Spaces:
Running
Running
Delete modules/tag_enhancer.py
Browse files- modules/tag_enhancer.py +0 -52
modules/tag_enhancer.py
DELETED
|
@@ -1,52 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import re,torch
|
| 3 |
-
from transformers import pipeline,AutoTokenizer,AutoModelForSeq2SeqLM
|
| 4 |
-
|
| 5 |
-
device = "cpu" if torch.cuda.is_available() else "cpu" # Switched to CPU since we are using HF with no GPU
|
| 6 |
-
|
| 7 |
-
def load_models():
|
| 8 |
-
try:
|
| 9 |
-
enhancer_medium = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance", device=device)
|
| 10 |
-
enhancer_long = pipeline("summarization", model="gokaygokay/Lamini-Prompt-Enchance-Long", device=device)
|
| 11 |
-
model_checkpoint = "gokaygokay/Flux-Prompt-Enhance"
|
| 12 |
-
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
| 13 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint).eval().to(device=device)
|
| 14 |
-
enhancer_flux = pipeline('text2text-generation', model=model, tokenizer=tokenizer, repetition_penalty=1.5, device=device)
|
| 15 |
-
except Exception as e:
|
| 16 |
-
print(e)
|
| 17 |
-
enhancer_medium = enhancer_long = enhancer_flux = None
|
| 18 |
-
return enhancer_medium, enhancer_long, enhancer_flux
|
| 19 |
-
enhancer_medium, enhancer_long, enhancer_flux = load_models()
|
| 20 |
-
|
| 21 |
-
def summarize_prompt(input_prompt, model_choice):
|
| 22 |
-
if model_choice == "Medium":
|
| 23 |
-
result = enhancer_medium("Enhance the description: " + input_prompt)
|
| 24 |
-
summarized_text = result[0]['summary_text']
|
| 25 |
-
|
| 26 |
-
pattern = r'^.*?of\s+(.*?(?:\.|$))'
|
| 27 |
-
match = re.match(pattern, summarized_text, re.IGNORECASE | re.DOTALL)
|
| 28 |
-
|
| 29 |
-
if match:
|
| 30 |
-
remaining_text = summarized_text[match.end():].strip()
|
| 31 |
-
modified_sentence = match.group(1).capitalize()
|
| 32 |
-
summarized_text = modified_sentence + ' ' + remaining_text
|
| 33 |
-
elif model_choice == "Flux":
|
| 34 |
-
result = enhancer_flux("Enhance prompt: " + input_prompt, max_length=256)
|
| 35 |
-
summarized_text = result[0]['generated_text']
|
| 36 |
-
else: # Long
|
| 37 |
-
result = enhancer_long("Enhance the description: " + input_prompt)
|
| 38 |
-
summarized_text = result[0]['summary_text']
|
| 39 |
-
|
| 40 |
-
return summarized_text
|
| 41 |
-
|
| 42 |
-
def prompt_summarizer(character: str, series: str, general: str, model_choice: str):
|
| 43 |
-
characters = character.split(",") if character else []
|
| 44 |
-
serieses = series.split(",") if series else []
|
| 45 |
-
generals = general.split(",") if general else []
|
| 46 |
-
tags = characters + serieses + generals
|
| 47 |
-
cprompt = ",".join(tags) if tags else ""
|
| 48 |
-
|
| 49 |
-
output = summarize_prompt(cprompt, model_choice)
|
| 50 |
-
prompt = cprompt + ", " + output
|
| 51 |
-
|
| 52 |
-
return prompt, gr.update(interactive=True), gr.update(interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|