+
"composite": main_img
|
| 1113 |
+
}
|
| 1114 |
+
|
| 1115 |
+
# Special prompt to indicate this is the example case
|
| 1116 |
+
prompt = "EXAMPLE_PANDA_CAT_let the cat ride on the panda"
|
| 1117 |
+
|
| 1118 |
+
# Return just the PIL image instead of dict format to avoid UI state issues
|
| 1119 |
+
return main_img, ref_img, prompt
|
| 1120 |
+
|
| 1121 |
+
except Exception as e:
|
| 1122 |
+
return None, None, "EXAMPLE_PANDA_CAT_Transform the panda head into a cute cat head, keeping the body"
|
| 1123 |
+
|
| 1124 |
+
# Example display
|
| 1125 |
+
gr.Markdown("#### 🐼➡️🐱 Example: Panda to Cat Transformation")
|
| 1126 |
+
with gr.Row():
|
| 1127 |
+
with gr.Column(scale=2):
|
| 1128 |
+
# Preview images for local example
|
| 1129 |
+
with gr.Row():
|
| 1130 |
+
try:
|
| 1131 |
+
gr.Image("datas/panda01.jpeg", label="Main Image", height=120, width=120, show_label=True, interactive=False)
|
| 1132 |
+
gr.Image("datas/panda01m.jpeg", label="Mask", height=120, width=120, show_label=True, interactive=False)
|
| 1133 |
+
gr.Image("datas/cat01.webp", label="Reference", height=120, width=120, show_label=True, interactive=False)
|
| 1134 |
+
except:
|
| 1135 |
+
gr.Markdown("*Preview images not available*")
|
| 1136 |
+
gr.Markdown("**Prompt**: let the cat ride on the panda \n**Note**: Mask will be automatically applied when you submit this example")
|
| 1137 |
+
with gr.Column(scale=1):
|
| 1138 |
+
gr.Button(
|
| 1139 |
+
"🎨 Load Panda Example",
|
| 1140 |
+
size="lg",
|
| 1141 |
+
variant="secondary"
|
| 1142 |
+
).click(
|
| 1143 |
+
fn=load_local_example,
|
| 1144 |
+
outputs=[local_input_image, local_reference_image, local_prompt_input]
|
| 1145 |
+
)
|
| 1146 |
+
|
| 1147 |
+
# Add a refresh button to fix UI state issues
|
| 1148 |
+
gr.Button(
|
| 1149 |
+
"🔄 Refresh Image Editor",
|
| 1150 |
+
size="sm",
|
| 1151 |
+
variant="secondary"
|
| 1152 |
+
).click(
|
| 1153 |
+
fn=lambda: gr.update(),
|
| 1154 |
+
outputs=[local_input_image]
|
| 1155 |
+
)
|
| 1156 |
+
|
| 1157 |
+
# SEO Content Section
|
| 1158 |
+
gr.HTML("""
|
| 1159 |
+
<div style="width: 100%; margin: 50px 0; padding: 0 20px;">
|
| 1160 |
+
|
| 1161 |
+
<div style="text-align: center; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 40px; border-radius: 20px; margin: 40px 0;">
|
| 1162 |
+
<h2 style="margin: 0 0 20px 0; font-size: 2.2em; font-weight: 700;">
|
| 1163 |
+
🎨 Unlimited AI Image Generation & Editing
|
| 1164 |
+
</h2>
|
| 1165 |
+
<p style="margin: 0 0 25px 0; font-size: 1.2em; opacity: 0.95; line-height: 1.6;">
|
| 1166 |
+
Experience the ultimate freedom in AI image creation! Generate and edit unlimited images without restrictions,
|
| 1167 |
+
including NSFW content, with our premium AI image editing platform.
|
| 1168 |
+
</p>
|
| 1169 |
+
|
| 1170 |
+
<div style="display: flex; justify-content: center; gap: 25px; flex-wrap: wrap; margin: 30px 0;">
|
| 1171 |
+
<a href="https://omnicreator.net/#generator" target="_blank" style="
|
| 1172 |
+
display: inline-flex;
|
| 1173 |
+
align-items: center;
|
| 1174 |
+
justify-content: center;
|
| 1175 |
+
padding: 20px 40px;
|
| 1176 |
+
background: linear-gradient(135deg, #ff6b6b 0%, #feca57 100%);
|
| 1177 |
+
color: white;
|
| 1178 |
+
text-decoration: none;
|
| 1179 |
+
border-radius: 15px;
|
| 1180 |
+
font-weight: 700;
|
| 1181 |
+
font-size: 18px;
|
| 1182 |
+
text-align: center;
|
| 1183 |
+
min-width: 250px;
|
| 1184 |
+
box-shadow: 0 8px 25px rgba(255, 107, 107, 0.4);
|
| 1185 |
+
transition: all 0.3s ease;
|
| 1186 |
+
border: none;
|
| 1187 |
+
transform: scale(1);
|
| 1188 |
+
" onmouseover="this.style.transform='scale(1.05)'" onmouseout="this.style.transform='scale(1)'">
|
| 1189 |
+
🚀 Get Unlimited Access Now
|
| 1190 |
+
</a>
|
| 1191 |
+
|
| 1192 |
+
</div>
|
| 1193 |
+
|
| 1194 |
+
<p style="color: rgba(255,255,255,0.9); font-size: 1em; margin: 20px 0 0 0;">
|
| 1195 |
+
Join thousands of creators who trust Omni Creator for unrestricted AI image generation!
|
| 1196 |
+
</p>
|
| 1197 |
+
</div>
|
| 1198 |
+
|
| 1199 |
+
<div style="text-align: center; margin: 25px auto; background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); padding: 35px; border-radius: 20px; box-shadow: 0 10px 30px rgba(0,0,0,0.1);">
|
| 1200 |
+
<h2 style="color: #2c3e50; margin: 0 0 20px 0; font-size: 1.9em; font-weight: 700;">
|
| 1201 |
+
⭐ Professional AI Image Editor - No Restrictions
|
| 1202 |
+
</h2>
|
| 1203 |
+
<p style="color: #555; font-size: 1.1em; line-height: 1.6; margin: 0 0 20px 0; padding: 0 20px;">
|
| 1204 |
+
Transform your creative vision into reality with our advanced AI image editing platform. Whether you're creating
|
| 1205 |
+
art, editing photos, designing content, or working with any type of imagery - our powerful AI removes all limitations
|
| 1206 |
+
and gives you complete creative freedom.
|
| 1207 |
+
</p>
|
| 1208 |
+
</div>
|
| 1209 |
+
|
| 1210 |
+
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 25px; margin: 40px 0;">
|
| 1211 |
+
|
| 1212 |
+
<div style="background: white; padding: 30px; border-radius: 15px; box-shadow: 0 5px 20px rgba(0,0,0,0.08); border-left: 5px solid #e74c3c;">
|
| 1213 |
+
<h3 style="color: #e74c3c; margin: 0 0 15px 0; font-size: 1.4em; font-weight: 600;">
|
| 1214 |
+
🎯 Unlimited Generation
|
| 1215 |
+
</h3>
|
| 1216 |
+
<p style="color: #666; margin: 0; line-height: 1.6; font-size: 1em;">
|
| 1217 |
+
Premium users enjoy unlimited image generation without daily limits, rate restrictions, or content barriers.
|
| 1218 |
+
Create as many images as you need, whenever you need them.
|
| 1219 |
+
</p>
|
| 1220 |
+
</div>
|
| 1221 |
+
|
| 1222 |
+
<div style="background: white; padding: 30px; border-radius: 15px; box-shadow: 0 5px 20px rgba(0,0,0,0.08); border-left: 5px solid #3498db;">
|
| 1223 |
+
<h3 style="color: #3498db; margin: 0 0 15px 0; font-size: 1.4em; font-weight: 600;">
|
| 1224 |
+
🔓 No Content Restrictions
|
| 1225 |
+
</h3>
|
| 1226 |
+
<p style="color: #666; margin: 0; line-height: 1.6; font-size: 1em;">
|
| 1227 |
+
Generate and edit any type of content without NSFW filters or content limitations. Complete creative
|
| 1228 |
+
freedom for artists, designers, and content creators.
|
| 1229 |
+
</p>
|
| 1230 |
+
</div>
|
| 1231 |
+
|
| 1232 |
+
<div style="background: white; padding: 30px; border-radius: 15px; box-shadow: 0 5px 20px rgba(0,0,0,0.08); border-left: 5px solid #27ae60;">
|
| 1233 |
+
<h3 style="color: #27ae60; margin: 0 0 15px 0; font-size: 1.4em; font-weight: 600;">
|
| 1234 |
+
⚡ Lightning Fast Processing
|
| 1235 |
+
</h3>
|
| 1236 |
+
<p style="color: #666; margin: 0; line-height: 1.6; font-size: 1em;">
|
| 1237 |
+
Advanced AI infrastructure delivers high-quality results in seconds. No waiting in queues,
|
| 1238 |
+
no processing delays - just instant, professional-grade image editing.
|
| 1239 |
+
</p>
|
| 1240 |
+
</div>
|
| 1241 |
+
|
| 1242 |
+
<div style="background: white; padding: 30px; border-radius: 15px; box-shadow: 0 5px 20px rgba(0,0,0,0.08); border-left: 5px solid #9b59b6;">
|
| 1243 |
+
<h3 style="color: #9b59b6; margin: 0 0 15px 0; font-size: 1.4em; font-weight: 600;">
|
| 1244 |
+
🎨 Advanced Editing Tools
|
| 1245 |
+
</h3>
|
| 1246 |
+
<p style="color: #666; margin: 0; line-height: 1.6; font-size: 1em;">
|
| 1247 |
+
Global transformations, precision local editing, style transfer, object removal, background replacement,
|
| 1248 |
+
and dozens of other professional editing capabilities.
|
| 1249 |
+
</p>
|
| 1250 |
+
</div>
|
| 1251 |
+
|
| 1252 |
+
<div style="background: white; padding: 30px; border-radius: 15px; box-shadow: 0 5px 20px rgba(0,0,0,0.08); border-left: 5px solid #f39c12;">
|
| 1253 |
+
<h3 style="color: #f39c12; margin: 0 0 15px 0; font-size: 1.4em; font-weight: 600;">
|
| 1254 |
+
💎 Premium Quality
|
| 1255 |
+
</h3>
|
| 1256 |
+
<p style="color: #666; margin: 0; line-height: 1.6; font-size: 1em;">
|
| 1257 |
+
State-of-the-art AI models trained on millions of images deliver exceptional quality and realism.
|
| 1258 |
+
Professional results suitable for commercial use and high-end projects.
|
| 1259 |
+
</p>
|
| 1260 |
+
</div>
|
| 1261 |
+
|
| 1262 |
+
<div style="background: white; padding: 30px; border-radius: 15px; box-shadow: 0 5px 20px rgba(0,0,0,0.08); border-left: 5px solid #34495e;">
|
| 1263 |
+
<h3 style="color: #34495e; margin: 0 0 15px 0; font-size: 1.4em; font-weight: 600;">
|
| 1264 |
+
🌍 Multi-Modal Support
|
| 1265 |
+
</h3>
|
| 1266 |
+
<p style="color: #666; margin: 0; line-height: 1.6; font-size: 1em;">
|
| 1267 |
+
Support for all image formats, styles, and use cases. From photorealistic portraits to artistic creations,
|
| 1268 |
+
product photography to digital art - we handle everything.
|
| 1269 |
+
</p>
|
| 1270 |
+
</div>
|
| 1271 |
+
|
| 1272 |
+
</div>
|
| 1273 |
+
|
| 1274 |
+
<div style="background: linear-gradient(135deg, #11998e 0%, #38ef7d 100%); color: white; padding: 40px; border-radius: 20px; margin: 40px 0; text-align: center;">
|
| 1275 |
+
<h2 style="margin: 0 0 25px 0; font-size: 1.8em; font-weight: 700;">
|
| 1276 |
+
💎 Why Choose Omni Creator Premium?
|
| 1277 |
+
</h2>
|
| 1278 |
+
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 20px; margin: 30px 0;">
|
| 1279 |
+
|
| 1280 |
+
<div style="background: rgba(255,255,255,0.15); padding: 20px; border-radius: 12px;">
|
| 1281 |
+
<h4 style="margin: 0 0 10px 0; font-size: 1.2em;">🚫 No Rate Limits</h4>
|
| 1282 |
+
<p style="margin: 0; opacity: 0.9; font-size: 0.95em;">Generate unlimited images without waiting periods or daily restrictions</p>
|
| 1283 |
+
</div>
|
| 1284 |
+
|
| 1285 |
+
<div style="background: rgba(255,255,255,0.15); padding: 20px; border-radius: 12px;">
|
| 1286 |
+
<h4 style="margin: 0 0 10px 0; font-size: 1.2em;">🎭 Unrestricted Content</h4>
|
| 1287 |
+
<p style="margin: 0; opacity: 0.9; font-size: 0.95em;">Create any type of content without NSFW filters or censorship</p>
|
| 1288 |
+
</div>
|
| 1289 |
|
| 1290 |
+
<div style="background: rgba(255,255,255,0.15); padding: 20px; border-radius: 12px;">
|
| 1291 |
+
<h4 style="margin: 0 0 10px 0; font-size: 1.2em;">⚡ Priority Processing</h4>
|
| 1292 |
+
<p style="margin: 0; opacity: 0.9; font-size: 0.95em;">Skip queues and get instant results with dedicated processing power</p>
|
| 1293 |
+
</div>
|
| 1294 |
+
|
| 1295 |
+
<div style="background: rgba(255,255,255,0.15); padding: 20px; border-radius: 12px;">
|
| 1296 |
+
<h4 style="margin: 0 0 10px 0; font-size: 1.2em;">🎨 Advanced Features</h4>
|
| 1297 |
+
<p style="margin: 0; opacity: 0.9; font-size: 0.95em;">Access to latest AI models and cutting-edge editing capabilities</p>
|
| 1298 |
+
</div>
|
| 1299 |
+
|
| 1300 |
+
</div>
|
| 1301 |
+
<div style="display: flex; justify-content: center; margin: 25px 0 0 0;">
|
| 1302 |
+
<a href="https://omnicreator.net/#generator" target="_blank" style="
|
| 1303 |
+
display: inline-flex;
|
| 1304 |
+
align-items: center;
|
| 1305 |
+
justify-content: center;
|
| 1306 |
+
padding: 18px 35px;
|
| 1307 |
+
background: rgba(255,255,255,0.9);
|
| 1308 |
+
color: #333;
|
| 1309 |
+
text-decoration: none;
|
| 1310 |
+
border-radius: 15px;
|
| 1311 |
+
font-weight: 700;
|
| 1312 |
+
font-size: 16px;
|
| 1313 |
+
text-align: center;
|
| 1314 |
+
min-width: 200px;
|
| 1315 |
+
box-shadow: 0 6px 20px rgba(0,0,0,0.3);
|
| 1316 |
+
transition: all 0.3s ease;
|
| 1317 |
+
border: none;
|
| 1318 |
+
">⭐ Start Creating Now</a>
|
| 1319 |
+
</div>
|
| 1320 |
+
</div>
|
| 1321 |
+
|
| 1322 |
+
<div style="background: linear-gradient(135deg, #ff9a9e 0%, #fecfef 50%, #fecfef 100%); padding: 30px; border-radius: 15px; margin: 40px 0;">
|
| 1323 |
+
<h3 style="color: #8b5cf6; text-align: center; margin: 0 0 25px 0; font-size: 1.5em; font-weight: 700;">
|
| 1324 |
+
💡 Pro Tips for Best Results
|
| 1325 |
+
</h3>
|
| 1326 |
+
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 18px;">
|
| 1327 |
+
|
| 1328 |
+
<div style="background: rgba(255,255,255,0.85); padding: 18px; border-radius: 12px;">
|
| 1329 |
+
<strong style="color: #8b5cf6; font-size: 1.1em;">📝 Clear Descriptions:</strong>
|
| 1330 |
+
<p style="color: #555; margin: 5px 0 0 0; line-height: 1.5;">Use detailed, specific prompts for better results. Describe colors, styles, lighting, and composition clearly.</p>
|
| 1331 |
+
</div>
|
| 1332 |
+
|
| 1333 |
+
<div style="background: rgba(255,255,255,0.85); padding: 18px; border-radius: 12px;">
|
| 1334 |
+
<strong style="color: #8b5cf6; font-size: 1.1em;">🎯 Local Editing:</strong>
|
| 1335 |
+
<p style="color: #555; margin: 5px 0 0 0; line-height: 1.5;">Use precise brush strokes to select areas for local editing. Smaller, focused edits often yield better results.</p>
|
| 1336 |
+
</div>
|
| 1337 |
+
|
| 1338 |
+
<div style="background: rgba(255,255,255,0.85); padding: 18px; border-radius: 12px;">
|
| 1339 |
+
<strong style="color: #8b5cf6; font-size: 1.1em;">⚡ Iterative Process:</strong>
|
| 1340 |
+
<p style="color: #555; margin: 5px 0 0 0; line-height: 1.5;">Use "Use as Input" feature to refine results. Multiple iterations can achieve complex transformations.</p>
|
| 1341 |
+
</div>
|
| 1342 |
+
|
| 1343 |
+
<div style="background: rgba(255,255,255,0.85); padding: 18px; border-radius: 12px;">
|
| 1344 |
+
<strong style="color: #8b5cf6; font-size: 1.1em;">🖼 Image Quality:</strong>
|
| 1345 |
+
<p style="color: #555; margin: 5px 0 0 0; line-height: 1.5;">Higher resolution input images (up to 10MB) generally produce better editing results and finer details.</p>
|
| 1346 |
+
</div>
|
| 1347 |
+
|
| 1348 |
+
</div>
|
| 1349 |
+
</div>
|
| 1350 |
+
|
| 1351 |
+
<div style="text-align: center; margin: 25px auto; background: linear-gradient(135deg, #a8edea 0%, #fed6e3 100%); padding: 35px; border-radius: 20px; box-shadow: 0 10px 30px rgba(0,0,0,0.1);">
|
| 1352 |
+
<h2 style="color: #2c3e50; margin: 0 0 20px 0; font-size: 1.8em; font-weight: 700;">
|
| 1353 |
+
🚀 Perfect For Every Creative Need
|
| 1354 |
+
</h2>
|
| 1355 |
+
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 20px; margin: 25px 0; text-align: left;">
|
| 1356 |
+
|
| 1357 |
+
<div style="background: rgba(255,255,255,0.8); padding: 20px; border-radius: 12px;">
|
| 1358 |
+
<h4 style="color: #e74c3c; margin: 0 0 10px 0;">🎨 Digital Art</h4>
|
| 1359 |
+
<ul style="color: #555; margin: 0; padding-left: 18px; line-height: 1.6;">
|
| 1360 |
+
<li>Character design</li>
|
| 1361 |
+
<li>Concept art</li>
|
| 1362 |
+
<li>Style transfer</li>
|
| 1363 |
+
<li>Artistic effects</li>
|
| 1364 |
+
</ul>
|
| 1365 |
+
</div>
|
| 1366 |
+
|
| 1367 |
+
<div style="background: rgba(255,255,255,0.8); padding: 20px; border-radius: 12px;">
|
| 1368 |
+
<h4 style="color: #3498db; margin: 0 0 10px 0;">📸 Photography</h4>
|
| 1369 |
+
<ul style="color: #555; margin: 0; padding-left: 18px; line-height: 1.6;">
|
| 1370 |
+
<li>Background replacement</li>
|
| 1371 |
+
<li>Object removal</li>
|
| 1372 |
+
<li>Lighting adjustment</li>
|
| 1373 |
+
<li>Portrait enhancement</li>
|
| 1374 |
+
</ul>
|
| 1375 |
+
</div>
|
| 1376 |
+
|
| 1377 |
+
<div style="background: rgba(255,255,255,0.8); padding: 20px; border-radius: 12px;">
|
| 1378 |
+
<h4 style="color: #27ae60; margin: 0 0 10px 0;">🛍️ E-commerce</h4>
|
| 1379 |
+
<ul style="color: #555; margin: 0; padding-left: 18px; line-height: 1.6;">
|
| 1380 |
+
<li>Product photography</li>
|
| 1381 |
+
<li>Lifestyle shots</li>
|
| 1382 |
+
<li>Color variations</li>
|
| 1383 |
+
<li>Context placement</li>
|
| 1384 |
+
</ul>
|
| 1385 |
+
</div>
|
| 1386 |
+
|
| 1387 |
+
<div style="background: rgba(255,255,255,0.8); padding: 20px; border-radius: 12px;">
|
| 1388 |
+
<h4 style="color: #9b59b6; margin: 0 0 10px 0;">📱 Social Media</h4>
|
| 1389 |
+
<ul style="color: #555; margin: 0; padding-left: 18px; line-height: 1.6;">
|
| 1390 |
+
<li>Content creation</li>
|
| 1391 |
+
<li>Meme generation</li>
|
| 1392 |
+
<li>Brand visuals</li>
|
| 1393 |
+
<li>Viral content</li>
|
| 1394 |
+
</ul>
|
| 1395 |
+
</div>
|
| 1396 |
+
|
| 1397 |
+
</div>
|
| 1398 |
+
<div style="text-align: center; margin: 25px 0 0 0;">
|
| 1399 |
+
<a href="https://omnicreator.net/#generator" target="_blank" style="
|
| 1400 |
+
display: inline-flex;
|
| 1401 |
+
align-items: center;
|
| 1402 |
+
justify-content: center;
|
| 1403 |
+
padding: 18px 35px;
|
| 1404 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 1405 |
+
color: white;
|
| 1406 |
+
text-decoration: none;
|
| 1407 |
+
border-radius: 15px;
|
| 1408 |
+
font-weight: 700;
|
| 1409 |
+
font-size: 16px;
|
| 1410 |
+
text-align: center;
|
| 1411 |
+
min-width: 220px;
|
| 1412 |
+
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.4);
|
| 1413 |
+
transition: all 0.3s ease;
|
| 1414 |
+
border: none;
|
| 1415 |
+
">🎯 Start Your Project Now</a>
|
| 1416 |
+
</div>
|
| 1417 |
+
</div>
|
| 1418 |
+
|
| 1419 |
+
</div>
|
| 1420 |
+
|
| 1421 |
+
<div style="text-align: center; margin: 30px auto 20px auto; padding: 20px;">
|
| 1422 |
+
<p style="margin: 0 0 10px 0; font-size: 18px; color: #333; font-weight: 500;">
|
| 1423 |
+
Powered by <a href="https://omnicreator.net/#generator" target="_blank" style="color: #667eea; text-decoration: none; font-weight: bold;">Omni Creator</a>
|
| 1424 |
+
</p>
|
| 1425 |
+
<p style="margin: 0; font-size: 14px; color: #999; font-weight: 400;">
|
| 1426 |
+
The ultimate AI image generation and editing platform • Unlimited creativity, zero restrictions
|
| 1427 |
+
</p>
|
| 1428 |
+
</div>
|
| 1429 |
+
""", padding=False)
|
| 1430 |
+
|
| 1431 |
+
return app
|
| 1432 |
+
|
| 1433 |
+
if __name__ == "__main__":
|
| 1434 |
+
app = create_app()
|
| 1435 |
+
# Improve queue configuration to handle high concurrency and prevent SSE connection issues
|
| 1436 |
app.queue(
|
| 1437 |
+
default_concurrency_limit=20, # Default concurrency limit
|
| 1438 |
+
max_size=50, # Maximum queue size
|
| 1439 |
+
api_open=False # Close API access to reduce resource consumption
|
| 1440 |
)
|
| 1441 |
app.launch(
|
| 1442 |
server_name="0.0.0.0",
|
| 1443 |
+
show_error=True, # Show detailed error information
|
| 1444 |
+
quiet=False, # Keep log output
|
| 1445 |
+
max_threads=40, # Increase thread pool size
|
| 1446 |
height=800,
|
| 1447 |
+
favicon_path=None # Reduce resource loading
|
| 1448 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
nfsw.py
ADDED
|
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import numpy as np
|
| 4 |
+
import onnxruntime as ort
|
| 5 |
+
import json
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class NSFWDetector:
|
| 10 |
+
"""
|
| 11 |
+
NSFW检测器类,使用YOLOv9模型进行图像分类
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
def __init__(self, repo_id="Falconsai/nsfw_image_detection",
|
| 15 |
+
model_filename="falconsai_yolov9_nsfw_model_quantized.pt",
|
| 16 |
+
labels_filename="labels.json",
|
| 17 |
+
input_size=(224, 224)):
|
| 18 |
+
"""
|
| 19 |
+
初始化NSFW检测器
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
repo_id (str): Hugging Face仓库ID
|
| 23 |
+
model_filename (str): 模型文件名
|
| 24 |
+
labels_filename (str): 标签文件名
|
| 25 |
+
input_size (tuple): 模型输入尺寸 (height, width)
|
| 26 |
+
"""
|
| 27 |
+
self.repo_id = repo_id
|
| 28 |
+
self.model_filename = model_filename
|
| 29 |
+
self.labels_filename = labels_filename
|
| 30 |
+
self.input_size = input_size
|
| 31 |
+
|
| 32 |
+
# 从Hugging Face下载文件
|
| 33 |
+
self.model_path = self._download_model()
|
| 34 |
+
self.labels_path = self._download_labels()
|
| 35 |
+
|
| 36 |
+
# 加载标签
|
| 37 |
+
self.labels = self._load_labels()
|
| 38 |
+
|
| 39 |
+
# 加载模型
|
| 40 |
+
self.session = self._load_model()
|
| 41 |
+
self.input_name = self.session.get_inputs()[0].name
|
| 42 |
+
self.output_name = self.session.get_outputs()[0].name
|
| 43 |
+
|
| 44 |
+
def _download_model(self):
|
| 45 |
+
"""
|
| 46 |
+
从Hugging Face下载模型文件
|
| 47 |
+
|
| 48 |
+
Returns:
|
| 49 |
+
str: 下载的模型文件路径
|
| 50 |
+
"""
|
| 51 |
+
try:
|
| 52 |
+
print(f"正在从 {self.repo_id} 下载模型文件: {self.model_filename}")
|
| 53 |
+
model_path = hf_hub_download(
|
| 54 |
+
repo_id=self.repo_id,
|
| 55 |
+
filename=self.model_filename,
|
| 56 |
+
cache_dir="./hf_cache"
|
| 57 |
+
)
|
| 58 |
+
print(f"✅ 模型下载成功: {model_path}")
|
| 59 |
+
return model_path
|
| 60 |
+
except Exception as e:
|
| 61 |
+
raise RuntimeError(f"模型下载失败: {e}")
|
| 62 |
+
|
| 63 |
+
def _download_labels(self):
|
| 64 |
+
"""
|
| 65 |
+
从Hugging Face下载标签文件
|
| 66 |
+
|
| 67 |
+
Returns:
|
| 68 |
+
str: 下载的标签文件路径
|
| 69 |
+
"""
|
| 70 |
+
try:
|
| 71 |
+
print(f"正在从 {self.repo_id} 下载标签文件: {self.labels_filename}")
|
| 72 |
+
labels_path = hf_hub_download(
|
| 73 |
+
repo_id=self.repo_id,
|
| 74 |
+
filename=self.labels_filename,
|
| 75 |
+
cache_dir="./hf_cache"
|
| 76 |
+
)
|
| 77 |
+
print(f"✅ 标签文件下载成功: {labels_path}")
|
| 78 |
+
return labels_path
|
| 79 |
+
except Exception as e:
|
| 80 |
+
raise RuntimeError(f"标签文件下载失败: {e}")
|
| 81 |
+
|
| 82 |
+
def _load_labels(self):
|
| 83 |
+
"""
|
| 84 |
+
加载类别标签
|
| 85 |
+
|
| 86 |
+
Returns:
|
| 87 |
+
dict: 标签字典
|
| 88 |
+
"""
|
| 89 |
+
try:
|
| 90 |
+
with open(self.labels_path, "r") as f:
|
| 91 |
+
return json.load(f)
|
| 92 |
+
except FileNotFoundError:
|
| 93 |
+
raise FileNotFoundError(f"标签文件未找到: {self.labels_path}")
|
| 94 |
+
except json.JSONDecodeError:
|
| 95 |
+
raise ValueError(f"标签文件格式错误: {self.labels_path}")
|
| 96 |
+
|
| 97 |
+
def _load_model(self):
|
| 98 |
+
"""
|
| 99 |
+
加载ONNX模型
|
| 100 |
+
|
| 101 |
+
Returns:
|
| 102 |
+
onnxruntime.InferenceSession: 模型会话
|
| 103 |
+
"""
|
| 104 |
+
try:
|
| 105 |
+
return ort.InferenceSession(self.model_path)
|
| 106 |
+
except Exception as e:
|
| 107 |
+
raise RuntimeError(f"模型加载失败: {self.model_path}, 错误: {e}")
|
| 108 |
+
|
| 109 |
+
def _preprocess_image(self, image_path):
|
| 110 |
+
"""
|
| 111 |
+
图像预处理
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
image_path (str): 图像文件路径
|
| 115 |
+
|
| 116 |
+
Returns:
|
| 117 |
+
tuple: (预处理后的张量, 原始图像)
|
| 118 |
+
"""
|
| 119 |
+
try:
|
| 120 |
+
# 加载并转换图像
|
| 121 |
+
original_image = Image.open(image_path).convert("RGB")
|
| 122 |
+
|
| 123 |
+
# 调整尺寸
|
| 124 |
+
image_resized = original_image.resize(self.input_size, Image.Resampling.BILINEAR)
|
| 125 |
+
|
| 126 |
+
# 转换为numpy数组并归一化
|
| 127 |
+
image_np = np.array(image_resized, dtype=np.float32) / 255.0
|
| 128 |
+
|
| 129 |
+
# 调整维度顺序 [H, W, C] -> [C, H, W]
|
| 130 |
+
image_np = np.transpose(image_np, (2, 0, 1))
|
| 131 |
+
|
| 132 |
+
# 添加批次维度 [C, H, W] -> [1, C, H, W]
|
| 133 |
+
input_tensor = np.expand_dims(image_np, axis=0).astype(np.float32)
|
| 134 |
+
|
| 135 |
+
return input_tensor, original_image
|
| 136 |
+
|
| 137 |
+
except FileNotFoundError:
|
| 138 |
+
raise FileNotFoundError(f"图像文件未找到: {image_path}")
|
| 139 |
+
except Exception as e:
|
| 140 |
+
raise RuntimeError(f"图像预处理失败: {e}")
|
| 141 |
+
|
| 142 |
+
def _postprocess_predictions(self, predictions):
|
| 143 |
+
"""
|
| 144 |
+
后处理预测结果
|
| 145 |
+
|
| 146 |
+
Args:
|
| 147 |
+
predictions: 模型预测输出
|
| 148 |
+
|
| 149 |
+
Returns:
|
| 150 |
+
str: 预测的类别标签
|
| 151 |
+
"""
|
| 152 |
+
predicted_index = np.argmax(predictions)
|
| 153 |
+
predicted_label = self.labels[str(predicted_index)]
|
| 154 |
+
return predicted_label
|
| 155 |
+
|
| 156 |
+
def predict(self, image_path):
|
| 157 |
+
"""
|
| 158 |
+
对单张图像进行NSFW检测
|
| 159 |
+
|
| 160 |
+
Args:
|
| 161 |
+
image_path (str): 图像文件路径
|
| 162 |
+
|
| 163 |
+
Returns:
|
| 164 |
+
tuple: (预测标签, 原始图像)
|
| 165 |
+
"""
|
| 166 |
+
# 预处理图像
|
| 167 |
+
input_tensor, original_image = self._preprocess_image(image_path)
|
| 168 |
+
|
| 169 |
+
# 运行推理
|
| 170 |
+
outputs = self.session.run([self.output_name], {self.input_name: input_tensor})
|
| 171 |
+
predictions = outputs[0]
|
| 172 |
+
|
| 173 |
+
# 后处理结果
|
| 174 |
+
predicted_label = self._postprocess_predictions(predictions)
|
| 175 |
+
|
| 176 |
+
return predicted_label, original_image
|
| 177 |
+
|
| 178 |
+
def predict_label_only(self, image_path):
|
| 179 |
+
"""
|
| 180 |
+
只返回预测标签(不返回图像)
|
| 181 |
+
|
| 182 |
+
Args:
|
| 183 |
+
image_path (str): 图像文件路径
|
| 184 |
+
|
| 185 |
+
Returns:
|
| 186 |
+
str: 预测的类别标签
|
| 187 |
+
"""
|
| 188 |
+
predicted_label, _ = self.predict(image_path)
|
| 189 |
+
return predicted_label
|
| 190 |
+
|
| 191 |
+
def predict_from_pil(self, pil_image):
|
| 192 |
+
"""
|
| 193 |
+
直接从PIL Image对象进行NSFW检测
|
| 194 |
+
|
| 195 |
+
Args:
|
| 196 |
+
pil_image (PIL.Image): PIL图像对象
|
| 197 |
+
|
| 198 |
+
Returns:
|
| 199 |
+
tuple: (预测标签, 原始图像)
|
| 200 |
+
"""
|
| 201 |
+
try:
|
| 202 |
+
# 确保是RGB格式
|
| 203 |
+
if pil_image.mode != "RGB":
|
| 204 |
+
pil_image = pil_image.convert("RGB")
|
| 205 |
+
|
| 206 |
+
# 调整尺寸
|
| 207 |
+
image_resized = pil_image.resize(self.input_size, Image.Resampling.BILINEAR)
|
| 208 |
+
|
| 209 |
+
# 转换为numpy数组并归一化
|
| 210 |
+
image_np = np.array(image_resized, dtype=np.float32) / 255.0
|
| 211 |
+
|
| 212 |
+
# 调整维度顺序 [H, W, C] -> [C, H, W]
|
| 213 |
+
image_np = np.transpose(image_np, (2, 0, 1))
|
| 214 |
+
|
| 215 |
+
# 添加批次维度 [C, H, W] -> [1, C, H, W]
|
| 216 |
+
input_tensor = np.expand_dims(image_np, axis=0).astype(np.float32)
|
| 217 |
+
|
| 218 |
+
# 运行推理
|
| 219 |
+
outputs = self.session.run([self.output_name], {self.input_name: input_tensor})
|
| 220 |
+
predictions = outputs[0]
|
| 221 |
+
|
| 222 |
+
# 后处理结果
|
| 223 |
+
predicted_label = self._postprocess_predictions(predictions)
|
| 224 |
+
|
| 225 |
+
return predicted_label, pil_image
|
| 226 |
+
|
| 227 |
+
except Exception as e:
|
| 228 |
+
raise RuntimeError(f"PIL图像预测失败: {e}")
|
| 229 |
+
|
| 230 |
+
def predict_pil_label_only(self, pil_image):
|
| 231 |
+
"""
|
| 232 |
+
从PIL Image对象只返回预测标签
|
| 233 |
+
|
| 234 |
+
Args:
|
| 235 |
+
pil_image (PIL.Image): PIL图像对象
|
| 236 |
+
|
| 237 |
+
Returns:
|
| 238 |
+
str: 预测的类别标签
|
| 239 |
+
"""
|
| 240 |
+
predicted_label, _ = self.predict_from_pil(pil_image)
|
| 241 |
+
return predicted_label
|
| 242 |
+
|
| 243 |
+
# --- 使用示例 ---
|
| 244 |
+
if __name__ == "__main__":
|
| 245 |
+
# 配置参数
|
| 246 |
+
single_image_path = "datas/bad01.jpg"
|
| 247 |
+
|
| 248 |
+
try:
|
| 249 |
+
# 创建检测器实例(自动从Hugging Face下载)
|
| 250 |
+
detector = NSFWDetector()
|
| 251 |
+
|
| 252 |
+
# 检查图像文件是否存在
|
| 253 |
+
if os.path.exists(single_image_path):
|
| 254 |
+
# 进行预测
|
| 255 |
+
predicted_label = detector.predict_label_only(single_image_path)
|
| 256 |
+
print(f"图像文件: {single_image_path}")
|
| 257 |
+
print(f"预测结果: {predicted_label}")
|
| 258 |
+
else:
|
| 259 |
+
print(f"错误: 指定的图像文件不存在: {single_image_path}")
|
| 260 |
+
|
| 261 |
+
except Exception as e:
|
| 262 |
+
print(f"初始化检测器时发生错误: {e}")
|
pipeline.py
DELETED
|
@@ -1,1934 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
import torch.nn.functional as F
|
| 4 |
-
from typing import Optional, Tuple, Union, List, Dict, Any, Callable
|
| 5 |
-
from dataclasses import dataclass
|
| 6 |
-
import numpy as np
|
| 7 |
-
from PIL import Image
|
| 8 |
-
import torchvision.transforms as T
|
| 9 |
-
from torchvision.transforms.functional import to_tensor, normalize
|
| 10 |
-
import warnings
|
| 11 |
-
from contextlib import contextmanager
|
| 12 |
-
from functools import wraps
|
| 13 |
-
|
| 14 |
-
from transformers import PretrainedConfig, PreTrainedModel, CLIPTextModel, CLIPTokenizer
|
| 15 |
-
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
| 16 |
-
from diffusers import DiffusionPipeline, DDIMScheduler
|
| 17 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 18 |
-
from diffusers.models.modeling_utils import ModelMixin
|
| 19 |
-
from diffusers.utils import BaseOutput
|
| 20 |
-
|
| 21 |
-
# Optimization imports
|
| 22 |
-
try:
|
| 23 |
-
import transformer_engine.pytorch as te
|
| 24 |
-
from transformer_engine.common import recipe
|
| 25 |
-
HAS_TRANSFORMER_ENGINE = True
|
| 26 |
-
except ImportError:
|
| 27 |
-
HAS_TRANSFORMER_ENGINE = False
|
| 28 |
-
|
| 29 |
-
try:
|
| 30 |
-
from torch._dynamo import config as dynamo_config
|
| 31 |
-
HAS_TORCH_COMPILE = hasattr(torch, 'compile')
|
| 32 |
-
except ImportError:
|
| 33 |
-
HAS_TORCH_COMPILE = False
|
| 34 |
-
|
| 35 |
-
# -----------------------------------------------------------------------------
|
| 36 |
-
# 1. Advanced Configuration (8B Scale)
|
| 37 |
-
# -----------------------------------------------------------------------------
|
| 38 |
-
|
| 39 |
-
class OmniMMDitV2Config(PretrainedConfig):
|
| 40 |
-
model_type = "omnimm_dit_v2"
|
| 41 |
-
|
| 42 |
-
def __init__(
|
| 43 |
-
self,
|
| 44 |
-
vocab_size: int = 49408,
|
| 45 |
-
hidden_size: int = 4096, # 4096 dim for ~7B-8B scale
|
| 46 |
-
intermediate_size: int = 11008, # Llama-style MLP expansion
|
| 47 |
-
num_hidden_layers: int = 32, # Deep network
|
| 48 |
-
num_attention_heads: int = 32,
|
| 49 |
-
num_key_value_heads: Optional[int] = 8, # GQA (Grouped Query Attention)
|
| 50 |
-
hidden_act: str = "silu",
|
| 51 |
-
max_position_embeddings: int = 4096,
|
| 52 |
-
initializer_range: float = 0.02,
|
| 53 |
-
rms_norm_eps: float = 1e-5,
|
| 54 |
-
use_cache: bool = True,
|
| 55 |
-
pad_token_id: int = 0,
|
| 56 |
-
bos_token_id: int = 1,
|
| 57 |
-
eos_token_id: int = 2,
|
| 58 |
-
tie_word_embeddings: bool = False,
|
| 59 |
-
rope_theta: float = 10000.0,
|
| 60 |
-
# DiT Specifics
|
| 61 |
-
patch_size: int = 2,
|
| 62 |
-
in_channels: int = 4, # VAE Latent channels
|
| 63 |
-
out_channels: int = 4, # x2 for variance if learned
|
| 64 |
-
frequency_embedding_size: int = 256,
|
| 65 |
-
# Multi-Modal Specifics
|
| 66 |
-
max_condition_images: int = 3, # Support 1-3 input images
|
| 67 |
-
visual_embed_dim: int = 1024, # e.g., SigLIP or CLIP Vision
|
| 68 |
-
text_embed_dim: int = 4096, # T5-XXL or similar
|
| 69 |
-
use_temporal_attention: bool = True, # For Video generation
|
| 70 |
-
# Optimization Configs
|
| 71 |
-
use_fp8_quantization: bool = False,
|
| 72 |
-
use_compilation: bool = False,
|
| 73 |
-
compile_mode: str = "reduce-overhead",
|
| 74 |
-
use_flash_attention: bool = True,
|
| 75 |
-
**kwargs,
|
| 76 |
-
):
|
| 77 |
-
self.vocab_size = vocab_size
|
| 78 |
-
self.hidden_size = hidden_size
|
| 79 |
-
self.intermediate_size = intermediate_size
|
| 80 |
-
self.num_hidden_layers = num_hidden_layers
|
| 81 |
-
self.num_attention_heads = num_attention_heads
|
| 82 |
-
self.num_key_value_heads = num_key_value_heads
|
| 83 |
-
self.hidden_act = hidden_act
|
| 84 |
-
self.max_position_embeddings = max_position_embeddings
|
| 85 |
-
self.initializer_range = initializer_range
|
| 86 |
-
self.rms_norm_eps = rms_norm_eps
|
| 87 |
-
self.use_cache = use_cache
|
| 88 |
-
self.rope_theta = rope_theta
|
| 89 |
-
self.patch_size = patch_size
|
| 90 |
-
self.in_channels = in_channels
|
| 91 |
-
self.out_channels = out_channels
|
| 92 |
-
self.frequency_embedding_size = frequency_embedding_size
|
| 93 |
-
self.max_condition_images = max_condition_images
|
| 94 |
-
self.visual_embed_dim = visual_embed_dim
|
| 95 |
-
self.text_embed_dim = text_embed_dim
|
| 96 |
-
self.use_temporal_attention = use_temporal_attention
|
| 97 |
-
self.use_fp8_quantization = use_fp8_quantization
|
| 98 |
-
self.use_compilation = use_compilation
|
| 99 |
-
self.compile_mode = compile_mode
|
| 100 |
-
self.use_flash_attention = use_flash_attention
|
| 101 |
-
super().__init__(
|
| 102 |
-
pad_token_id=pad_token_id,
|
| 103 |
-
bos_token_id=bos_token_id,
|
| 104 |
-
eos_token_id=eos_token_id,
|
| 105 |
-
tie_word_embeddings=tie_word_embeddings,
|
| 106 |
-
**kwargs,
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
# -----------------------------------------------------------------------------
|
| 110 |
-
# 2. Professional Building Blocks (RoPE, SwiGLU, AdaLN)
|
| 111 |
-
# -----------------------------------------------------------------------------
|
| 112 |
-
|
| 113 |
-
class OmniRMSNorm(nn.Module):
|
| 114 |
-
def __init__(self, hidden_size, eps=1e-6):
|
| 115 |
-
super().__init__()
|
| 116 |
-
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 117 |
-
self.variance_epsilon = eps
|
| 118 |
-
|
| 119 |
-
def forward(self, hidden_states):
|
| 120 |
-
input_dtype = hidden_states.dtype
|
| 121 |
-
hidden_states = hidden_states.to(torch.float32)
|
| 122 |
-
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 123 |
-
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 124 |
-
return self.weight * hidden_states.to(input_dtype)
|
| 125 |
-
|
| 126 |
-
class OmniRotaryEmbedding(nn.Module):
|
| 127 |
-
"""Complex implementation of Rotary Positional Embeddings for DiT"""
|
| 128 |
-
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 129 |
-
super().__init__()
|
| 130 |
-
self.dim = dim
|
| 131 |
-
self.max_position_embeddings = max_position_embeddings
|
| 132 |
-
self.base = base
|
| 133 |
-
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
| 134 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 135 |
-
|
| 136 |
-
def forward(self, x, seq_len=None):
|
| 137 |
-
t = torch.arange(seq_len or x.shape[1], device=x.device).type_as(self.inv_freq)
|
| 138 |
-
freqs = torch.outer(t, self.inv_freq)
|
| 139 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
| 140 |
-
return emb.cos(), emb.sin()
|
| 141 |
-
|
| 142 |
-
class OmniSwiGLU(nn.Module):
|
| 143 |
-
"""Swish-Gated Linear Unit for High-Performance FFN"""
|
| 144 |
-
def __init__(self, config: OmniMMDitV2Config):
|
| 145 |
-
super().__init__()
|
| 146 |
-
self.w1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
| 147 |
-
self.w2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
| 148 |
-
self.w3 = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
| 149 |
-
|
| 150 |
-
def forward(self, x):
|
| 151 |
-
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
| 152 |
-
|
| 153 |
-
class TimestepEmbedder(nn.Module):
|
| 154 |
-
"""Fourier feature embedding for timesteps"""
|
| 155 |
-
def __init__(self, hidden_size, frequency_embedding_size=256):
|
| 156 |
-
super().__init__()
|
| 157 |
-
self.mlp = nn.Sequential(
|
| 158 |
-
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
| 159 |
-
nn.SiLU(),
|
| 160 |
-
nn.Linear(hidden_size, hidden_size, bias=True),
|
| 161 |
-
)
|
| 162 |
-
self.frequency_embedding_size = frequency_embedding_size
|
| 163 |
-
|
| 164 |
-
@staticmethod
|
| 165 |
-
def timestep_embedding(t, dim, max_period=10000):
|
| 166 |
-
half = dim // 2
|
| 167 |
-
freqs = torch.exp(
|
| 168 |
-
-torch.log(torch.tensor(max_period)) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
| 169 |
-
).to(device=t.device)
|
| 170 |
-
args = t[:, None].float() * freqs[None]
|
| 171 |
-
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 172 |
-
if dim % 2:
|
| 173 |
-
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 174 |
-
return embedding
|
| 175 |
-
|
| 176 |
-
def forward(self, t, dtype):
|
| 177 |
-
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
|
| 178 |
-
return self.mlp(t_freq)
|
| 179 |
-
|
| 180 |
-
# -----------------------------------------------------------------------------
|
| 181 |
-
# 2.5. Data Processing Utilities
|
| 182 |
-
# -----------------------------------------------------------------------------
|
| 183 |
-
|
| 184 |
-
class OmniImageProcessor:
|
| 185 |
-
"""Advanced image preprocessing for multi-modal diffusion models"""
|
| 186 |
-
|
| 187 |
-
def __init__(
|
| 188 |
-
self,
|
| 189 |
-
image_mean: List[float] = [0.485, 0.456, 0.406],
|
| 190 |
-
image_std: List[float] = [0.229, 0.224, 0.225],
|
| 191 |
-
size: Tuple[int, int] = (512, 512),
|
| 192 |
-
interpolation: str = "bicubic",
|
| 193 |
-
do_normalize: bool = True,
|
| 194 |
-
do_center_crop: bool = False,
|
| 195 |
-
):
|
| 196 |
-
self.image_mean = image_mean
|
| 197 |
-
self.image_std = image_std
|
| 198 |
-
self.size = size
|
| 199 |
-
self.do_normalize = do_normalize
|
| 200 |
-
self.do_center_crop = do_center_crop
|
| 201 |
-
|
| 202 |
-
# Build transform pipeline
|
| 203 |
-
transforms_list = []
|
| 204 |
-
if do_center_crop:
|
| 205 |
-
transforms_list.append(T.CenterCrop(min(size)))
|
| 206 |
-
|
| 207 |
-
interp_mode = {
|
| 208 |
-
"bilinear": T.InterpolationMode.BILINEAR,
|
| 209 |
-
"bicubic": T.InterpolationMode.BICUBIC,
|
| 210 |
-
"lanczos": T.InterpolationMode.LANCZOS,
|
| 211 |
-
}.get(interpolation, T.InterpolationMode.BICUBIC)
|
| 212 |
-
|
| 213 |
-
transforms_list.append(T.Resize(size, interpolation=interp_mode, antialias=True))
|
| 214 |
-
self.transform = T.Compose(transforms_list)
|
| 215 |
-
|
| 216 |
-
def preprocess(
|
| 217 |
-
self,
|
| 218 |
-
images: Union[Image.Image, np.ndarray, torch.Tensor, List[Union[Image.Image, np.ndarray, torch.Tensor]]],
|
| 219 |
-
return_tensors: str = "pt",
|
| 220 |
-
) -> torch.Tensor:
|
| 221 |
-
"""
|
| 222 |
-
Preprocess images for model input.
|
| 223 |
-
|
| 224 |
-
Args:
|
| 225 |
-
images: Single image or list of images (PIL, numpy, or torch)
|
| 226 |
-
return_tensors: Return type ("pt" for PyTorch)
|
| 227 |
-
|
| 228 |
-
Returns:
|
| 229 |
-
Preprocessed image tensor [B, C, H, W]
|
| 230 |
-
"""
|
| 231 |
-
if not isinstance(images, list):
|
| 232 |
-
images = [images]
|
| 233 |
-
|
| 234 |
-
processed = []
|
| 235 |
-
for img in images:
|
| 236 |
-
# Convert to PIL if needed
|
| 237 |
-
if isinstance(img, np.ndarray):
|
| 238 |
-
if img.dtype == np.uint8:
|
| 239 |
-
img = Image.fromarray(img)
|
| 240 |
-
else:
|
| 241 |
-
img = Image.fromarray((img * 255).astype(np.uint8))
|
| 242 |
-
elif isinstance(img, torch.Tensor):
|
| 243 |
-
img = T.ToPILImage()(img)
|
| 244 |
-
|
| 245 |
-
# Apply transforms
|
| 246 |
-
img = self.transform(img)
|
| 247 |
-
|
| 248 |
-
# Convert to tensor
|
| 249 |
-
if not isinstance(img, torch.Tensor):
|
| 250 |
-
img = to_tensor(img)
|
| 251 |
-
|
| 252 |
-
# Normalize
|
| 253 |
-
if self.do_normalize:
|
| 254 |
-
img = normalize(img, self.image_mean, self.image_std)
|
| 255 |
-
|
| 256 |
-
processed.append(img)
|
| 257 |
-
|
| 258 |
-
# Stack into batch
|
| 259 |
-
if return_tensors == "pt":
|
| 260 |
-
return torch.stack(processed, dim=0)
|
| 261 |
-
|
| 262 |
-
return processed
|
| 263 |
-
|
| 264 |
-
def postprocess(
|
| 265 |
-
self,
|
| 266 |
-
images: torch.Tensor,
|
| 267 |
-
output_type: str = "pil",
|
| 268 |
-
) -> Union[List[Image.Image], np.ndarray, torch.Tensor]:
|
| 269 |
-
"""
|
| 270 |
-
Postprocess model output to desired format.
|
| 271 |
-
|
| 272 |
-
Args:
|
| 273 |
-
images: Model output tensor [B, C, H, W]
|
| 274 |
-
output_type: "pil", "np", or "pt"
|
| 275 |
-
|
| 276 |
-
Returns:
|
| 277 |
-
Processed images in requested format
|
| 278 |
-
"""
|
| 279 |
-
# Denormalize if needed
|
| 280 |
-
if self.do_normalize:
|
| 281 |
-
mean = torch.tensor(self.image_mean).view(1, 3, 1, 1).to(images.device)
|
| 282 |
-
std = torch.tensor(self.image_std).view(1, 3, 1, 1).to(images.device)
|
| 283 |
-
images = images * std + mean
|
| 284 |
-
|
| 285 |
-
# Clamp to valid range
|
| 286 |
-
images = torch.clamp(images, 0, 1)
|
| 287 |
-
|
| 288 |
-
if output_type == "pil":
|
| 289 |
-
images = images.cpu().permute(0, 2, 3, 1).numpy()
|
| 290 |
-
images = (images * 255).round().astype(np.uint8)
|
| 291 |
-
return [Image.fromarray(img) for img in images]
|
| 292 |
-
elif output_type == "np":
|
| 293 |
-
return images.cpu().numpy()
|
| 294 |
-
else:
|
| 295 |
-
return images
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
class OmniVideoProcessor:
|
| 299 |
-
"""Video frame processing for temporal diffusion models"""
|
| 300 |
-
|
| 301 |
-
def __init__(
|
| 302 |
-
self,
|
| 303 |
-
image_processor: OmniImageProcessor,
|
| 304 |
-
num_frames: int = 16,
|
| 305 |
-
frame_stride: int = 1,
|
| 306 |
-
):
|
| 307 |
-
self.image_processor = image_processor
|
| 308 |
-
self.num_frames = num_frames
|
| 309 |
-
self.frame_stride = frame_stride
|
| 310 |
-
|
| 311 |
-
def preprocess_video(
|
| 312 |
-
self,
|
| 313 |
-
video_frames: Union[List[Image.Image], np.ndarray, torch.Tensor],
|
| 314 |
-
temporal_interpolation: bool = True,
|
| 315 |
-
) -> torch.Tensor:
|
| 316 |
-
"""
|
| 317 |
-
Preprocess video frames for temporal model.
|
| 318 |
-
|
| 319 |
-
Args:
|
| 320 |
-
video_frames: List of PIL images, numpy array [T, H, W, C], or tensor [T, C, H, W]
|
| 321 |
-
temporal_interpolation: Whether to interpolate to target frame count
|
| 322 |
-
|
| 323 |
-
Returns:
|
| 324 |
-
Preprocessed video tensor [B, C, T, H, W]
|
| 325 |
-
"""
|
| 326 |
-
# Convert to list of PIL images
|
| 327 |
-
if isinstance(video_frames, np.ndarray):
|
| 328 |
-
if video_frames.ndim == 4: # [T, H, W, C]
|
| 329 |
-
video_frames = [Image.fromarray(frame) for frame in video_frames]
|
| 330 |
-
else:
|
| 331 |
-
raise ValueError(f"Expected 4D numpy array, got shape {video_frames.shape}")
|
| 332 |
-
elif isinstance(video_frames, torch.Tensor):
|
| 333 |
-
if video_frames.ndim == 4: # [T, C, H, W]
|
| 334 |
-
video_frames = [T.ToPILImage()(frame) for frame in video_frames]
|
| 335 |
-
else:
|
| 336 |
-
raise ValueError(f"Expected 4D tensor, got shape {video_frames.shape}")
|
| 337 |
-
|
| 338 |
-
# Sample frames if needed
|
| 339 |
-
total_frames = len(video_frames)
|
| 340 |
-
if temporal_interpolation and total_frames != self.num_frames:
|
| 341 |
-
indices = np.linspace(0, total_frames - 1, self.num_frames, dtype=int)
|
| 342 |
-
video_frames = [video_frames[i] for i in indices]
|
| 343 |
-
|
| 344 |
-
# Process each frame
|
| 345 |
-
processed_frames = []
|
| 346 |
-
for frame in video_frames[:self.num_frames]:
|
| 347 |
-
frame_tensor = self.image_processor.preprocess(frame, return_tensors="pt")[0]
|
| 348 |
-
processed_frames.append(frame_tensor)
|
| 349 |
-
|
| 350 |
-
# Stack: [T, C, H, W] -> [1, C, T, H, W]
|
| 351 |
-
video_tensor = torch.stack(processed_frames, dim=1).unsqueeze(0)
|
| 352 |
-
return video_tensor
|
| 353 |
-
|
| 354 |
-
def postprocess_video(
|
| 355 |
-
self,
|
| 356 |
-
video_tensor: torch.Tensor,
|
| 357 |
-
output_type: str = "pil",
|
| 358 |
-
) -> Union[List[Image.Image], np.ndarray, torch.Tensor]:
|
| 359 |
-
"""
|
| 360 |
-
Postprocess video output.
|
| 361 |
-
|
| 362 |
-
Args:
|
| 363 |
-
video_tensor: Model output [B, C, T, H, W] or [B, T, C, H, W]
|
| 364 |
-
output_type: "pil", "np", or "pt"
|
| 365 |
-
|
| 366 |
-
Returns:
|
| 367 |
-
Processed video frames
|
| 368 |
-
"""
|
| 369 |
-
# Normalize dimensions to [B, T, C, H, W]
|
| 370 |
-
if video_tensor.ndim == 5:
|
| 371 |
-
if video_tensor.shape[1] in [3, 4]: # [B, C, T, H, W]
|
| 372 |
-
video_tensor = video_tensor.permute(0, 2, 1, 3, 4)
|
| 373 |
-
|
| 374 |
-
batch_size, num_frames = video_tensor.shape[:2]
|
| 375 |
-
|
| 376 |
-
# Process each frame
|
| 377 |
-
all_frames = []
|
| 378 |
-
for b in range(batch_size):
|
| 379 |
-
frames = []
|
| 380 |
-
for t in range(num_frames):
|
| 381 |
-
frame = video_tensor[b, t] # [C, H, W]
|
| 382 |
-
frame = frame.unsqueeze(0) # [1, C, H, W]
|
| 383 |
-
processed = self.image_processor.postprocess(frame, output_type=output_type)
|
| 384 |
-
frames.extend(processed)
|
| 385 |
-
all_frames.append(frames)
|
| 386 |
-
|
| 387 |
-
return all_frames[0] if batch_size == 1 else all_frames
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
class OmniLatentProcessor:
|
| 391 |
-
"""VAE latent space encoding/decoding with scaling and normalization"""
|
| 392 |
-
|
| 393 |
-
def __init__(
|
| 394 |
-
self,
|
| 395 |
-
vae: Any,
|
| 396 |
-
scaling_factor: float = 0.18215,
|
| 397 |
-
do_normalize_latents: bool = True,
|
| 398 |
-
):
|
| 399 |
-
self.vae = vae
|
| 400 |
-
self.scaling_factor = scaling_factor
|
| 401 |
-
self.do_normalize_latents = do_normalize_latents
|
| 402 |
-
|
| 403 |
-
@torch.no_grad()
|
| 404 |
-
def encode(
|
| 405 |
-
self,
|
| 406 |
-
images: torch.Tensor,
|
| 407 |
-
generator: Optional[torch.Generator] = None,
|
| 408 |
-
return_dict: bool = False,
|
| 409 |
-
) -> torch.Tensor:
|
| 410 |
-
"""
|
| 411 |
-
Encode images to latent space.
|
| 412 |
-
|
| 413 |
-
Args:
|
| 414 |
-
images: Input images [B, C, H, W] in range [-1, 1]
|
| 415 |
-
generator: Random generator for sampling
|
| 416 |
-
return_dict: Whether to return dict or tensor
|
| 417 |
-
|
| 418 |
-
Returns:
|
| 419 |
-
Latent codes [B, 4, H//8, W//8]
|
| 420 |
-
"""
|
| 421 |
-
# VAE expects input in [-1, 1]
|
| 422 |
-
if images.min() >= 0:
|
| 423 |
-
images = images * 2.0 - 1.0
|
| 424 |
-
|
| 425 |
-
# Encode
|
| 426 |
-
latent_dist = self.vae.encode(images).latent_dist
|
| 427 |
-
latents = latent_dist.sample(generator=generator)
|
| 428 |
-
|
| 429 |
-
# Scale latents
|
| 430 |
-
latents = latents * self.scaling_factor
|
| 431 |
-
|
| 432 |
-
# Additional normalization for stability
|
| 433 |
-
if self.do_normalize_latents:
|
| 434 |
-
latents = (latents - latents.mean()) / (latents.std() + 1e-6)
|
| 435 |
-
|
| 436 |
-
return latents if not return_dict else {"latents": latents}
|
| 437 |
-
|
| 438 |
-
@torch.no_grad()
|
| 439 |
-
def decode(
|
| 440 |
-
self,
|
| 441 |
-
latents: torch.Tensor,
|
| 442 |
-
return_dict: bool = False,
|
| 443 |
-
) -> torch.Tensor:
|
| 444 |
-
"""
|
| 445 |
-
Decode latents to image space.
|
| 446 |
-
|
| 447 |
-
Args:
|
| 448 |
-
latents: Latent codes [B, 4, H//8, W//8]
|
| 449 |
-
return_dict: Whether to return dict or tensor
|
| 450 |
-
|
| 451 |
-
Returns:
|
| 452 |
-
Decoded images [B, 3, H, W] in range [-1, 1]
|
| 453 |
-
"""
|
| 454 |
-
# Denormalize if needed
|
| 455 |
-
if self.do_normalize_latents:
|
| 456 |
-
# Assume identity transform for simplicity in decoding
|
| 457 |
-
pass
|
| 458 |
-
|
| 459 |
-
# Unscale
|
| 460 |
-
latents = latents / self.scaling_factor
|
| 461 |
-
|
| 462 |
-
# Decode
|
| 463 |
-
images = self.vae.decode(latents).sample
|
| 464 |
-
|
| 465 |
-
return images if not return_dict else {"images": images}
|
| 466 |
-
|
| 467 |
-
@torch.no_grad()
|
| 468 |
-
def encode_video(
|
| 469 |
-
self,
|
| 470 |
-
video_frames: torch.Tensor,
|
| 471 |
-
generator: Optional[torch.Generator] = None,
|
| 472 |
-
) -> torch.Tensor:
|
| 473 |
-
"""
|
| 474 |
-
Encode video frames to latent space.
|
| 475 |
-
|
| 476 |
-
Args:
|
| 477 |
-
video_frames: Input video [B, C, T, H, W] or [B, T, C, H, W]
|
| 478 |
-
generator: Random generator
|
| 479 |
-
|
| 480 |
-
Returns:
|
| 481 |
-
Video latents [B, 4, T, H//8, W//8]
|
| 482 |
-
"""
|
| 483 |
-
# Reshape to process frames independently
|
| 484 |
-
if video_frames.shape[2] not in [3, 4]: # [B, T, C, H, W]
|
| 485 |
-
B, T, C, H, W = video_frames.shape
|
| 486 |
-
video_frames = video_frames.reshape(B * T, C, H, W)
|
| 487 |
-
|
| 488 |
-
# Encode
|
| 489 |
-
latents = self.encode(video_frames, generator=generator)
|
| 490 |
-
|
| 491 |
-
# Reshape back
|
| 492 |
-
latents = latents.reshape(B, T, *latents.shape[1:])
|
| 493 |
-
latents = latents.permute(0, 2, 1, 3, 4) # [B, 4, T, H//8, W//8]
|
| 494 |
-
else: # [B, C, T, H, W]
|
| 495 |
-
B, C, T, H, W = video_frames.shape
|
| 496 |
-
video_frames = video_frames.permute(0, 2, 1, 3, 4).reshape(B * T, C, H, W)
|
| 497 |
-
|
| 498 |
-
latents = self.encode(video_frames, generator=generator)
|
| 499 |
-
latents = latents.reshape(B, T, *latents.shape[1:])
|
| 500 |
-
latents = latents.permute(0, 2, 1, 3, 4)
|
| 501 |
-
|
| 502 |
-
return latents
|
| 503 |
-
|
| 504 |
-
# -----------------------------------------------------------------------------
|
| 505 |
-
# 3. Core Architecture: OmniMMDitBlock (3D-Attention + Modulation)
|
| 506 |
-
# -----------------------------------------------------------------------------
|
| 507 |
-
|
| 508 |
-
class OmniMMDitBlock(nn.Module):
|
| 509 |
-
def __init__(self, config: OmniMMDitV2Config, layer_idx: int):
|
| 510 |
-
super().__init__()
|
| 511 |
-
self.layer_idx = layer_idx
|
| 512 |
-
self.hidden_size = config.hidden_size
|
| 513 |
-
self.num_heads = config.num_attention_heads
|
| 514 |
-
self.head_dim = config.hidden_size // config.num_attention_heads
|
| 515 |
-
|
| 516 |
-
# Self-Attention with QK-Norm
|
| 517 |
-
self.norm1 = OmniRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 518 |
-
self.attn = nn.MultiheadAttention(
|
| 519 |
-
config.hidden_size, config.num_attention_heads, batch_first=True
|
| 520 |
-
)
|
| 521 |
-
|
| 522 |
-
self.q_norm = OmniRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 523 |
-
self.k_norm = OmniRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 524 |
-
|
| 525 |
-
# Cross-Attention for multimodal fusion
|
| 526 |
-
self.norm2 = OmniRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 527 |
-
self.cross_attn = nn.MultiheadAttention(
|
| 528 |
-
config.hidden_size, config.num_attention_heads, batch_first=True
|
| 529 |
-
)
|
| 530 |
-
|
| 531 |
-
# Feed-Forward Network with SwiGLU activation
|
| 532 |
-
self.norm3 = OmniRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 533 |
-
self.ffn = OmniSwiGLU(config)
|
| 534 |
-
|
| 535 |
-
# Adaptive Layer Normalization with zero initialization
|
| 536 |
-
self.adaLN_modulation = nn.Sequential(
|
| 537 |
-
nn.SiLU(),
|
| 538 |
-
nn.Linear(config.hidden_size, 6 * config.hidden_size, bias=True)
|
| 539 |
-
)
|
| 540 |
-
|
| 541 |
-
def forward(
|
| 542 |
-
self,
|
| 543 |
-
hidden_states: torch.Tensor,
|
| 544 |
-
encoder_hidden_states: torch.Tensor, # Text embeddings
|
| 545 |
-
visual_context: Optional[torch.Tensor], # Reference image embeddings
|
| 546 |
-
timestep_emb: torch.Tensor,
|
| 547 |
-
rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 548 |
-
) -> torch.Tensor:
|
| 549 |
-
|
| 550 |
-
# AdaLN Modulation
|
| 551 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
| 552 |
-
self.adaLN_modulation(timestep_emb)[:, None].chunk(6, dim=-1)
|
| 553 |
-
)
|
| 554 |
-
|
| 555 |
-
# Self-Attention block
|
| 556 |
-
normed_hidden = self.norm1(hidden_states)
|
| 557 |
-
normed_hidden = normed_hidden * (1 + scale_msa) + shift_msa
|
| 558 |
-
|
| 559 |
-
attn_output, _ = self.attn(normed_hidden, normed_hidden, normed_hidden)
|
| 560 |
-
hidden_states = hidden_states + gate_msa * attn_output
|
| 561 |
-
|
| 562 |
-
# Cross-Attention with multimodal conditioning
|
| 563 |
-
if visual_context is not None:
|
| 564 |
-
context = torch.cat([encoder_hidden_states, visual_context], dim=1)
|
| 565 |
-
else:
|
| 566 |
-
context = encoder_hidden_states
|
| 567 |
-
|
| 568 |
-
normed_hidden_cross = self.norm2(hidden_states)
|
| 569 |
-
cross_output, _ = self.cross_attn(normed_hidden_cross, context, context)
|
| 570 |
-
hidden_states = hidden_states + cross_output
|
| 571 |
-
|
| 572 |
-
# Feed-Forward block
|
| 573 |
-
normed_ffn = self.norm3(hidden_states)
|
| 574 |
-
normed_ffn = normed_ffn * (1 + scale_mlp) + shift_mlp
|
| 575 |
-
ffn_output = self.ffn(normed_ffn)
|
| 576 |
-
hidden_states = hidden_states + gate_mlp * ffn_output
|
| 577 |
-
|
| 578 |
-
return hidden_states
|
| 579 |
-
|
| 580 |
-
# -----------------------------------------------------------------------------
|
| 581 |
-
# 4. The Model: OmniMMDitV2
|
| 582 |
-
# -----------------------------------------------------------------------------
|
| 583 |
-
|
| 584 |
-
class OmniMMDitV2(ModelMixin, PreTrainedModel):
|
| 585 |
-
"""
|
| 586 |
-
Omni-Modal Multi-Dimensional Diffusion Transformer V2.
|
| 587 |
-
Supports: Text-to-Image, Image-to-Image (Edit), Image-to-Video.
|
| 588 |
-
"""
|
| 589 |
-
config_class = OmniMMDitV2Config
|
| 590 |
-
_supports_gradient_checkpointing = True
|
| 591 |
-
|
| 592 |
-
def __init__(self, config: OmniMMDitV2Config):
|
| 593 |
-
super().__init__(config)
|
| 594 |
-
self.config = config
|
| 595 |
-
|
| 596 |
-
# Initialize optimizer for advanced features
|
| 597 |
-
self.optimizer = ModelOptimizer(
|
| 598 |
-
fp8_config=FP8Config(enabled=config.use_fp8_quantization),
|
| 599 |
-
compilation_config=CompilationConfig(
|
| 600 |
-
enabled=config.use_compilation,
|
| 601 |
-
mode=config.compile_mode,
|
| 602 |
-
),
|
| 603 |
-
mixed_precision_config=MixedPrecisionConfig(
|
| 604 |
-
enabled=True,
|
| 605 |
-
dtype="bfloat16",
|
| 606 |
-
),
|
| 607 |
-
)
|
| 608 |
-
|
| 609 |
-
# Input Latent Projection (Patchify)
|
| 610 |
-
self.x_embedder = nn.Linear(config.in_channels * config.patch_size * config.patch_size, config.hidden_size, bias=True)
|
| 611 |
-
|
| 612 |
-
# Time & Vector Embeddings
|
| 613 |
-
self.t_embedder = TimestepEmbedder(config.hidden_size, config.frequency_embedding_size)
|
| 614 |
-
|
| 615 |
-
# Visual Condition Projector (Handles 1-3 images)
|
| 616 |
-
self.visual_projector = nn.Sequential(
|
| 617 |
-
nn.Linear(config.visual_embed_dim, config.hidden_size),
|
| 618 |
-
nn.LayerNorm(config.hidden_size),
|
| 619 |
-
nn.Linear(config.hidden_size, config.hidden_size)
|
| 620 |
-
)
|
| 621 |
-
|
| 622 |
-
# Positional Embeddings (Absolute + RoPE dynamically handled)
|
| 623 |
-
self.pos_embed = nn.Parameter(torch.zeros(1, config.max_position_embeddings, config.hidden_size), requires_grad=False)
|
| 624 |
-
|
| 625 |
-
# Transformer Backbone
|
| 626 |
-
self.blocks = nn.ModuleList([
|
| 627 |
-
OmniMMDitBlock(config, i) for i in range(config.num_hidden_layers)
|
| 628 |
-
])
|
| 629 |
-
|
| 630 |
-
# Final Layer (AdaLN-Zero + Linear)
|
| 631 |
-
self.final_layer = nn.Sequential(
|
| 632 |
-
OmniRMSNorm(config.hidden_size, eps=config.rms_norm_eps),
|
| 633 |
-
nn.Linear(config.hidden_size, config.patch_size * config.patch_size * config.out_channels, bias=True)
|
| 634 |
-
)
|
| 635 |
-
|
| 636 |
-
self.initialize_weights()
|
| 637 |
-
|
| 638 |
-
# Apply optimizations if enabled
|
| 639 |
-
if config.use_fp8_quantization or config.use_compilation:
|
| 640 |
-
self._apply_optimizations()
|
| 641 |
-
|
| 642 |
-
def _apply_optimizations(self):
|
| 643 |
-
"""Apply FP8 quantization and compilation optimizations"""
|
| 644 |
-
# Quantize transformer blocks
|
| 645 |
-
if self.config.use_fp8_quantization:
|
| 646 |
-
for i, block in enumerate(self.blocks):
|
| 647 |
-
self.blocks[i] = self.optimizer.optimize_model(
|
| 648 |
-
block,
|
| 649 |
-
apply_compilation=False,
|
| 650 |
-
apply_quantization=True,
|
| 651 |
-
apply_mixed_precision=True,
|
| 652 |
-
)
|
| 653 |
-
|
| 654 |
-
# Compile forward method
|
| 655 |
-
if self.config.use_compilation and HAS_TORCH_COMPILE:
|
| 656 |
-
self.forward = torch.compile(
|
| 657 |
-
self.forward,
|
| 658 |
-
mode=self.config.compile_mode,
|
| 659 |
-
dynamic=True,
|
| 660 |
-
)
|
| 661 |
-
|
| 662 |
-
def initialize_weights(self):
|
| 663 |
-
def _basic_init(module):
|
| 664 |
-
if isinstance(module, nn.Linear):
|
| 665 |
-
torch.nn.init.xavier_uniform_(module.weight)
|
| 666 |
-
if module.bias is not None:
|
| 667 |
-
nn.init.constant_(module.bias, 0)
|
| 668 |
-
self.apply(_basic_init)
|
| 669 |
-
|
| 670 |
-
def unpatchify(self, x, h, w):
|
| 671 |
-
c = self.config.out_channels
|
| 672 |
-
p = self.config.patch_size
|
| 673 |
-
h_ = h // p
|
| 674 |
-
w_ = w // p
|
| 675 |
-
x = x.reshape(shape=(x.shape[0], h_, w_, p, p, c))
|
| 676 |
-
x = torch.einsum('nhwpqc->nchpwq', x)
|
| 677 |
-
imgs = x.reshape(shape=(x.shape[0], c, h, w))
|
| 678 |
-
return imgs
|
| 679 |
-
|
| 680 |
-
def forward(
|
| 681 |
-
self,
|
| 682 |
-
hidden_states: torch.Tensor, # Noisy Latents [B, C, H, W] or [B, C, F, H, W]
|
| 683 |
-
timestep: torch.LongTensor,
|
| 684 |
-
encoder_hidden_states: torch.Tensor, # Text Embeddings
|
| 685 |
-
visual_conditions: Optional[List[torch.Tensor]] = None, # List of [B, L, D]
|
| 686 |
-
video_frames: Optional[int] = None, # If generating video
|
| 687 |
-
return_dict: bool = True,
|
| 688 |
-
) -> Union[torch.Tensor, BaseOutput]:
|
| 689 |
-
|
| 690 |
-
batch_size, channels, _, _ = hidden_states.shape
|
| 691 |
-
|
| 692 |
-
# Patchify input latents
|
| 693 |
-
p = self.config.patch_size
|
| 694 |
-
h, w = hidden_states.shape[-2], hidden_states.shape[-1]
|
| 695 |
-
x = hidden_states.unfold(2, p, p).unfold(3, p, p)
|
| 696 |
-
x = x.permute(0, 2, 3, 1, 4, 5).contiguous()
|
| 697 |
-
x = x.view(batch_size, -1, channels * p * p)
|
| 698 |
-
|
| 699 |
-
# Positional and temporal embeddings
|
| 700 |
-
x = self.x_embedder(x)
|
| 701 |
-
x = x + self.pos_embed[:, :x.shape[1], :]
|
| 702 |
-
|
| 703 |
-
t = self.t_embedder(timestep, x.dtype)
|
| 704 |
-
|
| 705 |
-
# Process visual conditioning
|
| 706 |
-
visual_emb = None
|
| 707 |
-
if visual_conditions is not None:
|
| 708 |
-
concat_visuals = torch.cat(visual_conditions, dim=1)
|
| 709 |
-
visual_emb = self.visual_projector(concat_visuals)
|
| 710 |
-
|
| 711 |
-
# Transformer blocks
|
| 712 |
-
for block in self.blocks:
|
| 713 |
-
x = block(
|
| 714 |
-
hidden_states=x,
|
| 715 |
-
encoder_hidden_states=encoder_hidden_states,
|
| 716 |
-
visual_context=visual_emb,
|
| 717 |
-
timestep_emb=t
|
| 718 |
-
)
|
| 719 |
-
|
| 720 |
-
# Output projection
|
| 721 |
-
x = self.final_layer[0](x)
|
| 722 |
-
x = self.final_layer[1](x)
|
| 723 |
-
|
| 724 |
-
# Unpatchify to image space
|
| 725 |
-
output = self.unpatchify(x, h, w)
|
| 726 |
-
|
| 727 |
-
if not return_dict:
|
| 728 |
-
return (output,)
|
| 729 |
-
|
| 730 |
-
return BaseOutput(sample=output)
|
| 731 |
-
|
| 732 |
-
# -----------------------------------------------------------------------------
|
| 733 |
-
# 5. The "Fancy" Pipeline
|
| 734 |
-
# -----------------------------------------------------------------------------
|
| 735 |
-
|
| 736 |
-
class OmniMMDitV2Pipeline(DiffusionPipeline):
|
| 737 |
-
"""
|
| 738 |
-
Omni-Modal Diffusion Transformer Pipeline.
|
| 739 |
-
|
| 740 |
-
Supports text-guided image editing and video generation with
|
| 741 |
-
multi-image conditioning and advanced guidance techniques.
|
| 742 |
-
"""
|
| 743 |
-
model: OmniMMDitV2
|
| 744 |
-
tokenizer: CLIPTokenizer
|
| 745 |
-
text_encoder: CLIPTextModel
|
| 746 |
-
vae: Any # AutoencoderKL
|
| 747 |
-
scheduler: DDIMScheduler
|
| 748 |
-
|
| 749 |
-
_optional_components = ["visual_encoder"]
|
| 750 |
-
|
| 751 |
-
def __init__(
|
| 752 |
-
self,
|
| 753 |
-
model: OmniMMDitV2,
|
| 754 |
-
vae: Any,
|
| 755 |
-
text_encoder: CLIPTextModel,
|
| 756 |
-
tokenizer: CLIPTokenizer,
|
| 757 |
-
scheduler: DDIMScheduler,
|
| 758 |
-
visual_encoder: Optional[Any] = None,
|
| 759 |
-
):
|
| 760 |
-
super().__init__()
|
| 761 |
-
self.register_modules(
|
| 762 |
-
model=model,
|
| 763 |
-
vae=vae,
|
| 764 |
-
text_encoder=text_encoder,
|
| 765 |
-
tokenizer=tokenizer,
|
| 766 |
-
scheduler=scheduler,
|
| 767 |
-
visual_encoder=visual_encoder
|
| 768 |
-
)
|
| 769 |
-
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 770 |
-
|
| 771 |
-
# Initialize data processors
|
| 772 |
-
self.image_processor = OmniImageProcessor(
|
| 773 |
-
size=(512, 512),
|
| 774 |
-
interpolation="bicubic",
|
| 775 |
-
do_normalize=True,
|
| 776 |
-
)
|
| 777 |
-
self.video_processor = OmniVideoProcessor(
|
| 778 |
-
image_processor=self.image_processor,
|
| 779 |
-
num_frames=16,
|
| 780 |
-
)
|
| 781 |
-
self.latent_processor = OmniLatentProcessor(
|
| 782 |
-
vae=vae,
|
| 783 |
-
scaling_factor=0.18215,
|
| 784 |
-
)
|
| 785 |
-
|
| 786 |
-
# Initialize model optimizer
|
| 787 |
-
self.model_optimizer = ModelOptimizer(
|
| 788 |
-
fp8_config=FP8Config(enabled=False), # Can be enabled via enable_fp8()
|
| 789 |
-
compilation_config=CompilationConfig(enabled=False), # Can be enabled via compile()
|
| 790 |
-
mixed_precision_config=MixedPrecisionConfig(enabled=True, dtype="bfloat16"),
|
| 791 |
-
)
|
| 792 |
-
|
| 793 |
-
self._is_compiled = False
|
| 794 |
-
self._is_fp8_enabled = False
|
| 795 |
-
|
| 796 |
-
def enable_fp8_quantization(self):
|
| 797 |
-
"""Enable FP8 quantization for faster inference"""
|
| 798 |
-
if not HAS_TRANSFORMER_ENGINE:
|
| 799 |
-
warnings.warn("Transformer Engine not available. Install with: pip install transformer-engine")
|
| 800 |
-
return self
|
| 801 |
-
|
| 802 |
-
self.model_optimizer.fp8_config.enabled = True
|
| 803 |
-
self.model = self.model_optimizer.optimize_model(
|
| 804 |
-
self.model,
|
| 805 |
-
apply_compilation=False,
|
| 806 |
-
apply_quantization=True,
|
| 807 |
-
apply_mixed_precision=False,
|
| 808 |
-
)
|
| 809 |
-
self._is_fp8_enabled = True
|
| 810 |
-
return self
|
| 811 |
-
|
| 812 |
-
def compile_model(
|
| 813 |
-
self,
|
| 814 |
-
mode: str = "reduce-overhead",
|
| 815 |
-
fullgraph: bool = False,
|
| 816 |
-
dynamic: bool = True,
|
| 817 |
-
):
|
| 818 |
-
"""
|
| 819 |
-
Compile model using torch.compile for faster inference.
|
| 820 |
-
|
| 821 |
-
Args:
|
| 822 |
-
mode: Compilation mode - "default", "reduce-overhead", "max-autotune"
|
| 823 |
-
fullgraph: Whether to compile the entire model as one graph
|
| 824 |
-
dynamic: Whether to enable dynamic shapes
|
| 825 |
-
"""
|
| 826 |
-
if not HAS_TORCH_COMPILE:
|
| 827 |
-
warnings.warn("torch.compile not available. Upgrade to PyTorch 2.0+")
|
| 828 |
-
return self
|
| 829 |
-
|
| 830 |
-
self.model_optimizer.compilation_config = CompilationConfig(
|
| 831 |
-
enabled=True,
|
| 832 |
-
mode=mode,
|
| 833 |
-
fullgraph=fullgraph,
|
| 834 |
-
dynamic=dynamic,
|
| 835 |
-
)
|
| 836 |
-
|
| 837 |
-
self.model = self.model_optimizer._compile_model(self.model)
|
| 838 |
-
self._is_compiled = True
|
| 839 |
-
return self
|
| 840 |
-
|
| 841 |
-
def enable_optimizations(
|
| 842 |
-
self,
|
| 843 |
-
enable_fp8: bool = False,
|
| 844 |
-
enable_compilation: bool = False,
|
| 845 |
-
compilation_mode: str = "reduce-overhead",
|
| 846 |
-
):
|
| 847 |
-
"""
|
| 848 |
-
Enable all optimizations at once.
|
| 849 |
-
|
| 850 |
-
Args:
|
| 851 |
-
enable_fp8: Enable FP8 quantization
|
| 852 |
-
enable_compilation: Enable torch.compile
|
| 853 |
-
compilation_mode: Compilation mode for torch.compile
|
| 854 |
-
"""
|
| 855 |
-
if enable_fp8:
|
| 856 |
-
self.enable_fp8_quantization()
|
| 857 |
-
|
| 858 |
-
if enable_compilation:
|
| 859 |
-
self.compile_model(mode=compilation_mode)
|
| 860 |
-
|
| 861 |
-
return self
|
| 862 |
-
|
| 863 |
-
@torch.no_grad()
|
| 864 |
-
def __call__(
|
| 865 |
-
self,
|
| 866 |
-
prompt: Union[str, List[str]] = None,
|
| 867 |
-
input_images: Optional[List[Union[torch.Tensor, Any]]] = None,
|
| 868 |
-
height: Optional[int] = 1024,
|
| 869 |
-
width: Optional[int] = 1024,
|
| 870 |
-
num_frames: Optional[int] = 1,
|
| 871 |
-
num_inference_steps: int = 50,
|
| 872 |
-
guidance_scale: float = 7.5,
|
| 873 |
-
image_guidance_scale: float = 1.5,
|
| 874 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 875 |
-
eta: float = 0.0,
|
| 876 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 877 |
-
latents: Optional[torch.Tensor] = None,
|
| 878 |
-
output_type: Optional[str] = "pil",
|
| 879 |
-
return_dict: bool = True,
|
| 880 |
-
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
| 881 |
-
callback_steps: int = 1,
|
| 882 |
-
use_optimized_inference: bool = True,
|
| 883 |
-
**kwargs,
|
| 884 |
-
):
|
| 885 |
-
# Use optimized inference context
|
| 886 |
-
with optimized_inference_mode(
|
| 887 |
-
enable_cudnn_benchmark=use_optimized_inference,
|
| 888 |
-
enable_tf32=use_optimized_inference,
|
| 889 |
-
enable_flash_sdp=use_optimized_inference,
|
| 890 |
-
):
|
| 891 |
-
return self._forward_impl(
|
| 892 |
-
prompt=prompt,
|
| 893 |
-
input_images=input_images,
|
| 894 |
-
height=height,
|
| 895 |
-
width=width,
|
| 896 |
-
num_frames=num_frames,
|
| 897 |
-
num_inference_steps=num_inference_steps,
|
| 898 |
-
guidance_scale=guidance_scale,
|
| 899 |
-
image_guidance_scale=image_guidance_scale,
|
| 900 |
-
negative_prompt=negative_prompt,
|
| 901 |
-
eta=eta,
|
| 902 |
-
generator=generator,
|
| 903 |
-
latents=latents,
|
| 904 |
-
output_type=output_type,
|
| 905 |
-
return_dict=return_dict,
|
| 906 |
-
callback=callback,
|
| 907 |
-
callback_steps=callback_steps,
|
| 908 |
-
**kwargs,
|
| 909 |
-
)
|
| 910 |
-
|
| 911 |
-
def _forward_impl(
|
| 912 |
-
self,
|
| 913 |
-
prompt: Union[str, List[str]] = None,
|
| 914 |
-
input_images: Optional[List[Union[torch.Tensor, Any]]] = None,
|
| 915 |
-
height: Optional[int] = 1024,
|
| 916 |
-
width: Optional[int] = 1024,
|
| 917 |
-
num_frames: Optional[int] = 1,
|
| 918 |
-
num_inference_steps: int = 50,
|
| 919 |
-
guidance_scale: float = 7.5,
|
| 920 |
-
image_guidance_scale: float = 1.5,
|
| 921 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 922 |
-
eta: float = 0.0,
|
| 923 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 924 |
-
latents: Optional[torch.Tensor] = None,
|
| 925 |
-
output_type: Optional[str] = "pil",
|
| 926 |
-
return_dict: bool = True,
|
| 927 |
-
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
| 928 |
-
callback_steps: int = 1,
|
| 929 |
-
**kwargs,
|
| 930 |
-
):
|
| 931 |
-
# Validate and set default dimensions
|
| 932 |
-
height = height or self.model.config.sample_size * self.vae_scale_factor
|
| 933 |
-
width = width or self.model.config.sample_size * self.vae_scale_factor
|
| 934 |
-
|
| 935 |
-
# Encode text prompts
|
| 936 |
-
if isinstance(prompt, str):
|
| 937 |
-
prompt = [prompt]
|
| 938 |
-
batch_size = len(prompt)
|
| 939 |
-
|
| 940 |
-
text_inputs = self.tokenizer(
|
| 941 |
-
prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt"
|
| 942 |
-
)
|
| 943 |
-
text_embeddings = self.text_encoder(text_inputs.input_ids.to(self.device))[0]
|
| 944 |
-
|
| 945 |
-
# Encode visual conditions with preprocessing
|
| 946 |
-
visual_embeddings_list = []
|
| 947 |
-
if input_images:
|
| 948 |
-
if not isinstance(input_images, list):
|
| 949 |
-
input_images = [input_images]
|
| 950 |
-
if len(input_images) > 3:
|
| 951 |
-
raise ValueError("Maximum 3 reference images supported")
|
| 952 |
-
|
| 953 |
-
for img in input_images:
|
| 954 |
-
# Preprocess image
|
| 955 |
-
if not isinstance(img, torch.Tensor):
|
| 956 |
-
img_tensor = self.image_processor.preprocess(img, return_tensors="pt")
|
| 957 |
-
else:
|
| 958 |
-
img_tensor = img
|
| 959 |
-
|
| 960 |
-
img_tensor = img_tensor.to(device=self.device, dtype=text_embeddings.dtype)
|
| 961 |
-
|
| 962 |
-
# Encode with visual encoder
|
| 963 |
-
if self.visual_encoder is not None:
|
| 964 |
-
vis_emb = self.visual_encoder(img_tensor).last_hidden_state
|
| 965 |
-
else:
|
| 966 |
-
# Fallback: use VAE encoder + projection
|
| 967 |
-
with torch.no_grad():
|
| 968 |
-
latent_features = self.vae.encode(img_tensor * 2 - 1).latent_dist.mode()
|
| 969 |
-
B, C, H, W = latent_features.shape
|
| 970 |
-
# Flatten spatial dims and project
|
| 971 |
-
vis_emb = latent_features.flatten(2).transpose(1, 2) # [B, H*W, C]
|
| 972 |
-
# Simple projection to visual_embed_dim
|
| 973 |
-
if vis_emb.shape[-1] != self.model.config.visual_embed_dim:
|
| 974 |
-
proj = nn.Linear(vis_emb.shape[-1], self.model.config.visual_embed_dim).to(self.device)
|
| 975 |
-
vis_emb = proj(vis_emb)
|
| 976 |
-
|
| 977 |
-
visual_embeddings_list.append(vis_emb)
|
| 978 |
-
|
| 979 |
-
# Prepare timesteps
|
| 980 |
-
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
|
| 981 |
-
timesteps = self.scheduler.timesteps
|
| 982 |
-
|
| 983 |
-
# Initialize latent space
|
| 984 |
-
num_channels_latents = self.model.config.in_channels
|
| 985 |
-
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 986 |
-
if num_frames > 1:
|
| 987 |
-
shape = (batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 988 |
-
|
| 989 |
-
latents = torch.randn(shape, generator=generator, device=self.device, dtype=text_embeddings.dtype)
|
| 990 |
-
latents = latents * self.scheduler.init_noise_sigma
|
| 991 |
-
|
| 992 |
-
# Denoising loop with optimizations
|
| 993 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 994 |
-
for i, t in enumerate(timesteps):
|
| 995 |
-
latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1.0 else latents
|
| 996 |
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 997 |
-
|
| 998 |
-
# Use mixed precision autocast
|
| 999 |
-
with self.model_optimizer.autocast_context():
|
| 1000 |
-
noise_pred = self.model(
|
| 1001 |
-
hidden_states=latent_model_input,
|
| 1002 |
-
timestep=t,
|
| 1003 |
-
encoder_hidden_states=torch.cat([text_embeddings] * 2),
|
| 1004 |
-
visual_conditions=visual_embeddings_list * 2 if visual_embeddings_list else None,
|
| 1005 |
-
video_frames=num_frames
|
| 1006 |
-
).sample
|
| 1007 |
-
|
| 1008 |
-
# Apply classifier-free guidance
|
| 1009 |
-
if guidance_scale > 1.0:
|
| 1010 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1011 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1012 |
-
|
| 1013 |
-
latents = self.scheduler.step(noise_pred, t, latents, eta=eta).prev_sample
|
| 1014 |
-
|
| 1015 |
-
# Call callback if provided
|
| 1016 |
-
if callback is not None and i % callback_steps == 0:
|
| 1017 |
-
callback(i, t, latents)
|
| 1018 |
-
|
| 1019 |
-
progress_bar.update()
|
| 1020 |
-
|
| 1021 |
-
# Decode latents with proper post-processing
|
| 1022 |
-
if output_type == "latent":
|
| 1023 |
-
output_images = latents
|
| 1024 |
-
else:
|
| 1025 |
-
# Decode latents to pixel space
|
| 1026 |
-
with torch.no_grad():
|
| 1027 |
-
if num_frames > 1:
|
| 1028 |
-
# Video decoding: process frame by frame
|
| 1029 |
-
B, C, T, H, W = latents.shape
|
| 1030 |
-
latents_2d = latents.permute(0, 2, 1, 3, 4).reshape(B * T, C, H, W)
|
| 1031 |
-
decoded = self.latent_processor.decode(latents_2d)
|
| 1032 |
-
decoded = decoded.reshape(B, T, 3, H * 8, W * 8)
|
| 1033 |
-
|
| 1034 |
-
# Convert to [0, 1] range
|
| 1035 |
-
decoded = (decoded / 2 + 0.5).clamp(0, 1)
|
| 1036 |
-
|
| 1037 |
-
# Post-process video
|
| 1038 |
-
if output_type == "pil":
|
| 1039 |
-
output_images = self.video_processor.postprocess_video(decoded, output_type="pil")
|
| 1040 |
-
elif output_type == "np":
|
| 1041 |
-
output_images = decoded.cpu().numpy()
|
| 1042 |
-
else:
|
| 1043 |
-
output_images = decoded
|
| 1044 |
-
else:
|
| 1045 |
-
# Image decoding
|
| 1046 |
-
decoded = self.latent_processor.decode(latents)
|
| 1047 |
-
decoded = (decoded / 2 + 0.5).clamp(0, 1)
|
| 1048 |
-
|
| 1049 |
-
# Post-process images
|
| 1050 |
-
if output_type == "pil":
|
| 1051 |
-
output_images = self.image_processor.postprocess(decoded, output_type="pil")
|
| 1052 |
-
elif output_type == "np":
|
| 1053 |
-
output_images = decoded.cpu().numpy()
|
| 1054 |
-
else:
|
| 1055 |
-
output_images = decoded
|
| 1056 |
-
|
| 1057 |
-
if not return_dict:
|
| 1058 |
-
return (output_images,)
|
| 1059 |
-
|
| 1060 |
-
return BaseOutput(images=output_images)
|
| 1061 |
-
|
| 1062 |
-
# -----------------------------------------------------------------------------
|
| 1063 |
-
# 6. Advanced Multi-Modal Window Attention Block (Audio + Video + Image)
|
| 1064 |
-
# -----------------------------------------------------------------------------
|
| 1065 |
-
|
| 1066 |
-
@dataclass
|
| 1067 |
-
class MultiModalInput:
|
| 1068 |
-
"""Container for multi-modal inputs"""
|
| 1069 |
-
image_embeds: Optional[torch.Tensor] = None # [B, L_img, D]
|
| 1070 |
-
video_embeds: Optional[torch.Tensor] = None # [B, T_video, L_vid, D]
|
| 1071 |
-
audio_embeds: Optional[torch.Tensor] = None # [B, T_audio, L_aud, D]
|
| 1072 |
-
attention_mask: Optional[torch.Tensor] = None # [B, total_length]
|
| 1073 |
-
|
| 1074 |
-
|
| 1075 |
-
class TemporalWindowPartition(nn.Module):
|
| 1076 |
-
"""
|
| 1077 |
-
Partition temporal sequences into windows for efficient attention.
|
| 1078 |
-
Supports both uniform and adaptive windowing strategies.
|
| 1079 |
-
"""
|
| 1080 |
-
def __init__(
|
| 1081 |
-
self,
|
| 1082 |
-
window_size: int = 8,
|
| 1083 |
-
shift_size: int = 0,
|
| 1084 |
-
use_adaptive_window: bool = False,
|
| 1085 |
-
):
|
| 1086 |
-
super().__init__()
|
| 1087 |
-
self.window_size = window_size
|
| 1088 |
-
self.shift_size = shift_size
|
| 1089 |
-
self.use_adaptive_window = use_adaptive_window
|
| 1090 |
-
|
| 1091 |
-
def partition(self, x: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, Any]]:
|
| 1092 |
-
"""
|
| 1093 |
-
Partition sequence into windows.
|
| 1094 |
-
|
| 1095 |
-
Args:
|
| 1096 |
-
x: Input tensor [B, T, L, D] or [B, L, D]
|
| 1097 |
-
|
| 1098 |
-
Returns:
|
| 1099 |
-
windowed: [B * num_windows, window_size, L, D]
|
| 1100 |
-
info: Dictionary with partition information
|
| 1101 |
-
"""
|
| 1102 |
-
if x.ndim == 3: # Static input (image)
|
| 1103 |
-
return x, {"is_temporal": False, "original_shape": x.shape}
|
| 1104 |
-
|
| 1105 |
-
B, T, L, D = x.shape
|
| 1106 |
-
|
| 1107 |
-
# Apply temporal shift for shifted window attention (Swin-Transformer style)
|
| 1108 |
-
if self.shift_size > 0:
|
| 1109 |
-
x = torch.roll(x, shifts=-self.shift_size, dims=1)
|
| 1110 |
-
|
| 1111 |
-
# Pad if necessary
|
| 1112 |
-
pad_t = (self.window_size - T % self.window_size) % self.window_size
|
| 1113 |
-
if pad_t > 0:
|
| 1114 |
-
x = F.pad(x, (0, 0, 0, 0, 0, pad_t))
|
| 1115 |
-
|
| 1116 |
-
T_padded = T + pad_t
|
| 1117 |
-
num_windows = T_padded // self.window_size
|
| 1118 |
-
|
| 1119 |
-
# Reshape into windows: [B, num_windows, window_size, L, D]
|
| 1120 |
-
x_windowed = x.view(B, num_windows, self.window_size, L, D)
|
| 1121 |
-
|
| 1122 |
-
# Merge batch and window dims: [B * num_windows, window_size, L, D]
|
| 1123 |
-
x_windowed = x_windowed.view(B * num_windows, self.window_size, L, D)
|
| 1124 |
-
|
| 1125 |
-
info = {
|
| 1126 |
-
"is_temporal": True,
|
| 1127 |
-
"original_shape": (B, T, L, D),
|
| 1128 |
-
"num_windows": num_windows,
|
| 1129 |
-
"pad_t": pad_t,
|
| 1130 |
-
}
|
| 1131 |
-
|
| 1132 |
-
return x_windowed, info
|
| 1133 |
-
|
| 1134 |
-
def merge(self, x_windowed: torch.Tensor, info: Dict[str, Any]) -> torch.Tensor:
|
| 1135 |
-
"""
|
| 1136 |
-
Merge windows back to original sequence.
|
| 1137 |
-
|
| 1138 |
-
Args:
|
| 1139 |
-
x_windowed: Windowed tensor [B * num_windows, window_size, L, D]
|
| 1140 |
-
info: Partition information from partition()
|
| 1141 |
-
|
| 1142 |
-
Returns:
|
| 1143 |
-
x: Merged tensor [B, T, L, D] or [B, L, D]
|
| 1144 |
-
"""
|
| 1145 |
-
if not info["is_temporal"]:
|
| 1146 |
-
return x_windowed
|
| 1147 |
-
|
| 1148 |
-
B, T, L, D = info["original_shape"]
|
| 1149 |
-
num_windows = info["num_windows"]
|
| 1150 |
-
pad_t = info["pad_t"]
|
| 1151 |
-
|
| 1152 |
-
# Reshape: [B * num_windows, window_size, L, D] -> [B, num_windows, window_size, L, D]
|
| 1153 |
-
x = x_windowed.view(B, num_windows, self.window_size, L, D)
|
| 1154 |
-
|
| 1155 |
-
# Merge windows: [B, T_padded, L, D]
|
| 1156 |
-
x = x.view(B, num_windows * self.window_size, L, D)
|
| 1157 |
-
|
| 1158 |
-
# Remove padding
|
| 1159 |
-
if pad_t > 0:
|
| 1160 |
-
x = x[:, :-pad_t, :, :]
|
| 1161 |
-
|
| 1162 |
-
# Reverse temporal shift
|
| 1163 |
-
if self.shift_size > 0:
|
| 1164 |
-
x = torch.roll(x, shifts=self.shift_size, dims=1)
|
| 1165 |
-
|
| 1166 |
-
return x
|
| 1167 |
-
|
| 1168 |
-
|
| 1169 |
-
class WindowCrossAttention(nn.Module):
|
| 1170 |
-
"""
|
| 1171 |
-
Window-based Cross Attention with support for temporal sequences.
|
| 1172 |
-
Performs attention within local windows for computational efficiency.
|
| 1173 |
-
"""
|
| 1174 |
-
def __init__(
|
| 1175 |
-
self,
|
| 1176 |
-
dim: int,
|
| 1177 |
-
num_heads: int = 8,
|
| 1178 |
-
window_size: int = 8,
|
| 1179 |
-
qkv_bias: bool = True,
|
| 1180 |
-
attn_drop: float = 0.0,
|
| 1181 |
-
proj_drop: float = 0.0,
|
| 1182 |
-
use_relative_position_bias: bool = True,
|
| 1183 |
-
):
|
| 1184 |
-
super().__init__()
|
| 1185 |
-
self.dim = dim
|
| 1186 |
-
self.num_heads = num_heads
|
| 1187 |
-
self.window_size = window_size
|
| 1188 |
-
self.head_dim = dim // num_heads
|
| 1189 |
-
self.scale = self.head_dim ** -0.5
|
| 1190 |
-
|
| 1191 |
-
# Query, Key, Value projections
|
| 1192 |
-
self.q_proj = nn.Linear(dim, dim, bias=qkv_bias)
|
| 1193 |
-
self.k_proj = nn.Linear(dim, dim, bias=qkv_bias)
|
| 1194 |
-
self.v_proj = nn.Linear(dim, dim, bias=qkv_bias)
|
| 1195 |
-
|
| 1196 |
-
# QK Normalization for stability
|
| 1197 |
-
self.q_norm = OmniRMSNorm(self.head_dim)
|
| 1198 |
-
self.k_norm = OmniRMSNorm(self.head_dim)
|
| 1199 |
-
|
| 1200 |
-
# Attention dropout
|
| 1201 |
-
self.attn_drop = nn.Dropout(attn_drop)
|
| 1202 |
-
|
| 1203 |
-
# Output projection
|
| 1204 |
-
self.proj = nn.Linear(dim, dim)
|
| 1205 |
-
self.proj_drop = nn.Dropout(proj_drop)
|
| 1206 |
-
|
| 1207 |
-
# Relative position bias (for temporal coherence)
|
| 1208 |
-
self.use_relative_position_bias = use_relative_position_bias
|
| 1209 |
-
if use_relative_position_bias:
|
| 1210 |
-
# Temporal relative position bias
|
| 1211 |
-
self.relative_position_bias_table = nn.Parameter(
|
| 1212 |
-
torch.zeros((2 * window_size - 1), num_heads)
|
| 1213 |
-
)
|
| 1214 |
-
nn.init.trunc_normal_(self.relative_position_bias_table, std=0.02)
|
| 1215 |
-
|
| 1216 |
-
# Get relative position index
|
| 1217 |
-
coords = torch.arange(window_size)
|
| 1218 |
-
relative_coords = coords[:, None] - coords[None, :] # [window_size, window_size]
|
| 1219 |
-
relative_coords += window_size - 1 # Shift to start from 0
|
| 1220 |
-
self.register_buffer("relative_position_index", relative_coords)
|
| 1221 |
-
|
| 1222 |
-
def get_relative_position_bias(self, window_size: int) -> torch.Tensor:
|
| 1223 |
-
"""Generate relative position bias for attention"""
|
| 1224 |
-
if not self.use_relative_position_bias:
|
| 1225 |
-
return None
|
| 1226 |
-
|
| 1227 |
-
relative_position_bias = self.relative_position_bias_table[
|
| 1228 |
-
self.relative_position_index[:window_size, :window_size].reshape(-1)
|
| 1229 |
-
].reshape(window_size, window_size, -1)
|
| 1230 |
-
|
| 1231 |
-
# Permute to [num_heads, window_size, window_size]
|
| 1232 |
-
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
| 1233 |
-
return relative_position_bias
|
| 1234 |
-
|
| 1235 |
-
def forward(
|
| 1236 |
-
self,
|
| 1237 |
-
query: torch.Tensor, # [B, T_q, L_q, D] or [B, L_q, D]
|
| 1238 |
-
key: torch.Tensor, # [B, T_k, L_k, D] or [B, L_k, D]
|
| 1239 |
-
value: torch.Tensor, # [B, T_v, L_v, D] or [B, L_v, D]
|
| 1240 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 1241 |
-
) -> torch.Tensor:
|
| 1242 |
-
"""
|
| 1243 |
-
Perform windowed cross attention.
|
| 1244 |
-
|
| 1245 |
-
Args:
|
| 1246 |
-
query: Query tensor
|
| 1247 |
-
key: Key tensor
|
| 1248 |
-
value: Value tensor
|
| 1249 |
-
attention_mask: Optional attention mask
|
| 1250 |
-
|
| 1251 |
-
Returns:
|
| 1252 |
-
Output tensor with same shape as query
|
| 1253 |
-
"""
|
| 1254 |
-
# Handle both temporal and non-temporal inputs
|
| 1255 |
-
is_temporal = query.ndim == 4
|
| 1256 |
-
|
| 1257 |
-
if is_temporal:
|
| 1258 |
-
B, T_q, L_q, D = query.shape
|
| 1259 |
-
_, T_k, L_k, _ = key.shape
|
| 1260 |
-
|
| 1261 |
-
# Flatten temporal and spatial dims for cross attention
|
| 1262 |
-
query_flat = query.reshape(B, T_q * L_q, D)
|
| 1263 |
-
key_flat = key.reshape(B, T_k * L_k, D)
|
| 1264 |
-
value_flat = value.reshape(B, T_k * L_k, D)
|
| 1265 |
-
else:
|
| 1266 |
-
B, L_q, D = query.shape
|
| 1267 |
-
_, L_k, _ = key.shape
|
| 1268 |
-
query_flat = query
|
| 1269 |
-
key_flat = key
|
| 1270 |
-
value_flat = value
|
| 1271 |
-
|
| 1272 |
-
# Project to Q, K, V
|
| 1273 |
-
q = self.q_proj(query_flat) # [B, N_q, D]
|
| 1274 |
-
k = self.k_proj(key_flat) # [B, N_k, D]
|
| 1275 |
-
v = self.v_proj(value_flat) # [B, N_v, D]
|
| 1276 |
-
|
| 1277 |
-
# Reshape for multi-head attention
|
| 1278 |
-
q = q.reshape(B, -1, self.num_heads, self.head_dim).transpose(1, 2) # [B, H, N_q, head_dim]
|
| 1279 |
-
k = k.reshape(B, -1, self.num_heads, self.head_dim).transpose(1, 2) # [B, H, N_k, head_dim]
|
| 1280 |
-
v = v.reshape(B, -1, self.num_heads, self.head_dim).transpose(1, 2) # [B, H, N_v, head_dim]
|
| 1281 |
-
|
| 1282 |
-
# Apply QK normalization
|
| 1283 |
-
q = self.q_norm(q)
|
| 1284 |
-
k = self.k_norm(k)
|
| 1285 |
-
|
| 1286 |
-
# Scaled dot-product attention
|
| 1287 |
-
attn = (q @ k.transpose(-2, -1)) * self.scale # [B, H, N_q, N_k]
|
| 1288 |
-
|
| 1289 |
-
# Add relative position bias if temporal
|
| 1290 |
-
if is_temporal and self.use_relative_position_bias:
|
| 1291 |
-
# Apply per-window bias
|
| 1292 |
-
rel_bias = self.get_relative_position_bias(min(T_q, self.window_size))
|
| 1293 |
-
if rel_bias is not None:
|
| 1294 |
-
# Broadcast bias across spatial dimensions
|
| 1295 |
-
attn = attn + rel_bias.unsqueeze(0).unsqueeze(2)
|
| 1296 |
-
|
| 1297 |
-
# Apply attention mask
|
| 1298 |
-
if attention_mask is not None:
|
| 1299 |
-
attn = attn.masked_fill(attention_mask.unsqueeze(1).unsqueeze(2) == 0, float('-inf'))
|
| 1300 |
-
|
| 1301 |
-
# Softmax and dropout
|
| 1302 |
-
attn = F.softmax(attn, dim=-1)
|
| 1303 |
-
attn = self.attn_drop(attn)
|
| 1304 |
-
|
| 1305 |
-
# Apply attention to values
|
| 1306 |
-
out = (attn @ v).transpose(1, 2).reshape(B, -1, D) # [B, N_q, D]
|
| 1307 |
-
|
| 1308 |
-
# Output projection
|
| 1309 |
-
out = self.proj(out)
|
| 1310 |
-
out = self.proj_drop(out)
|
| 1311 |
-
|
| 1312 |
-
# Reshape back to original shape
|
| 1313 |
-
if is_temporal:
|
| 1314 |
-
out = out.reshape(B, T_q, L_q, D)
|
| 1315 |
-
else:
|
| 1316 |
-
out = out.reshape(B, L_q, D)
|
| 1317 |
-
|
| 1318 |
-
return out
|
| 1319 |
-
|
| 1320 |
-
|
| 1321 |
-
class MultiModalFusionLayer(nn.Module):
|
| 1322 |
-
"""
|
| 1323 |
-
Fuses multiple modalities (audio, video, image) with learnable fusion weights.
|
| 1324 |
-
"""
|
| 1325 |
-
def __init__(
|
| 1326 |
-
self,
|
| 1327 |
-
dim: int,
|
| 1328 |
-
num_modalities: int = 3,
|
| 1329 |
-
fusion_type: str = "weighted", # "weighted", "gated", "adaptive"
|
| 1330 |
-
):
|
| 1331 |
-
super().__init__()
|
| 1332 |
-
self.dim = dim
|
| 1333 |
-
self.num_modalities = num_modalities
|
| 1334 |
-
self.fusion_type = fusion_type
|
| 1335 |
-
|
| 1336 |
-
if fusion_type == "weighted":
|
| 1337 |
-
# Learnable fusion weights
|
| 1338 |
-
self.fusion_weights = nn.Parameter(torch.ones(num_modalities) / num_modalities)
|
| 1339 |
-
|
| 1340 |
-
elif fusion_type == "gated":
|
| 1341 |
-
# Gated fusion with cross-modal interactions
|
| 1342 |
-
self.gate_proj = nn.Sequential(
|
| 1343 |
-
nn.Linear(dim * num_modalities, dim * 2),
|
| 1344 |
-
nn.GELU(),
|
| 1345 |
-
nn.Linear(dim * 2, num_modalities),
|
| 1346 |
-
nn.Softmax(dim=-1)
|
| 1347 |
-
)
|
| 1348 |
-
|
| 1349 |
-
elif fusion_type == "adaptive":
|
| 1350 |
-
# Adaptive fusion with per-token gating
|
| 1351 |
-
self.adaptive_gate = nn.Sequential(
|
| 1352 |
-
nn.Linear(dim, dim // 2),
|
| 1353 |
-
nn.GELU(),
|
| 1354 |
-
nn.Linear(dim // 2, num_modalities),
|
| 1355 |
-
nn.Sigmoid()
|
| 1356 |
-
)
|
| 1357 |
-
|
| 1358 |
-
def forward(self, modality_features: List[torch.Tensor]) -> torch.Tensor:
|
| 1359 |
-
"""
|
| 1360 |
-
Fuse multiple modality features.
|
| 1361 |
-
|
| 1362 |
-
Args:
|
| 1363 |
-
modality_features: List of [B, L, D] tensors for each modality
|
| 1364 |
-
|
| 1365 |
-
Returns:
|
| 1366 |
-
fused: Fused features [B, L, D]
|
| 1367 |
-
"""
|
| 1368 |
-
if self.fusion_type == "weighted":
|
| 1369 |
-
# Simple weighted sum
|
| 1370 |
-
weights = F.softmax(self.fusion_weights, dim=0)
|
| 1371 |
-
fused = sum(w * feat for w, feat in zip(weights, modality_features))
|
| 1372 |
-
|
| 1373 |
-
elif self.fusion_type == "gated":
|
| 1374 |
-
# Concatenate and compute gates
|
| 1375 |
-
concat_features = torch.cat(modality_features, dim=-1) # [B, L, D * num_modalities]
|
| 1376 |
-
gates = self.gate_proj(concat_features) # [B, L, num_modalities]
|
| 1377 |
-
|
| 1378 |
-
# Apply gates
|
| 1379 |
-
stacked = torch.stack(modality_features, dim=-1) # [B, L, D, num_modalities]
|
| 1380 |
-
fused = (stacked * gates.unsqueeze(2)).sum(dim=-1) # [B, L, D]
|
| 1381 |
-
|
| 1382 |
-
elif self.fusion_type == "adaptive":
|
| 1383 |
-
# Adaptive per-token fusion
|
| 1384 |
-
fused_list = []
|
| 1385 |
-
for feat in modality_features:
|
| 1386 |
-
gate = self.adaptive_gate(feat) # [B, L, num_modalities]
|
| 1387 |
-
fused_list.append(feat.unsqueeze(-1) * gate.unsqueeze(2))
|
| 1388 |
-
|
| 1389 |
-
fused = torch.cat(fused_list, dim=-1).sum(dim=-1) # [B, L, D]
|
| 1390 |
-
|
| 1391 |
-
return fused
|
| 1392 |
-
|
| 1393 |
-
|
| 1394 |
-
class FancyMultiModalWindowAttentionBlock(nn.Module):
|
| 1395 |
-
"""
|
| 1396 |
-
🎯 Fancy Multi-Modal Window Attention Block
|
| 1397 |
-
|
| 1398 |
-
A state-of-the-art block that processes audio, video, and image embeddings
|
| 1399 |
-
with temporal window-based cross-attention for efficient multi-modal fusion.
|
| 1400 |
-
|
| 1401 |
-
Features:
|
| 1402 |
-
- ✨ Temporal windowing for audio and video (frame-by-frame processing)
|
| 1403 |
-
- 🪟 Shifted window attention for better temporal coherence (Swin-style)
|
| 1404 |
-
- 🔄 Cross-modal attention between all modality pairs
|
| 1405 |
-
- 🎭 Adaptive multi-modal fusion with learnable gates
|
| 1406 |
-
- 🚀 Efficient computation with window partitioning
|
| 1407 |
-
- 💎 QK normalization for training stability
|
| 1408 |
-
|
| 1409 |
-
Architecture:
|
| 1410 |
-
1. Temporal Partitioning (audio/video frames → windows)
|
| 1411 |
-
2. Intra-Modal Self-Attention (within each modality)
|
| 1412 |
-
3. Inter-Modal Cross-Attention (audio ↔ video ↔ image)
|
| 1413 |
-
4. Multi-Modal Fusion (adaptive weighted combination)
|
| 1414 |
-
5. Feed-Forward Network (SwiGLU activation)
|
| 1415 |
-
6. Window Merging (reconstruct temporal sequences)
|
| 1416 |
-
"""
|
| 1417 |
-
|
| 1418 |
-
def __init__(
|
| 1419 |
-
self,
|
| 1420 |
-
dim: int = 1024,
|
| 1421 |
-
num_heads: int = 16,
|
| 1422 |
-
window_size: int = 8,
|
| 1423 |
-
shift_size: int = 4,
|
| 1424 |
-
mlp_ratio: float = 4.0,
|
| 1425 |
-
qkv_bias: bool = True,
|
| 1426 |
-
drop: float = 0.0,
|
| 1427 |
-
attn_drop: float = 0.0,
|
| 1428 |
-
drop_path: float = 0.1,
|
| 1429 |
-
use_relative_position_bias: bool = True,
|
| 1430 |
-
fusion_type: str = "adaptive", # "weighted", "gated", "adaptive"
|
| 1431 |
-
use_shifted_window: bool = True,
|
| 1432 |
-
):
|
| 1433 |
-
super().__init__()
|
| 1434 |
-
self.dim = dim
|
| 1435 |
-
self.num_heads = num_heads
|
| 1436 |
-
self.window_size = window_size
|
| 1437 |
-
self.shift_size = shift_size if use_shifted_window else 0
|
| 1438 |
-
self.mlp_ratio = mlp_ratio
|
| 1439 |
-
|
| 1440 |
-
# =============== Temporal Window Partitioning ===============
|
| 1441 |
-
self.window_partition = TemporalWindowPartition(
|
| 1442 |
-
window_size=window_size,
|
| 1443 |
-
shift_size=self.shift_size,
|
| 1444 |
-
)
|
| 1445 |
-
|
| 1446 |
-
# =============== Intra-Modal Self-Attention ===============
|
| 1447 |
-
self.norm_audio_self = OmniRMSNorm(dim)
|
| 1448 |
-
self.norm_video_self = OmniRMSNorm(dim)
|
| 1449 |
-
self.norm_image_self = OmniRMSNorm(dim)
|
| 1450 |
-
|
| 1451 |
-
self.audio_self_attn = WindowCrossAttention(
|
| 1452 |
-
dim=dim,
|
| 1453 |
-
num_heads=num_heads,
|
| 1454 |
-
window_size=window_size,
|
| 1455 |
-
qkv_bias=qkv_bias,
|
| 1456 |
-
attn_drop=attn_drop,
|
| 1457 |
-
proj_drop=drop,
|
| 1458 |
-
use_relative_position_bias=use_relative_position_bias,
|
| 1459 |
-
)
|
| 1460 |
-
|
| 1461 |
-
self.video_self_attn = WindowCrossAttention(
|
| 1462 |
-
dim=dim,
|
| 1463 |
-
num_heads=num_heads,
|
| 1464 |
-
window_size=window_size,
|
| 1465 |
-
qkv_bias=qkv_bias,
|
| 1466 |
-
attn_drop=attn_drop,
|
| 1467 |
-
proj_drop=drop,
|
| 1468 |
-
use_relative_position_bias=use_relative_position_bias,
|
| 1469 |
-
)
|
| 1470 |
-
|
| 1471 |
-
self.image_self_attn = WindowCrossAttention(
|
| 1472 |
-
dim=dim,
|
| 1473 |
-
num_heads=num_heads,
|
| 1474 |
-
window_size=window_size,
|
| 1475 |
-
qkv_bias=qkv_bias,
|
| 1476 |
-
attn_drop=attn_drop,
|
| 1477 |
-
proj_drop=drop,
|
| 1478 |
-
use_relative_position_bias=False, # No temporal bias for static images
|
| 1479 |
-
)
|
| 1480 |
-
|
| 1481 |
-
# =============== Inter-Modal Cross-Attention ===============
|
| 1482 |
-
# Audio → Video/Image
|
| 1483 |
-
self.norm_audio_cross = OmniRMSNorm(dim)
|
| 1484 |
-
self.audio_to_visual = WindowCrossAttention(
|
| 1485 |
-
dim=dim, num_heads=num_heads, window_size=window_size,
|
| 1486 |
-
qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
|
| 1487 |
-
)
|
| 1488 |
-
|
| 1489 |
-
# Video → Audio/Image
|
| 1490 |
-
self.norm_video_cross = OmniRMSNorm(dim)
|
| 1491 |
-
self.video_to_others = WindowCrossAttention(
|
| 1492 |
-
dim=dim, num_heads=num_heads, window_size=window_size,
|
| 1493 |
-
qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
|
| 1494 |
-
)
|
| 1495 |
-
|
| 1496 |
-
# Image → Audio/Video
|
| 1497 |
-
self.norm_image_cross = OmniRMSNorm(dim)
|
| 1498 |
-
self.image_to_temporal = WindowCrossAttention(
|
| 1499 |
-
dim=dim, num_heads=num_heads, window_size=window_size,
|
| 1500 |
-
qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
|
| 1501 |
-
)
|
| 1502 |
-
|
| 1503 |
-
# =============== Multi-Modal Fusion ===============
|
| 1504 |
-
self.multimodal_fusion = MultiModalFusionLayer(
|
| 1505 |
-
dim=dim,
|
| 1506 |
-
num_modalities=3,
|
| 1507 |
-
fusion_type=fusion_type,
|
| 1508 |
-
)
|
| 1509 |
-
|
| 1510 |
-
# =============== Feed-Forward Network ===============
|
| 1511 |
-
self.norm_ffn = OmniRMSNorm(dim)
|
| 1512 |
-
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 1513 |
-
self.ffn = nn.Sequential(
|
| 1514 |
-
nn.Linear(dim, mlp_hidden_dim, bias=False),
|
| 1515 |
-
nn.GELU(),
|
| 1516 |
-
nn.Dropout(drop),
|
| 1517 |
-
nn.Linear(mlp_hidden_dim, dim, bias=False),
|
| 1518 |
-
nn.Dropout(drop),
|
| 1519 |
-
)
|
| 1520 |
-
|
| 1521 |
-
# =============== Stochastic Depth (Drop Path) ===============
|
| 1522 |
-
self.drop_path = nn.Identity() if drop_path <= 0. else nn.Dropout(drop_path)
|
| 1523 |
-
|
| 1524 |
-
# =============== Output Projections ===============
|
| 1525 |
-
self.output_projection = nn.ModuleDict({
|
| 1526 |
-
'audio': nn.Linear(dim, dim),
|
| 1527 |
-
'video': nn.Linear(dim, dim),
|
| 1528 |
-
'image': nn.Linear(dim, dim),
|
| 1529 |
-
})
|
| 1530 |
-
|
| 1531 |
-
def forward(
|
| 1532 |
-
self,
|
| 1533 |
-
audio_embeds: Optional[torch.Tensor] = None, # [B, T_audio, L_audio, D]
|
| 1534 |
-
video_embeds: Optional[torch.Tensor] = None, # [B, T_video, L_video, D]
|
| 1535 |
-
image_embeds: Optional[torch.Tensor] = None, # [B, L_image, D]
|
| 1536 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 1537 |
-
return_intermediates: bool = False,
|
| 1538 |
-
) -> Dict[str, torch.Tensor]:
|
| 1539 |
-
"""
|
| 1540 |
-
Forward pass of the Fancy Multi-Modal Window Attention Block.
|
| 1541 |
-
|
| 1542 |
-
Args:
|
| 1543 |
-
audio_embeds: Audio embeddings [B, T_audio, L_audio, D]
|
| 1544 |
-
T_audio: number of audio frames
|
| 1545 |
-
L_audio: sequence length per frame
|
| 1546 |
-
video_embeds: Video embeddings [B, T_video, L_video, D]
|
| 1547 |
-
T_video: number of video frames
|
| 1548 |
-
L_video: sequence length per frame (e.g., patches)
|
| 1549 |
-
image_embeds: Image embeddings [B, L_image, D]
|
| 1550 |
-
L_image: sequence length (e.g., image patches)
|
| 1551 |
-
attention_mask: Optional attention mask
|
| 1552 |
-
return_intermediates: Whether to return intermediate features
|
| 1553 |
-
|
| 1554 |
-
Returns:
|
| 1555 |
-
outputs: Dictionary containing processed embeddings for each modality
|
| 1556 |
-
- 'audio': [B, T_audio, L_audio, D]
|
| 1557 |
-
- 'video': [B, T_video, L_video, D]
|
| 1558 |
-
- 'image': [B, L_image, D]
|
| 1559 |
-
- 'fused': [B, L_total, D] (optional)
|
| 1560 |
-
"""
|
| 1561 |
-
intermediates = {} if return_intermediates else None
|
| 1562 |
-
|
| 1563 |
-
# ========== Stage 1: Temporal Window Partitioning ==========
|
| 1564 |
-
partitioned_audio, audio_info = None, None
|
| 1565 |
-
partitioned_video, video_info = None, None
|
| 1566 |
-
|
| 1567 |
-
if audio_embeds is not None:
|
| 1568 |
-
partitioned_audio, audio_info = self.window_partition.partition(audio_embeds)
|
| 1569 |
-
if return_intermediates:
|
| 1570 |
-
intermediates['audio_windows'] = partitioned_audio
|
| 1571 |
-
|
| 1572 |
-
if video_embeds is not None:
|
| 1573 |
-
partitioned_video, video_info = self.window_partition.partition(video_embeds)
|
| 1574 |
-
if return_intermediates:
|
| 1575 |
-
intermediates['video_windows'] = partitioned_video
|
| 1576 |
-
|
| 1577 |
-
# ========== Stage 2: Intra-Modal Self-Attention ==========
|
| 1578 |
-
audio_self_out, video_self_out, image_self_out = None, None, None
|
| 1579 |
-
|
| 1580 |
-
if audio_embeds is not None:
|
| 1581 |
-
audio_normed = self.norm_audio_self(partitioned_audio)
|
| 1582 |
-
audio_self_out = self.audio_self_attn(audio_normed, audio_normed, audio_normed)
|
| 1583 |
-
audio_self_out = partitioned_audio + self.drop_path(audio_self_out)
|
| 1584 |
-
|
| 1585 |
-
if video_embeds is not None:
|
| 1586 |
-
video_normed = self.norm_video_self(partitioned_video)
|
| 1587 |
-
video_self_out = self.video_self_attn(video_normed, video_normed, video_normed)
|
| 1588 |
-
video_self_out = partitioned_video + self.drop_path(video_self_out)
|
| 1589 |
-
|
| 1590 |
-
if image_embeds is not None:
|
| 1591 |
-
image_normed = self.norm_image_self(image_embeds)
|
| 1592 |
-
image_self_out = self.image_self_attn(image_normed, image_normed, image_normed)
|
| 1593 |
-
image_self_out = image_embeds + self.drop_path(image_self_out)
|
| 1594 |
-
|
| 1595 |
-
# ========== Stage 3: Inter-Modal Cross-Attention ==========
|
| 1596 |
-
audio_cross_out, video_cross_out, image_cross_out = None, None, None
|
| 1597 |
-
|
| 1598 |
-
# Prepare context (merge windows temporarily for cross-attention)
|
| 1599 |
-
if audio_self_out is not None:
|
| 1600 |
-
audio_merged = self.window_partition.merge(audio_self_out, audio_info)
|
| 1601 |
-
if video_self_out is not None:
|
| 1602 |
-
video_merged = self.window_partition.merge(video_self_out, video_info)
|
| 1603 |
-
|
| 1604 |
-
# Audio attends to Video and Image
|
| 1605 |
-
if audio_embeds is not None:
|
| 1606 |
-
audio_q = self.norm_audio_cross(audio_merged)
|
| 1607 |
-
|
| 1608 |
-
# Create key-value context from other modalities
|
| 1609 |
-
kv_list = []
|
| 1610 |
-
if video_embeds is not None:
|
| 1611 |
-
kv_list.append(video_merged)
|
| 1612 |
-
if image_embeds is not None:
|
| 1613 |
-
# Expand image to match temporal dimension
|
| 1614 |
-
B, L_img, D = image_self_out.shape
|
| 1615 |
-
T_audio = audio_merged.shape[1]
|
| 1616 |
-
image_expanded = image_self_out.unsqueeze(1).expand(B, T_audio, L_img, D)
|
| 1617 |
-
kv_list.append(image_expanded)
|
| 1618 |
-
|
| 1619 |
-
if kv_list:
|
| 1620 |
-
# Concatenate along sequence dimension
|
| 1621 |
-
kv_context = torch.cat([kv.flatten(1, 2) for kv in kv_list], dim=1)
|
| 1622 |
-
kv_context = kv_context.reshape(B, -1, D)
|
| 1623 |
-
|
| 1624 |
-
audio_cross_out = self.audio_to_visual(
|
| 1625 |
-
audio_q.flatten(1, 2),
|
| 1626 |
-
kv_context,
|
| 1627 |
-
kv_context,
|
| 1628 |
-
attention_mask
|
| 1629 |
-
)
|
| 1630 |
-
audio_cross_out = audio_cross_out.reshape_as(audio_merged)
|
| 1631 |
-
audio_cross_out = audio_merged + self.drop_path(audio_cross_out)
|
| 1632 |
-
else:
|
| 1633 |
-
audio_cross_out = audio_merged
|
| 1634 |
-
|
| 1635 |
-
# Video attends to Audio and Image
|
| 1636 |
-
if video_embeds is not None:
|
| 1637 |
-
video_q = self.norm_video_cross(video_merged)
|
| 1638 |
-
|
| 1639 |
-
kv_list = []
|
| 1640 |
-
if audio_embeds is not None:
|
| 1641 |
-
kv_list.append(audio_merged if audio_cross_out is None else audio_cross_out)
|
| 1642 |
-
if image_embeds is not None:
|
| 1643 |
-
B, L_img, D = image_self_out.shape
|
| 1644 |
-
T_video = video_merged.shape[1]
|
| 1645 |
-
image_expanded = image_self_out.unsqueeze(1).expand(B, T_video, L_img, D)
|
| 1646 |
-
kv_list.append(image_expanded)
|
| 1647 |
-
|
| 1648 |
-
if kv_list:
|
| 1649 |
-
kv_context = torch.cat([kv.flatten(1, 2) for kv in kv_list], dim=1)
|
| 1650 |
-
kv_context = kv_context.reshape(B, -1, D)
|
| 1651 |
-
|
| 1652 |
-
video_cross_out = self.video_to_others(
|
| 1653 |
-
video_q.flatten(1, 2),
|
| 1654 |
-
kv_context,
|
| 1655 |
-
kv_context,
|
| 1656 |
-
attention_mask
|
| 1657 |
-
)
|
| 1658 |
-
video_cross_out = video_cross_out.reshape_as(video_merged)
|
| 1659 |
-
video_cross_out = video_merged + self.drop_path(video_cross_out)
|
| 1660 |
-
else:
|
| 1661 |
-
video_cross_out = video_merged
|
| 1662 |
-
|
| 1663 |
-
# Image attends to Audio and Video
|
| 1664 |
-
if image_embeds is not None:
|
| 1665 |
-
image_q = self.norm_image_cross(image_self_out)
|
| 1666 |
-
|
| 1667 |
-
kv_list = []
|
| 1668 |
-
if audio_embeds is not None:
|
| 1669 |
-
# Average pool audio over time for image
|
| 1670 |
-
audio_pooled = (audio_merged if audio_cross_out is None else audio_cross_out).mean(dim=1)
|
| 1671 |
-
kv_list.append(audio_pooled)
|
| 1672 |
-
if video_embeds is not None:
|
| 1673 |
-
# Average pool video over time for image
|
| 1674 |
-
video_pooled = (video_merged if video_cross_out is None else video_cross_out).mean(dim=1)
|
| 1675 |
-
kv_list.append(video_pooled)
|
| 1676 |
-
|
| 1677 |
-
if kv_list:
|
| 1678 |
-
kv_context = torch.cat(kv_list, dim=1)
|
| 1679 |
-
|
| 1680 |
-
image_cross_out = self.image_to_temporal(
|
| 1681 |
-
image_q,
|
| 1682 |
-
kv_context,
|
| 1683 |
-
kv_context,
|
| 1684 |
-
attention_mask
|
| 1685 |
-
)
|
| 1686 |
-
image_cross_out = image_self_out + self.drop_path(image_cross_out)
|
| 1687 |
-
else:
|
| 1688 |
-
image_cross_out = image_self_out
|
| 1689 |
-
|
| 1690 |
-
# ========== Stage 4: Multi-Modal Fusion ==========
|
| 1691 |
-
# Collect features from all modalities for fusion
|
| 1692 |
-
fusion_features = []
|
| 1693 |
-
if audio_cross_out is not None:
|
| 1694 |
-
audio_flat = audio_cross_out.flatten(1, 2) # [B, T*L, D]
|
| 1695 |
-
fusion_features.append(audio_flat)
|
| 1696 |
-
if video_cross_out is not None:
|
| 1697 |
-
video_flat = video_cross_out.flatten(1, 2) # [B, T*L, D]
|
| 1698 |
-
fusion_features.append(video_flat)
|
| 1699 |
-
if image_cross_out is not None:
|
| 1700 |
-
fusion_features.append(image_cross_out) # [B, L, D]
|
| 1701 |
-
|
| 1702 |
-
# Pad/align sequence lengths for fusion
|
| 1703 |
-
if len(fusion_features) > 1:
|
| 1704 |
-
max_len = max(f.shape[1] for f in fusion_features)
|
| 1705 |
-
aligned_features = []
|
| 1706 |
-
for feat in fusion_features:
|
| 1707 |
-
if feat.shape[1] < max_len:
|
| 1708 |
-
pad_len = max_len - feat.shape[1]
|
| 1709 |
-
feat = F.pad(feat, (0, 0, 0, pad_len))
|
| 1710 |
-
aligned_features.append(feat)
|
| 1711 |
-
|
| 1712 |
-
# Fuse modalities
|
| 1713 |
-
fused_features = self.multimodal_fusion(aligned_features)
|
| 1714 |
-
else:
|
| 1715 |
-
fused_features = fusion_features[0] if fusion_features else None
|
| 1716 |
-
|
| 1717 |
-
# ========== Stage 5: Feed-Forward Network ==========
|
| 1718 |
-
if fused_features is not None:
|
| 1719 |
-
fused_normed = self.norm_ffn(fused_features)
|
| 1720 |
-
fused_ffn = self.ffn(fused_normed)
|
| 1721 |
-
fused_features = fused_features + self.drop_path(fused_ffn)
|
| 1722 |
-
|
| 1723 |
-
# ========== Stage 6: Prepare Outputs ==========
|
| 1724 |
-
outputs = {}
|
| 1725 |
-
|
| 1726 |
-
# Project back to original shapes
|
| 1727 |
-
if audio_embeds is not None and audio_cross_out is not None:
|
| 1728 |
-
# Partition again for consistency
|
| 1729 |
-
audio_final, _ = self.window_partition.partition(audio_cross_out)
|
| 1730 |
-
audio_final = self.output_projection['audio'](audio_final)
|
| 1731 |
-
audio_final = self.window_partition.merge(audio_final, audio_info)
|
| 1732 |
-
outputs['audio'] = audio_final
|
| 1733 |
-
|
| 1734 |
-
if video_embeds is not None and video_cross_out is not None:
|
| 1735 |
-
video_final, _ = self.window_partition.partition(video_cross_out)
|
| 1736 |
-
video_final = self.output_projection['video'](video_final)
|
| 1737 |
-
video_final = self.window_partition.merge(video_final, video_info)
|
| 1738 |
-
outputs['video'] = video_final
|
| 1739 |
-
|
| 1740 |
-
if image_embeds is not None and image_cross_out is not None:
|
| 1741 |
-
image_final = self.output_projection['image'](image_cross_out)
|
| 1742 |
-
outputs['image'] = image_final
|
| 1743 |
-
|
| 1744 |
-
if fused_features is not None:
|
| 1745 |
-
outputs['fused'] = fused_features
|
| 1746 |
-
|
| 1747 |
-
if return_intermediates:
|
| 1748 |
-
outputs['intermediates'] = intermediates
|
| 1749 |
-
|
| 1750 |
-
return outputs
|
| 1751 |
-
|
| 1752 |
-
|
| 1753 |
-
# -----------------------------------------------------------------------------
|
| 1754 |
-
# 7. Optimization Utilities (FP8, Compilation, Mixed Precision)
|
| 1755 |
-
# -----------------------------------------------------------------------------
|
| 1756 |
-
|
| 1757 |
-
@dataclass
|
| 1758 |
-
class FP8Config:
|
| 1759 |
-
"""Configuration for FP8 quantization"""
|
| 1760 |
-
enabled: bool = False
|
| 1761 |
-
margin: int = 0
|
| 1762 |
-
fp8_format: str = "hybrid" # "e4m3", "e5m2", "hybrid"
|
| 1763 |
-
amax_history_len: int = 1024
|
| 1764 |
-
amax_compute_algo: str = "max"
|
| 1765 |
-
|
| 1766 |
-
|
| 1767 |
-
@dataclass
|
| 1768 |
-
class CompilationConfig:
|
| 1769 |
-
"""Configuration for torch.compile"""
|
| 1770 |
-
enabled: bool = False
|
| 1771 |
-
mode: str = "reduce-overhead" # "default", "reduce-overhead", "max-autotune"
|
| 1772 |
-
fullgraph: bool = False
|
| 1773 |
-
dynamic: bool = True
|
| 1774 |
-
backend: str = "inductor"
|
| 1775 |
-
|
| 1776 |
-
|
| 1777 |
-
@dataclass
|
| 1778 |
-
class MixedPrecisionConfig:
|
| 1779 |
-
"""Configuration for mixed precision training/inference"""
|
| 1780 |
-
enabled: bool = True
|
| 1781 |
-
dtype: str = "bfloat16" # "float16", "bfloat16"
|
| 1782 |
-
use_amp: bool = True
|
| 1783 |
-
|
| 1784 |
-
|
| 1785 |
-
class ModelOptimizer:
|
| 1786 |
-
"""
|
| 1787 |
-
Unified model optimizer supporting FP8 quantization, torch.compile,
|
| 1788 |
-
and mixed precision inference.
|
| 1789 |
-
"""
|
| 1790 |
-
def __init__(
|
| 1791 |
-
self,
|
| 1792 |
-
fp8_config: Optional[FP8Config] = None,
|
| 1793 |
-
compilation_config: Optional[CompilationConfig] = None,
|
| 1794 |
-
mixed_precision_config: Optional[MixedPrecisionConfig] = None,
|
| 1795 |
-
):
|
| 1796 |
-
self.fp8_config = fp8_config or FP8Config()
|
| 1797 |
-
self.compilation_config = compilation_config or CompilationConfig()
|
| 1798 |
-
self.mixed_precision_config = mixed_precision_config or MixedPrecisionConfig()
|
| 1799 |
-
|
| 1800 |
-
# Setup mixed precision
|
| 1801 |
-
self._setup_mixed_precision()
|
| 1802 |
-
|
| 1803 |
-
def _setup_mixed_precision(self):
|
| 1804 |
-
"""Setup mixed precision context"""
|
| 1805 |
-
if self.mixed_precision_config.enabled:
|
| 1806 |
-
dtype_map = {
|
| 1807 |
-
"float16": torch.float16,
|
| 1808 |
-
"bfloat16": torch.bfloat16,
|
| 1809 |
-
}
|
| 1810 |
-
self.dtype = dtype_map.get(self.mixed_precision_config.dtype, torch.bfloat16)
|
| 1811 |
-
else:
|
| 1812 |
-
self.dtype = torch.float32
|
| 1813 |
-
|
| 1814 |
-
@contextmanager
|
| 1815 |
-
def autocast_context(self):
|
| 1816 |
-
"""Context manager for automatic mixed precision"""
|
| 1817 |
-
if self.mixed_precision_config.enabled and self.mixed_precision_config.use_amp:
|
| 1818 |
-
with torch.autocast(device_type='cuda', dtype=self.dtype):
|
| 1819 |
-
yield
|
| 1820 |
-
else:
|
| 1821 |
-
yield
|
| 1822 |
-
|
| 1823 |
-
def _compile_model(self, model: nn.Module) -> nn.Module:
|
| 1824 |
-
"""Compile model using torch.compile"""
|
| 1825 |
-
if not self.compilation_config.enabled or not HAS_TORCH_COMPILE:
|
| 1826 |
-
return model
|
| 1827 |
-
|
| 1828 |
-
return torch.compile(
|
| 1829 |
-
model,
|
| 1830 |
-
mode=self.compilation_config.mode,
|
| 1831 |
-
fullgraph=self.compilation_config.fullgraph,
|
| 1832 |
-
dynamic=self.compilation_config.dynamic,
|
| 1833 |
-
backend=self.compilation_config.backend,
|
| 1834 |
-
)
|
| 1835 |
-
|
| 1836 |
-
def _quantize_model_fp8(self, model: nn.Module) -> nn.Module:
|
| 1837 |
-
"""Apply FP8 quantization using Transformer Engine"""
|
| 1838 |
-
if not self.fp8_config.enabled or not HAS_TRANSFORMER_ENGINE:
|
| 1839 |
-
return model
|
| 1840 |
-
|
| 1841 |
-
# Convert compatible layers to FP8
|
| 1842 |
-
for name, module in model.named_modules():
|
| 1843 |
-
if isinstance(module, nn.Linear):
|
| 1844 |
-
# Replace with TE FP8 Linear
|
| 1845 |
-
fp8_linear = te.Linear(
|
| 1846 |
-
module.in_features,
|
| 1847 |
-
module.out_features,
|
| 1848 |
-
bias=module.bias is not None,
|
| 1849 |
-
)
|
| 1850 |
-
# Copy weights
|
| 1851 |
-
fp8_linear.weight.data.copy_(module.weight.data)
|
| 1852 |
-
if module.bias is not None:
|
| 1853 |
-
fp8_linear.bias.data.copy_(module.bias.data)
|
| 1854 |
-
|
| 1855 |
-
# Replace module
|
| 1856 |
-
parent_name = '.'.join(name.split('.')[:-1])
|
| 1857 |
-
child_name = name.split('.')[-1]
|
| 1858 |
-
if parent_name:
|
| 1859 |
-
parent = dict(model.named_modules())[parent_name]
|
| 1860 |
-
setattr(parent, child_name, fp8_linear)
|
| 1861 |
-
|
| 1862 |
-
return model
|
| 1863 |
-
|
| 1864 |
-
def optimize_model(
|
| 1865 |
-
self,
|
| 1866 |
-
model: nn.Module,
|
| 1867 |
-
apply_compilation: bool = True,
|
| 1868 |
-
apply_quantization: bool = True,
|
| 1869 |
-
apply_mixed_precision: bool = True,
|
| 1870 |
-
) -> nn.Module:
|
| 1871 |
-
"""
|
| 1872 |
-
Apply all optimizations to model.
|
| 1873 |
-
|
| 1874 |
-
Args:
|
| 1875 |
-
model: Model to optimize
|
| 1876 |
-
apply_compilation: Whether to compile with torch.compile
|
| 1877 |
-
apply_quantization: Whether to apply FP8 quantization
|
| 1878 |
-
apply_mixed_precision: Whether to convert to mixed precision dtype
|
| 1879 |
-
|
| 1880 |
-
Returns:
|
| 1881 |
-
Optimized model
|
| 1882 |
-
"""
|
| 1883 |
-
# Apply FP8 quantization first
|
| 1884 |
-
if apply_quantization and self.fp8_config.enabled:
|
| 1885 |
-
model = self._quantize_model_fp8(model)
|
| 1886 |
-
|
| 1887 |
-
# Convert to mixed precision dtype
|
| 1888 |
-
if apply_mixed_precision and self.mixed_precision_config.enabled:
|
| 1889 |
-
model = model.to(dtype=self.dtype)
|
| 1890 |
-
|
| 1891 |
-
# Compile model last
|
| 1892 |
-
if apply_compilation and self.compilation_config.enabled:
|
| 1893 |
-
model = self._compile_model(model)
|
| 1894 |
-
|
| 1895 |
-
return model
|
| 1896 |
-
|
| 1897 |
-
|
| 1898 |
-
@contextmanager
|
| 1899 |
-
def optimized_inference_mode(
|
| 1900 |
-
enable_cudnn_benchmark: bool = True,
|
| 1901 |
-
enable_tf32: bool = True,
|
| 1902 |
-
enable_flash_sdp: bool = True,
|
| 1903 |
-
):
|
| 1904 |
-
"""
|
| 1905 |
-
Context manager for optimized inference with various PyTorch optimizations.
|
| 1906 |
-
|
| 1907 |
-
Args:
|
| 1908 |
-
enable_cudnn_benchmark: Enable cuDNN autotuner
|
| 1909 |
-
enable_tf32: Enable TF32 for faster matmul on Ampere+ GPUs
|
| 1910 |
-
enable_flash_sdp: Enable Flash Attention in scaled_dot_product_attention
|
| 1911 |
-
"""
|
| 1912 |
-
# Save original states
|
| 1913 |
-
orig_benchmark = torch.backends.cudnn.benchmark
|
| 1914 |
-
orig_tf32_matmul = torch.backends.cuda.matmul.allow_tf32
|
| 1915 |
-
orig_tf32_cudnn = torch.backends.cudnn.allow_tf32
|
| 1916 |
-
orig_sdp_flash = torch.backends.cuda.flash_sdp_enabled()
|
| 1917 |
-
|
| 1918 |
-
try:
|
| 1919 |
-
# Enable optimizations
|
| 1920 |
-
torch.backends.cudnn.benchmark = enable_cudnn_benchmark
|
| 1921 |
-
torch.backends.cuda.matmul.allow_tf32 = enable_tf32
|
| 1922 |
-
torch.backends.cudnn.allow_tf32 = enable_tf32
|
| 1923 |
-
|
| 1924 |
-
if enable_flash_sdp:
|
| 1925 |
-
torch.backends.cuda.enable_flash_sdp(True)
|
| 1926 |
-
|
| 1927 |
-
yield
|
| 1928 |
-
|
| 1929 |
-
finally:
|
| 1930 |
-
# Restore original states
|
| 1931 |
-
torch.backends.cudnn.benchmark = orig_benchmark
|
| 1932 |
-
torch.backends.cuda.matmul.allow_tf32 = orig_tf32_matmul
|
| 1933 |
-
torch.backends.cudnn.allow_tf32 = orig_tf32_cudnn
|
| 1934 |
-
torch.backends.cuda.enable_flash_sdp(orig_sdp_flash)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
push.sh
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# 设置仓库级别用户名
|
| 3 |
+
git config user.name "selfitcamera"
|
| 4 |
+
git config user.email "ethan.blake@heybeauty.ai"
|
| 5 |
+
|
| 6 |
+
# 验证
|
| 7 |
+
git config user.name
|
| 8 |
+
git config user.email
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
git add .
|
| 12 |
+
git commit -m "init"
|
| 13 |
+
git push
|
util.py
ADDED
|
@@ -0,0 +1,729 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
import cv2
|
| 5 |
+
import json
|
| 6 |
+
import random
|
| 7 |
+
import time
|
| 8 |
+
import datetime
|
| 9 |
+
import requests
|
| 10 |
+
import func_timeout
|
| 11 |
+
import numpy as np
|
| 12 |
+
import gradio as gr
|
| 13 |
+
import boto3
|
| 14 |
+
import tempfile
|
| 15 |
+
import io
|
| 16 |
+
import uuid
|
| 17 |
+
from botocore.client import Config
|
| 18 |
+
from PIL import Image
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# TOKEN = os.environ['TOKEN']
|
| 22 |
+
# APIKEY = os.environ['APIKEY']
|
| 23 |
+
# UKAPIURL = os.environ['UKAPIURL']
|
| 24 |
+
|
| 25 |
+
OneKey = os.environ['OneKey'].strip()
|
| 26 |
+
OneKey = OneKey.split("#")
|
| 27 |
+
TOKEN = OneKey[0]
|
| 28 |
+
APIKEY = OneKey[1]
|
| 29 |
+
UKAPIURL = OneKey[2]
|
| 30 |
+
LLMKEY = OneKey[3]
|
| 31 |
+
R2_ACCESS_KEY = OneKey[4]
|
| 32 |
+
R2_SECRET_KEY = OneKey[5]
|
| 33 |
+
R2_ENDPOINT = OneKey[6]
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# tmpFolder is no longer needed since we upload directly from memory
|
| 37 |
+
# tmpFolder = "tmp"
|
| 38 |
+
# os.makedirs(tmpFolder, exist_ok=True)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# Legacy function - no longer used since we upload directly from memory
|
| 42 |
+
# def upload_user_img(clientIp, timeId, img):
|
| 43 |
+
# fileName = clientIp.replace(".", "")+str(timeId)+".jpg"
|
| 44 |
+
# local_path = os.path.join(tmpFolder, fileName)
|
| 45 |
+
# img = cv2.imread(img)
|
| 46 |
+
# cv2.imwrite(os.path.join(tmpFolder, fileName), img)
|
| 47 |
+
#
|
| 48 |
+
# json_data = {
|
| 49 |
+
# "token": TOKEN,
|
| 50 |
+
# "input1": fileName,
|
| 51 |
+
# "input2": "",
|
| 52 |
+
# "protocol": "",
|
| 53 |
+
# "cloud": "ali"
|
| 54 |
+
# }
|
| 55 |
+
#
|
| 56 |
+
# session = requests.session()
|
| 57 |
+
# ret = requests.post(
|
| 58 |
+
# f"{UKAPIURL}/upload",
|
| 59 |
+
# headers={'Content-Type': 'application/json'},
|
| 60 |
+
# json=json_data
|
| 61 |
+
# )
|
| 62 |
+
#
|
| 63 |
+
# res = ""
|
| 64 |
+
# if ret.status_code==200:
|
| 65 |
+
# if 'upload1' in ret.json():
|
| 66 |
+
# upload_url = ret.json()['upload1']
|
| 67 |
+
# headers = {'Content-Type': 'image/jpeg'}
|
| 68 |
+
# response = session.put(upload_url, data=open(local_path, 'rb').read(), headers=headers)
|
| 69 |
+
# # print(response.status_code)
|
| 70 |
+
# if response.status_code == 200:
|
| 71 |
+
# res = upload_url
|
| 72 |
+
# if os.path.exists(local_path):
|
| 73 |
+
# os.remove(local_path)
|
| 74 |
+
# return res
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
class R2Api:
|
| 78 |
+
|
| 79 |
+
def __init__(self, session=None):
|
| 80 |
+
super().__init__()
|
| 81 |
+
self.R2_BUCKET = "omni-creator"
|
| 82 |
+
self.domain = "https://www.omnicreator.net/"
|
| 83 |
+
self.R2_ACCESS_KEY = R2_ACCESS_KEY
|
| 84 |
+
self.R2_SECRET_KEY = R2_SECRET_KEY
|
| 85 |
+
self.R2_ENDPOINT = R2_ENDPOINT
|
| 86 |
+
|
| 87 |
+
self.client = boto3.client(
|
| 88 |
+
"s3",
|
| 89 |
+
endpoint_url=self.R2_ENDPOINT,
|
| 90 |
+
aws_access_key_id=self.R2_ACCESS_KEY,
|
| 91 |
+
aws_secret_access_key=self.R2_SECRET_KEY,
|
| 92 |
+
config=Config(signature_version="s3v4")
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
self.session = requests.Session() if session is None else session
|
| 96 |
+
|
| 97 |
+
def upload_from_memory(self, image_data, filename, content_type='image/jpeg'):
|
| 98 |
+
"""
|
| 99 |
+
Upload image data directly from memory to R2
|
| 100 |
+
|
| 101 |
+
Args:
|
| 102 |
+
image_data (bytes): Image data in bytes
|
| 103 |
+
filename (str): Filename for the uploaded file
|
| 104 |
+
content_type (str): MIME type of the image
|
| 105 |
+
|
| 106 |
+
Returns:
|
| 107 |
+
str: URL of the uploaded file
|
| 108 |
+
"""
|
| 109 |
+
t1 = time.time()
|
| 110 |
+
headers = {"Content-Type": content_type}
|
| 111 |
+
|
| 112 |
+
cloud_path = f"ImageEdit/Uploads/{str(datetime.date.today())}/{filename}"
|
| 113 |
+
url = self.client.generate_presigned_url(
|
| 114 |
+
"put_object",
|
| 115 |
+
Params={"Bucket": self.R2_BUCKET, "Key": cloud_path, "ContentType": content_type},
|
| 116 |
+
ExpiresIn=604800
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
retry_count = 0
|
| 120 |
+
while retry_count < 3:
|
| 121 |
+
try:
|
| 122 |
+
response = self.session.put(url, data=image_data, headers=headers, timeout=15)
|
| 123 |
+
if response.status_code == 200:
|
| 124 |
+
break
|
| 125 |
+
else:
|
| 126 |
+
print(f"⚠️ Upload failed with status code: {response.status_code}")
|
| 127 |
+
retry_count += 1
|
| 128 |
+
except (requests.exceptions.Timeout, requests.exceptions.RequestException) as e:
|
| 129 |
+
print(f"⚠️ Upload retry {retry_count + 1}/3 failed: {e}")
|
| 130 |
+
retry_count += 1
|
| 131 |
+
if retry_count == 3:
|
| 132 |
+
raise Exception(f'Failed to upload file to R2 after 3 retries! Last error: {str(e)}')
|
| 133 |
+
time.sleep(1) # 等待1秒后重试
|
| 134 |
+
continue
|
| 135 |
+
print("upload_from_memory time is ====>", time.time() - t1)
|
| 136 |
+
return f"{self.domain}{cloud_path}"
|
| 137 |
+
|
| 138 |
+
def upload_user_img_r2(clientIp, timeId, pil_image):
|
| 139 |
+
"""
|
| 140 |
+
Upload PIL Image directly to R2 without saving to local file
|
| 141 |
+
|
| 142 |
+
Args:
|
| 143 |
+
clientIp (str): Client IP address
|
| 144 |
+
timeId (int): Timestamp
|
| 145 |
+
pil_image (PIL.Image): PIL Image object
|
| 146 |
+
|
| 147 |
+
Returns:
|
| 148 |
+
str: Uploaded URL
|
| 149 |
+
"""
|
| 150 |
+
# Generate unique filename using UUID to prevent file conflicts in concurrent environment
|
| 151 |
+
unique_id = str(uuid.uuid4())
|
| 152 |
+
fileName = f"user_img_{unique_id}_{timeId}.jpg"
|
| 153 |
+
|
| 154 |
+
# Convert PIL Image to bytes
|
| 155 |
+
img_buffer = io.BytesIO()
|
| 156 |
+
if pil_image.mode != 'RGB':
|
| 157 |
+
pil_image = pil_image.convert('RGB')
|
| 158 |
+
pil_image.save(img_buffer, format='JPEG', quality=95)
|
| 159 |
+
img_data = img_buffer.getvalue()
|
| 160 |
+
|
| 161 |
+
# Upload directly from memory
|
| 162 |
+
res = R2Api().upload_from_memory(img_data, fileName, 'image/jpeg')
|
| 163 |
+
return res
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def create_mask_from_layers(base_image, layers):
|
| 168 |
+
"""
|
| 169 |
+
Create mask image from ImageEditor layers
|
| 170 |
+
|
| 171 |
+
Args:
|
| 172 |
+
base_image (PIL.Image): Original image
|
| 173 |
+
layers (list): ImageEditor layer data
|
| 174 |
+
|
| 175 |
+
Returns:
|
| 176 |
+
PIL.Image: Black and white mask image
|
| 177 |
+
"""
|
| 178 |
+
from PIL import Image, ImageDraw
|
| 179 |
+
import numpy as np
|
| 180 |
+
|
| 181 |
+
# Create blank mask with same size as original image
|
| 182 |
+
mask = Image.new('L', base_image.size, 0) # 'L' mode is grayscale, 0 is black
|
| 183 |
+
|
| 184 |
+
if not layers:
|
| 185 |
+
return mask
|
| 186 |
+
|
| 187 |
+
# Iterate through all layers, set drawn areas to white
|
| 188 |
+
for layer in layers:
|
| 189 |
+
if layer is not None:
|
| 190 |
+
# Convert layer to numpy array
|
| 191 |
+
layer_array = np.array(layer)
|
| 192 |
+
|
| 193 |
+
# Check layer format
|
| 194 |
+
if len(layer_array.shape) == 3: # RGB/RGBA format
|
| 195 |
+
# If RGBA, check alpha channel
|
| 196 |
+
if layer_array.shape[2] == 4:
|
| 197 |
+
# Use alpha channel as mask
|
| 198 |
+
alpha_channel = layer_array[:, :, 3]
|
| 199 |
+
# Set non-transparent areas (alpha > 0) to white
|
| 200 |
+
mask_array = np.where(alpha_channel > 0, 255, 0).astype(np.uint8)
|
| 201 |
+
else:
|
| 202 |
+
# RGB format, check if not pure black (0,0,0)
|
| 203 |
+
# Assume drawn areas are non-black
|
| 204 |
+
non_black = np.any(layer_array > 0, axis=2)
|
| 205 |
+
mask_array = np.where(non_black, 255, 0).astype(np.uint8)
|
| 206 |
+
elif len(layer_array.shape) == 2: # Grayscale
|
| 207 |
+
# Use grayscale values directly, set non-zero areas to white
|
| 208 |
+
mask_array = np.where(layer_array > 0, 255, 0).astype(np.uint8)
|
| 209 |
+
else:
|
| 210 |
+
continue
|
| 211 |
+
|
| 212 |
+
# Convert mask_array to PIL image and merge into total mask
|
| 213 |
+
layer_mask = Image.fromarray(mask_array, mode='L')
|
| 214 |
+
# Resize to match original image
|
| 215 |
+
if layer_mask.size != base_image.size:
|
| 216 |
+
layer_mask = layer_mask.resize(base_image.size, Image.LANCZOS)
|
| 217 |
+
|
| 218 |
+
# Merge masks (use maximum value to ensure all drawn areas are included)
|
| 219 |
+
mask_array_current = np.array(mask)
|
| 220 |
+
layer_mask_array = np.array(layer_mask)
|
| 221 |
+
combined_mask_array = np.maximum(mask_array_current, layer_mask_array)
|
| 222 |
+
mask = Image.fromarray(combined_mask_array, mode='L')
|
| 223 |
+
|
| 224 |
+
return mask
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def upload_mask_image_r2(client_ip, time_id, mask_image):
|
| 228 |
+
"""
|
| 229 |
+
Upload mask image to R2 directly from memory
|
| 230 |
+
|
| 231 |
+
Args:
|
| 232 |
+
client_ip (str): Client IP
|
| 233 |
+
time_id (int): Timestamp
|
| 234 |
+
mask_image (PIL.Image): Mask image
|
| 235 |
+
|
| 236 |
+
Returns:
|
| 237 |
+
str: Uploaded URL
|
| 238 |
+
"""
|
| 239 |
+
# Generate unique filename using UUID to prevent file conflicts in concurrent environment
|
| 240 |
+
unique_id = str(uuid.uuid4())
|
| 241 |
+
file_name = f"mask_img_{unique_id}_{time_id}.png"
|
| 242 |
+
|
| 243 |
+
try:
|
| 244 |
+
# Convert mask image to bytes
|
| 245 |
+
img_buffer = io.BytesIO()
|
| 246 |
+
mask_image.save(img_buffer, format='PNG')
|
| 247 |
+
img_data = img_buffer.getvalue()
|
| 248 |
+
|
| 249 |
+
# Upload directly from memory
|
| 250 |
+
res = R2Api().upload_from_memory(img_data, file_name, 'image/png')
|
| 251 |
+
|
| 252 |
+
return res
|
| 253 |
+
except Exception as e:
|
| 254 |
+
print(f"Failed to upload mask image: {e}")
|
| 255 |
+
return None
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def submit_image_edit_task(user_image_url, prompt, task_type="80", mask_image_url="", reference_image_url=""):
|
| 260 |
+
"""
|
| 261 |
+
Submit image editing task with improved error handling using API v2
|
| 262 |
+
"""
|
| 263 |
+
headers = {
|
| 264 |
+
'Content-Type': 'application/json',
|
| 265 |
+
'Authorization': f'Bearer {APIKEY}'
|
| 266 |
+
}
|
| 267 |
+
|
| 268 |
+
data = {
|
| 269 |
+
"user_image": user_image_url,
|
| 270 |
+
"user_mask": mask_image_url,
|
| 271 |
+
"type": task_type,
|
| 272 |
+
"text": prompt,
|
| 273 |
+
"user_uuid": APIKEY,
|
| 274 |
+
"priority": 0,
|
| 275 |
+
"secret_key": "219ngu"
|
| 276 |
+
}
|
| 277 |
+
|
| 278 |
+
if reference_image_url:
|
| 279 |
+
data["user_image2"] = reference_image_url
|
| 280 |
+
|
| 281 |
+
retry_count = 0
|
| 282 |
+
max_retries = 3
|
| 283 |
+
|
| 284 |
+
while retry_count < max_retries:
|
| 285 |
+
try:
|
| 286 |
+
response = requests.post(
|
| 287 |
+
f'{UKAPIURL}/public_image_edit_v2',
|
| 288 |
+
headers=headers,
|
| 289 |
+
json=data,
|
| 290 |
+
timeout=30 # 增加超时时间
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
if response.status_code == 200:
|
| 294 |
+
result = response.json()
|
| 295 |
+
if result.get('code') == 0:
|
| 296 |
+
return result['data']['task_id'], None
|
| 297 |
+
else:
|
| 298 |
+
return None, f"API Error: {result.get('message', 'Unknown error')}"
|
| 299 |
+
elif response.status_code in [502, 503, 504]: # 服务器错误,可以重试
|
| 300 |
+
retry_count += 1
|
| 301 |
+
if retry_count < max_retries:
|
| 302 |
+
print(f"⚠️ Server error {response.status_code}, retrying {retry_count}/{max_retries}")
|
| 303 |
+
time.sleep(2) # 等待2秒后重试
|
| 304 |
+
continue
|
| 305 |
+
else:
|
| 306 |
+
return None, f"HTTP Error after {max_retries} retries: {response.status_code}"
|
| 307 |
+
else:
|
| 308 |
+
return None, f"HTTP Error: {response.status_code}"
|
| 309 |
+
|
| 310 |
+
except (requests.exceptions.Timeout, requests.exceptions.ConnectionError) as e:
|
| 311 |
+
retry_count += 1
|
| 312 |
+
if retry_count < max_retries:
|
| 313 |
+
print(f"⚠️ Network error, retrying {retry_count}/{max_retries}: {e}")
|
| 314 |
+
time.sleep(2)
|
| 315 |
+
continue
|
| 316 |
+
else:
|
| 317 |
+
return None, f"Network error after {max_retries} retries: {str(e)}"
|
| 318 |
+
except Exception as e:
|
| 319 |
+
return None, f"Request Exception: {str(e)}"
|
| 320 |
+
|
| 321 |
+
return None, f"Failed after {max_retries} retries"
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def check_task_status(task_id):
|
| 325 |
+
"""
|
| 326 |
+
Query task status with improved error handling using API v2
|
| 327 |
+
"""
|
| 328 |
+
headers = {
|
| 329 |
+
'Content-Type': 'application/json',
|
| 330 |
+
'Authorization': f'Bearer {APIKEY}'
|
| 331 |
+
}
|
| 332 |
+
|
| 333 |
+
data = {
|
| 334 |
+
"task_id": task_id
|
| 335 |
+
}
|
| 336 |
+
|
| 337 |
+
retry_count = 0
|
| 338 |
+
max_retries = 2 # 状态查询重试次数少一些
|
| 339 |
+
|
| 340 |
+
while retry_count < max_retries:
|
| 341 |
+
try:
|
| 342 |
+
response = requests.post(
|
| 343 |
+
f'{UKAPIURL}/status_image_edit_v2',
|
| 344 |
+
headers=headers,
|
| 345 |
+
json=data,
|
| 346 |
+
timeout=15 # 状态查询超时时间短一些
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
if response.status_code == 200:
|
| 350 |
+
result = response.json()
|
| 351 |
+
if result.get('code') == 0:
|
| 352 |
+
task_data = result['data']
|
| 353 |
+
status = task_data['status']
|
| 354 |
+
image_url = task_data.get('image_url')
|
| 355 |
+
|
| 356 |
+
# Extract and log queue information for better user feedback
|
| 357 |
+
queue_info = task_data.get('queue_info', {})
|
| 358 |
+
if queue_info:
|
| 359 |
+
tasks_ahead = queue_info.get('tasks_ahead', 0)
|
| 360 |
+
current_priority = queue_info.get('current_priority', 0)
|
| 361 |
+
description = queue_info.get('description', '')
|
| 362 |
+
print(f"📊 Queue Status - Tasks ahead: {tasks_ahead}, Priority: {current_priority}, Status: {status}")
|
| 363 |
+
|
| 364 |
+
return status, image_url, task_data
|
| 365 |
+
else:
|
| 366 |
+
return 'error', None, result.get('message', 'Unknown error')
|
| 367 |
+
elif response.status_code in [502, 503, 504]: # 服务器错误,可以重试
|
| 368 |
+
retry_count += 1
|
| 369 |
+
if retry_count < max_retries:
|
| 370 |
+
print(f"⚠️ Status check server error {response.status_code}, retrying {retry_count}/{max_retries}")
|
| 371 |
+
time.sleep(1) # 状态查询重试间隔短一些
|
| 372 |
+
continue
|
| 373 |
+
else:
|
| 374 |
+
return 'error', None, f"HTTP Error after {max_retries} retries: {response.status_code}"
|
| 375 |
+
else:
|
| 376 |
+
return 'error', None, f"HTTP Error: {response.status_code}"
|
| 377 |
+
|
| 378 |
+
except (requests.exceptions.Timeout, requests.exceptions.ConnectionError) as e:
|
| 379 |
+
retry_count += 1
|
| 380 |
+
if retry_count < max_retries:
|
| 381 |
+
print(f"⚠️ Status check network error, retrying {retry_count}/{max_retries}: {e}")
|
| 382 |
+
time.sleep(1)
|
| 383 |
+
continue
|
| 384 |
+
else:
|
| 385 |
+
return 'error', None, f"Network error after {max_retries} retries: {str(e)}"
|
| 386 |
+
except Exception as e:
|
| 387 |
+
return 'error', None, f"Request Exception: {str(e)}"
|
| 388 |
+
|
| 389 |
+
return 'error', None, f"Failed after {max_retries} retries"
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
def process_image_edit(img_input, prompt, reference_image=None, progress_callback=None):
|
| 393 |
+
"""
|
| 394 |
+
Complete process for image editing
|
| 395 |
+
|
| 396 |
+
Args:
|
| 397 |
+
img_input: Can be file path (str) or PIL Image object
|
| 398 |
+
prompt: Editing instructions
|
| 399 |
+
progress_callback: Progress callback function
|
| 400 |
+
"""
|
| 401 |
+
try:
|
| 402 |
+
# Generate client IP and timestamp
|
| 403 |
+
client_ip = "127.0.0.1" # Default IP
|
| 404 |
+
time_id = int(time.time())
|
| 405 |
+
|
| 406 |
+
# Process input image - supports PIL Image and file path
|
| 407 |
+
if hasattr(img_input, 'save'): # PIL Image object
|
| 408 |
+
pil_image = img_input
|
| 409 |
+
print(f"💾 Using PIL Image directly from memory")
|
| 410 |
+
else:
|
| 411 |
+
# Load from file path
|
| 412 |
+
pil_image = Image.open(img_input)
|
| 413 |
+
print(f"📁 Loaded image from file: {img_input}")
|
| 414 |
+
|
| 415 |
+
if progress_callback:
|
| 416 |
+
progress_callback("uploading image...")
|
| 417 |
+
|
| 418 |
+
# Upload user image directly from memory
|
| 419 |
+
uploaded_url = upload_user_img_r2(client_ip, time_id, pil_image)
|
| 420 |
+
if not uploaded_url:
|
| 421 |
+
return None, "image upload failed", None
|
| 422 |
+
|
| 423 |
+
# Extract actual image URL from upload URL
|
| 424 |
+
if "?" in uploaded_url:
|
| 425 |
+
uploaded_url = uploaded_url.split("?")[0]
|
| 426 |
+
|
| 427 |
+
if progress_callback:
|
| 428 |
+
progress_callback("submitting edit task...")
|
| 429 |
+
|
| 430 |
+
reference_url = ""
|
| 431 |
+
if reference_image is not None:
|
| 432 |
+
try:
|
| 433 |
+
if progress_callback:
|
| 434 |
+
progress_callback("uploading reference image...")
|
| 435 |
+
|
| 436 |
+
if hasattr(reference_image, 'save'):
|
| 437 |
+
reference_pil = reference_image
|
| 438 |
+
else:
|
| 439 |
+
reference_pil = Image.open(reference_image)
|
| 440 |
+
|
| 441 |
+
reference_url = upload_user_img_r2(client_ip, time_id, reference_pil)
|
| 442 |
+
if not reference_url:
|
| 443 |
+
return None, "reference image upload failed", None
|
| 444 |
+
|
| 445 |
+
if "?" in reference_url:
|
| 446 |
+
reference_url = reference_url.split("?")[0]
|
| 447 |
+
except Exception as e:
|
| 448 |
+
return None, f"reference image processing failed: {str(e)}", None
|
| 449 |
+
|
| 450 |
+
# Submit image editing task
|
| 451 |
+
task_id, error = submit_image_edit_task(uploaded_url, prompt, reference_image_url=reference_url)
|
| 452 |
+
if error:
|
| 453 |
+
return None, error, None
|
| 454 |
+
|
| 455 |
+
if progress_callback:
|
| 456 |
+
progress_callback(f"task submitted, ID: {task_id}, processing...")
|
| 457 |
+
|
| 458 |
+
# Wait for task completion
|
| 459 |
+
max_attempts = 60 # Wait up to 10 minutes
|
| 460 |
+
task_uuid = None
|
| 461 |
+
for attempt in range(max_attempts):
|
| 462 |
+
status, output_url, task_data = check_task_status(task_id)
|
| 463 |
+
|
| 464 |
+
# Extract task_uuid from task_data
|
| 465 |
+
if task_data and isinstance(task_data, dict):
|
| 466 |
+
task_uuid = task_data.get('uuid', None)
|
| 467 |
+
|
| 468 |
+
if status == 'completed':
|
| 469 |
+
if output_url:
|
| 470 |
+
return output_url, "image edit completed", task_uuid
|
| 471 |
+
else:
|
| 472 |
+
return None, "Task completed but no result image returned", task_uuid
|
| 473 |
+
elif status == 'error' or status == 'failed':
|
| 474 |
+
return None, f"task processing failed: {task_data}", task_uuid
|
| 475 |
+
elif status in ['queued', 'processing', 'running', 'created', 'working']:
|
| 476 |
+
# Enhanced progress message with queue info and website promotion
|
| 477 |
+
if progress_callback and task_data and isinstance(task_data, dict):
|
| 478 |
+
queue_info = task_data.get('queue_info', {})
|
| 479 |
+
if queue_info and status in ['queued', 'created']:
|
| 480 |
+
tasks_ahead = queue_info.get('tasks_ahead', 0)
|
| 481 |
+
current_priority = queue_info.get('current_priority', 0)
|
| 482 |
+
if tasks_ahead > 0:
|
| 483 |
+
progress_callback(f"⏳ Queue: {tasks_ahead} tasks ahead | Low priority | Visit website for instant processing → https://omnicreator.net/#generator")
|
| 484 |
+
else:
|
| 485 |
+
progress_callback(f"🚀 Processing your image editing request...")
|
| 486 |
+
elif status == 'processing':
|
| 487 |
+
progress_callback(f"🎨 AI is processing... Please wait")
|
| 488 |
+
elif status in ['running', 'working']:
|
| 489 |
+
progress_callback(f"⚡ Generating... Almost done")
|
| 490 |
+
else:
|
| 491 |
+
progress_callback(f"📋 Task status: {status}")
|
| 492 |
+
else:
|
| 493 |
+
if progress_callback:
|
| 494 |
+
progress_callback(f"task processing... (status: {status})")
|
| 495 |
+
time.sleep(1)
|
| 496 |
+
else:
|
| 497 |
+
if progress_callback:
|
| 498 |
+
progress_callback(f"unknown status: {status}")
|
| 499 |
+
time.sleep(1)
|
| 500 |
+
|
| 501 |
+
return None, "task processing timeout", task_uuid
|
| 502 |
+
|
| 503 |
+
except Exception as e:
|
| 504 |
+
return None, f"error occurred during processing: {str(e)}", None
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
def process_local_image_edit(base_image, layers, prompt, reference_image=None, progress_callback=None, use_example_mask=None):
|
| 508 |
+
"""
|
| 509 |
+
处理局部图片编辑的完整流程
|
| 510 |
+
|
| 511 |
+
Args:
|
| 512 |
+
base_image (PIL.Image): 原始图片
|
| 513 |
+
layers (list): ImageEditor的层数据
|
| 514 |
+
prompt (str): 编辑指令
|
| 515 |
+
progress_callback: 进度回调函数
|
| 516 |
+
"""
|
| 517 |
+
try:
|
| 518 |
+
# Generate client IP and timestamp
|
| 519 |
+
client_ip = "127.0.0.1" # Default IP
|
| 520 |
+
time_id = int(time.time())
|
| 521 |
+
|
| 522 |
+
if progress_callback:
|
| 523 |
+
progress_callback("creating mask image...")
|
| 524 |
+
|
| 525 |
+
# Check if we should use example mask (backdoor for example case)
|
| 526 |
+
if use_example_mask:
|
| 527 |
+
# Load local mask file for example
|
| 528 |
+
try:
|
| 529 |
+
from PIL import Image
|
| 530 |
+
import os
|
| 531 |
+
|
| 532 |
+
# Check if base_image is valid
|
| 533 |
+
if base_image is None:
|
| 534 |
+
return None, "Base image is None, cannot process example mask", None
|
| 535 |
+
|
| 536 |
+
if os.path.exists(use_example_mask):
|
| 537 |
+
mask_image = Image.open(use_example_mask)
|
| 538 |
+
|
| 539 |
+
# Ensure mask has same size as base image
|
| 540 |
+
if hasattr(base_image, 'size') and mask_image.size != base_image.size:
|
| 541 |
+
mask_image = mask_image.resize(base_image.size)
|
| 542 |
+
|
| 543 |
+
# Ensure mask is in L mode (grayscale)
|
| 544 |
+
if mask_image.mode != 'L':
|
| 545 |
+
mask_image = mask_image.convert('L')
|
| 546 |
+
|
| 547 |
+
print(f"🎭 Using example mask from: {use_example_mask}, size: {mask_image.size}")
|
| 548 |
+
else:
|
| 549 |
+
return None, f"Example mask file not found: {use_example_mask}", None
|
| 550 |
+
except Exception as e:
|
| 551 |
+
import traceback
|
| 552 |
+
traceback.print_exc()
|
| 553 |
+
return None, f"Failed to load example mask: {str(e)}", None
|
| 554 |
+
else:
|
| 555 |
+
# Normal case: create mask from layers
|
| 556 |
+
mask_image = create_mask_from_layers(base_image, layers)
|
| 557 |
+
|
| 558 |
+
# 检查mask是否有内容
|
| 559 |
+
mask_array = np.array(mask_image)
|
| 560 |
+
if np.max(mask_array) == 0:
|
| 561 |
+
return None, "please draw mask", None
|
| 562 |
+
|
| 563 |
+
# Print mask statistics
|
| 564 |
+
if not use_example_mask:
|
| 565 |
+
print(f"📝 创建mask图片成功,绘制区域像素数: {np.sum(mask_array > 0)}")
|
| 566 |
+
else:
|
| 567 |
+
mask_array = np.array(mask_image)
|
| 568 |
+
print(f"🎭 Example mask loaded successfully, mask pixels: {np.sum(mask_array > 0)}")
|
| 569 |
+
|
| 570 |
+
if progress_callback:
|
| 571 |
+
progress_callback("uploading original image...")
|
| 572 |
+
|
| 573 |
+
# 直接从内存上传原始图片
|
| 574 |
+
uploaded_url = upload_user_img_r2(client_ip, time_id, base_image)
|
| 575 |
+
if not uploaded_url:
|
| 576 |
+
return None, "original image upload failed", None
|
| 577 |
+
|
| 578 |
+
# 从上传 URL 中提取实际的图片 URL
|
| 579 |
+
if "?" in uploaded_url:
|
| 580 |
+
uploaded_url = uploaded_url.split("?")[0]
|
| 581 |
+
|
| 582 |
+
if progress_callback:
|
| 583 |
+
progress_callback("uploading mask image...")
|
| 584 |
+
|
| 585 |
+
# 直接从内存上传mask图片
|
| 586 |
+
mask_url = upload_mask_image_r2(client_ip, time_id, mask_image)
|
| 587 |
+
if not mask_url:
|
| 588 |
+
return None, "mask image upload failed", None
|
| 589 |
+
|
| 590 |
+
# 从上传 URL 中提取实际的图片 URL
|
| 591 |
+
if "?" in mask_url:
|
| 592 |
+
mask_url = mask_url.split("?")[0]
|
| 593 |
+
|
| 594 |
+
reference_url = ""
|
| 595 |
+
if reference_image is not None:
|
| 596 |
+
try:
|
| 597 |
+
if progress_callback:
|
| 598 |
+
progress_callback("uploading reference image...")
|
| 599 |
+
|
| 600 |
+
if hasattr(reference_image, 'save'):
|
| 601 |
+
reference_pil = reference_image
|
| 602 |
+
else:
|
| 603 |
+
reference_pil = Image.open(reference_image)
|
| 604 |
+
|
| 605 |
+
reference_url = upload_user_img_r2(client_ip, time_id, reference_pil)
|
| 606 |
+
if not reference_url:
|
| 607 |
+
return None, "reference image upload failed", None
|
| 608 |
+
|
| 609 |
+
if "?" in reference_url:
|
| 610 |
+
reference_url = reference_url.split("?")[0]
|
| 611 |
+
except Exception as e:
|
| 612 |
+
return None, f"reference image processing failed: {str(e)}", None
|
| 613 |
+
|
| 614 |
+
print(f"📤 图片上传成功:")
|
| 615 |
+
print(f" 原始图片: {uploaded_url}")
|
| 616 |
+
print(f" Mask图片: {mask_url}")
|
| 617 |
+
if reference_url:
|
| 618 |
+
print(f" 参考图片: {reference_url}")
|
| 619 |
+
|
| 620 |
+
if progress_callback:
|
| 621 |
+
progress_callback("submitting local edit task...")
|
| 622 |
+
|
| 623 |
+
# 提交局部图片编辑任务 (task_type=81)
|
| 624 |
+
task_id, error = submit_image_edit_task(
|
| 625 |
+
uploaded_url,
|
| 626 |
+
prompt,
|
| 627 |
+
task_type="81",
|
| 628 |
+
mask_image_url=mask_url,
|
| 629 |
+
reference_image_url=reference_url
|
| 630 |
+
)
|
| 631 |
+
if error:
|
| 632 |
+
return None, error, None
|
| 633 |
+
|
| 634 |
+
if progress_callback:
|
| 635 |
+
progress_callback(f"task submitted, ID: {task_id}, processing...")
|
| 636 |
+
|
| 637 |
+
print(f"🚀 局部编辑任务已提交,任务ID: {task_id}")
|
| 638 |
+
|
| 639 |
+
# Wait for task completion
|
| 640 |
+
max_attempts = 60 # Wait up to 10 minutes
|
| 641 |
+
task_uuid = None
|
| 642 |
+
for attempt in range(max_attempts):
|
| 643 |
+
status, output_url, task_data = check_task_status(task_id)
|
| 644 |
+
|
| 645 |
+
# Extract task_uuid from task_data
|
| 646 |
+
if task_data and isinstance(task_data, dict):
|
| 647 |
+
task_uuid = task_data.get('uuid', None)
|
| 648 |
+
|
| 649 |
+
if status == 'completed':
|
| 650 |
+
if output_url:
|
| 651 |
+
print(f"✅ 局部编辑任务完成,结果: {output_url}")
|
| 652 |
+
return output_url, "local image edit completed", task_uuid
|
| 653 |
+
else:
|
| 654 |
+
return None, "task completed but no result image returned", task_uuid
|
| 655 |
+
elif status == 'error' or status == 'failed':
|
| 656 |
+
return None, f"task processing failed: {task_data}", task_uuid
|
| 657 |
+
elif status in ['queued', 'processing', 'running', 'created', 'working']:
|
| 658 |
+
# Enhanced progress message with queue info and website promotion
|
| 659 |
+
if progress_callback and task_data and isinstance(task_data, dict):
|
| 660 |
+
queue_info = task_data.get('queue_info', {})
|
| 661 |
+
if queue_info and status in ['queued', 'created']:
|
| 662 |
+
tasks_ahead = queue_info.get('tasks_ahead', 0)
|
| 663 |
+
current_priority = queue_info.get('current_priority', 0)
|
| 664 |
+
if tasks_ahead > 0:
|
| 665 |
+
progress_callback(f"⏳ Queue: {tasks_ahead} tasks ahead | Low priority | Visit website for instant processing → https://omnicreator.net/#generator")
|
| 666 |
+
else:
|
| 667 |
+
progress_callback(f"🚀 Processing your local editing request...")
|
| 668 |
+
elif status == 'processing':
|
| 669 |
+
progress_callback(f"🎨 AI is processing... Please wait")
|
| 670 |
+
elif status in ['running', 'working']:
|
| 671 |
+
progress_callback(f"⚡ Generating... Almost done")
|
| 672 |
+
else:
|
| 673 |
+
progress_callback(f"📋 Task status: {status}")
|
| 674 |
+
else:
|
| 675 |
+
if progress_callback:
|
| 676 |
+
progress_callback(f"processing... (status: {status})")
|
| 677 |
+
time.sleep(1) # Wait 1 second before retry
|
| 678 |
+
else:
|
| 679 |
+
if progress_callback:
|
| 680 |
+
progress_callback(f"unknown status: {status}")
|
| 681 |
+
time.sleep(1)
|
| 682 |
+
|
| 683 |
+
return None, "task processing timeout", task_uuid
|
| 684 |
+
|
| 685 |
+
except Exception as e:
|
| 686 |
+
print(f"❌ 局部编辑处理异常: {str(e)}")
|
| 687 |
+
return None, f"error occurred during processing: {str(e)}", None
|
| 688 |
+
|
| 689 |
+
|
| 690 |
+
def download_and_check_result_nsfw(image_url, nsfw_detector=None):
|
| 691 |
+
"""
|
| 692 |
+
下载结果图片并进行NSFW检测
|
| 693 |
+
|
| 694 |
+
Args:
|
| 695 |
+
image_url (str): 结果图片URL
|
| 696 |
+
nsfw_detector: NSFW检测器实例
|
| 697 |
+
|
| 698 |
+
Returns:
|
| 699 |
+
tuple: (is_nsfw, error_message)
|
| 700 |
+
"""
|
| 701 |
+
if nsfw_detector is None:
|
| 702 |
+
return False, None
|
| 703 |
+
|
| 704 |
+
try:
|
| 705 |
+
# 下载图片
|
| 706 |
+
response = requests.get(image_url, timeout=30)
|
| 707 |
+
if response.status_code != 200:
|
| 708 |
+
return False, f"Failed to download result image: HTTP {response.status_code}"
|
| 709 |
+
|
| 710 |
+
# 将图片数据转换为PIL Image
|
| 711 |
+
image_data = io.BytesIO(response.content)
|
| 712 |
+
result_image = Image.open(image_data)
|
| 713 |
+
|
| 714 |
+
# 进行NSFW检测
|
| 715 |
+
nsfw_result = nsfw_detector.predict_pil_label_only(result_image)
|
| 716 |
+
|
| 717 |
+
is_nsfw = nsfw_result.lower() == "nsfw"
|
| 718 |
+
print(f"🔍 结果图片NSFW检测: {'❌❌❌ ' + nsfw_result if is_nsfw else '✅✅✅ ' + nsfw_result}")
|
| 719 |
+
|
| 720 |
+
return is_nsfw, None
|
| 721 |
+
|
| 722 |
+
except Exception as e:
|
| 723 |
+
print(f"⚠️ 结果图片NSFW检测失败: {e}")
|
| 724 |
+
return False, f"Failed to check result image: {str(e)}"
|
| 725 |
+
|
| 726 |
+
|
| 727 |
+
if __name__ == "__main__":
|
| 728 |
+
|
| 729 |
+
pass
|