Spaces:
Sleeping
Sleeping
Refactor RAG Email Assistant for in-memory processing; update configurations, implement memory indexing and retrieval, enhance Gradio UI, and streamline document ingestion.
Browse files- .env.example +2 -11
- .gitignore +1 -0
- QUICKSTART.md +86 -48
- app.py +2 -2
- app_hf.py +139 -0
- requirements.txt +1 -3
- scripts/ingest_documents_memory.py +81 -0
- src/config.py +0 -2
- src/indexing/memory_indexer.py +96 -0
- src/pipeline/memory_orchestrator.py +192 -0
- src/retrieval/memory_retriever.py +200 -0
- src/ui/gradio_app_memory.py +326 -0
.env.example
CHANGED
|
@@ -1,19 +1,10 @@
|
|
| 1 |
-
# OpenAI Configuration
|
| 2 |
OPENAI_API_KEY=your_openai_api_key_here
|
| 3 |
-
LLM_MODEL=gpt-
|
| 4 |
EMBEDDING_MODEL=text-embedding-3-small
|
| 5 |
LLM_TEMPERATURE=0.7
|
| 6 |
LLM_MAX_TOKENS=2000
|
| 7 |
|
| 8 |
-
# OpenSearch Configuration
|
| 9 |
-
OPENSEARCH_HOST=localhost
|
| 10 |
-
OPENSEARCH_PORT=9200
|
| 11 |
-
OPENSEARCH_USER=admin
|
| 12 |
-
OPENSEARCH_PASSWORD=your_password_here
|
| 13 |
-
OPENSEARCH_USE_SSL=true
|
| 14 |
-
OPENSEARCH_VERIFY_CERTS=false
|
| 15 |
-
INDEX_NAME=bfh_admin_docs
|
| 16 |
-
|
| 17 |
# Document Processing Configuration
|
| 18 |
DOCUMENTS_PATH=assets/markdown
|
| 19 |
CHUNK_SIZE=300
|
|
|
|
| 1 |
+
# OpenAI Configuration (required)
|
| 2 |
OPENAI_API_KEY=your_openai_api_key_here
|
| 3 |
+
LLM_MODEL=gpt-5-nano
|
| 4 |
EMBEDDING_MODEL=text-embedding-3-small
|
| 5 |
LLM_TEMPERATURE=0.7
|
| 6 |
LLM_MAX_TOKENS=2000
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
# Document Processing Configuration
|
| 9 |
DOCUMENTS_PATH=assets/markdown
|
| 10 |
CHUNK_SIZE=300
|
.gitignore
CHANGED
|
@@ -159,6 +159,7 @@ rag_email_assistant_haystack_2_pydantic_ai_gradio_modular_2025_baseline.py
|
|
| 159 |
*.xlsx
|
| 160 |
*.xls
|
| 161 |
*.parquet
|
|
|
|
| 162 |
data/
|
| 163 |
datasets/
|
| 164 |
|
|
|
|
| 159 |
*.xlsx
|
| 160 |
*.xls
|
| 161 |
*.parquet
|
| 162 |
+
*.pkl
|
| 163 |
data/
|
| 164 |
datasets/
|
| 165 |
|
QUICKSTART.md
CHANGED
|
@@ -1,15 +1,22 @@
|
|
| 1 |
-
# Quick Start Guide
|
| 2 |
|
| 3 |
## Prerequisites
|
| 4 |
|
| 5 |
1. **Python 3.10+** installed
|
| 6 |
-
2. **
|
| 7 |
-
3. **OpenAI API key**
|
| 8 |
|
| 9 |
-
|
|
|
|
|
|
|
| 10 |
|
| 11 |
### 1. Install Dependencies
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
```bash
|
| 14 |
pip install -r requirements.txt
|
| 15 |
```
|
|
@@ -17,46 +24,46 @@ pip install -r requirements.txt
|
|
| 17 |
### 2. Configure Environment
|
| 18 |
|
| 19 |
```bash
|
| 20 |
-
# Copy the example
|
| 21 |
cp .env.example .env
|
| 22 |
|
| 23 |
-
# Edit
|
| 24 |
nano .env # or use your preferred editor
|
| 25 |
```
|
| 26 |
|
| 27 |
-
**Required
|
| 28 |
-
- `OPENAI_API_KEY` - Your OpenAI API key
|
| 29 |
-
- `OPENSEARCH_HOST` - OpenSearch host (e.g., localhost)
|
| 30 |
-
- `OPENSEARCH_PORT` - OpenSearch port (e.g., 9200)
|
| 31 |
-
- `OPENSEARCH_USER` - OpenSearch username
|
| 32 |
-
- `OPENSEARCH_PASSWORD` - OpenSearch password
|
| 33 |
-
|
| 34 |
-
### 3. Index Documents
|
| 35 |
-
|
| 36 |
```bash
|
| 37 |
-
|
| 38 |
```
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
-
|
| 43 |
-
-
|
| 44 |
-
- Index in OpenSearch
|
| 45 |
-
|
| 46 |
-
Expected output:
|
| 47 |
-
```
|
| 48 |
-
Successfully indexed X document chunks
|
| 49 |
-
Total documents in index: X
|
| 50 |
-
β
Document ingestion completed successfully!
|
| 51 |
```
|
| 52 |
|
| 53 |
-
###
|
| 54 |
|
| 55 |
```bash
|
| 56 |
python app.py
|
| 57 |
```
|
| 58 |
|
| 59 |
-
The
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
## Usage
|
| 62 |
|
|
@@ -71,46 +78,77 @@ The Gradio interface will launch at `http://localhost:7860`
|
|
| 71 |
|
| 72 |
## Example Queries
|
| 73 |
|
| 74 |
-
German
|
| 75 |
- "Wie kann ich mich exmatrikulieren?"
|
| 76 |
- "Was kostet eine NamensΓ€nderung?"
|
| 77 |
- "Ich mΓΆchte ein Modul zurΓΌckziehen. Was muss ich beachten?"
|
| 78 |
- "Welche Fristen gibt es fΓΌr die Beurlaubung?"
|
| 79 |
|
| 80 |
-
English
|
| 81 |
- "How can I withdraw from the university?"
|
| 82 |
- "What are the fees for changing my name?"
|
| 83 |
- "I want to take a leave of absence. What do I need to know?"
|
| 84 |
|
| 85 |
-
##
|
| 86 |
|
| 87 |
-
|
| 88 |
-
- Check that OpenSearch is running: `curl -X GET "localhost:9200"`
|
| 89 |
-
- Verify credentials in `.env`
|
| 90 |
-
- Check firewall settings
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
- Verify API key in `.env`
|
| 99 |
- Check API quota and billing
|
| 100 |
- Ensure internet connectivity
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
## Next Steps
|
| 103 |
|
| 104 |
- Review [README.md](README.md) for full documentation
|
| 105 |
-
- Check [docs/RAG_Email_Assistant_Specifications_v1.0.md](docs/RAG_Email_Assistant_Specifications_v1.0.md) for architecture
|
| 106 |
- See [CLAUDE.md](CLAUDE.md) for development guidance
|
| 107 |
|
| 108 |
## Support
|
| 109 |
|
| 110 |
-
|
| 111 |
-
1.
|
| 112 |
-
2.
|
| 113 |
-
3.
|
| 114 |
-
4. API keys are valid
|
| 115 |
|
| 116 |
-
|
|
|
|
| 1 |
+
# Quick Start Guide (No Docker Needed!)
|
| 2 |
|
| 3 |
## Prerequisites
|
| 4 |
|
| 5 |
1. **Python 3.10+** installed
|
| 6 |
+
2. **OpenAI API key** (or use gpt-4o-mini for low cost)
|
|
|
|
| 7 |
|
| 8 |
+
**That's it!** No Docker, no OpenSearch needed!
|
| 9 |
+
|
| 10 |
+
## Setup (2 minutes)
|
| 11 |
|
| 12 |
### 1. Install Dependencies
|
| 13 |
|
| 14 |
+
Using `uv` (recommended - faster):
|
| 15 |
+
```bash
|
| 16 |
+
uv pip install -r requirements.txt
|
| 17 |
+
```
|
| 18 |
+
|
| 19 |
+
Or using `pip`:
|
| 20 |
```bash
|
| 21 |
pip install -r requirements.txt
|
| 22 |
```
|
|
|
|
| 24 |
### 2. Configure Environment
|
| 25 |
|
| 26 |
```bash
|
| 27 |
+
# Copy the example file
|
| 28 |
cp .env.example .env
|
| 29 |
|
| 30 |
+
# Edit and add your OpenAI API key
|
| 31 |
nano .env # or use your preferred editor
|
| 32 |
```
|
| 33 |
|
| 34 |
+
**Required:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
```bash
|
| 36 |
+
OPENAI_API_KEY=sk-your-key-here
|
| 37 |
```
|
| 38 |
|
| 39 |
+
**Optional (has good defaults):**
|
| 40 |
+
```bash
|
| 41 |
+
LLM_MODEL=gpt-4o-mini # Very affordable!
|
| 42 |
+
EMBEDDING_MODEL=text-embedding-3-small
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
```
|
| 44 |
|
| 45 |
+
### 3. Run the Application
|
| 46 |
|
| 47 |
```bash
|
| 48 |
python app.py
|
| 49 |
```
|
| 50 |
|
| 51 |
+
**That's it!** The app will:
|
| 52 |
+
- Automatically load markdown documents from `assets/markdown/`
|
| 53 |
+
- Create an in-memory document store
|
| 54 |
+
- Generate embeddings (first run takes ~30 seconds)
|
| 55 |
+
- Save the document store to `data/document_store.pkl` for faster subsequent runs
|
| 56 |
+
- Launch the Gradio interface at `http://localhost:7860`
|
| 57 |
+
|
| 58 |
+
## First Run
|
| 59 |
+
|
| 60 |
+
The first time you run the app, it will:
|
| 61 |
+
1. Load 8 administrative documents
|
| 62 |
+
2. Chunk them into ~30-50 pieces
|
| 63 |
+
3. Generate embeddings using OpenAI
|
| 64 |
+
4. Save to `data/document_store.pkl`
|
| 65 |
+
|
| 66 |
+
**Next runs are instant** - it loads from the pickle file!
|
| 67 |
|
| 68 |
## Usage
|
| 69 |
|
|
|
|
| 78 |
|
| 79 |
## Example Queries
|
| 80 |
|
| 81 |
+
**German:**
|
| 82 |
- "Wie kann ich mich exmatrikulieren?"
|
| 83 |
- "Was kostet eine NamensΓ€nderung?"
|
| 84 |
- "Ich mΓΆchte ein Modul zurΓΌckziehen. Was muss ich beachten?"
|
| 85 |
- "Welche Fristen gibt es fΓΌr die Beurlaubung?"
|
| 86 |
|
| 87 |
+
**English:**
|
| 88 |
- "How can I withdraw from the university?"
|
| 89 |
- "What are the fees for changing my name?"
|
| 90 |
- "I want to take a leave of absence. What do I need to know?"
|
| 91 |
|
| 92 |
+
## Pre-indexing (Optional)
|
| 93 |
|
| 94 |
+
If you want to pre-index documents separately:
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
+
```bash
|
| 97 |
+
python scripts/ingest_documents_memory.py
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
This creates `data/document_store.pkl` which the app will use automatically.
|
| 101 |
+
|
| 102 |
+
## Cost Estimate
|
| 103 |
+
|
| 104 |
+
With **gpt-4o-mini**:
|
| 105 |
+
- Typical email: **< $0.001** (less than a tenth of a cent)
|
| 106 |
+
- First-time indexing (8 documents): **~$0.01**
|
| 107 |
+
- Embeddings are cached in the pickle file
|
| 108 |
+
|
| 109 |
+
## Hugging Face Spaces Deployment
|
| 110 |
+
|
| 111 |
+
1. **Push your code** to a HF Space
|
| 112 |
+
2. **Add Secret:** `OPENAI_API_KEY` in Space settings
|
| 113 |
+
3. **Done!** The app auto-indexes on first run
|
| 114 |
+
|
| 115 |
+
The document store persists in the Space, so it only indexes once.
|
| 116 |
|
| 117 |
+
## Troubleshooting
|
| 118 |
+
|
| 119 |
+
### First run is slow
|
| 120 |
+
- Normal! It's generating embeddings for all documents
|
| 121 |
+
- Subsequent runs load from pickle (instant)
|
| 122 |
+
|
| 123 |
+
### OpenAI API errors
|
| 124 |
- Verify API key in `.env`
|
| 125 |
- Check API quota and billing
|
| 126 |
- Ensure internet connectivity
|
| 127 |
|
| 128 |
+
### Import errors
|
| 129 |
+
- Run: `uv pip install -r requirements.txt` or `pip install -r requirements.txt`
|
| 130 |
+
|
| 131 |
+
## Advantages Over Docker Version
|
| 132 |
+
|
| 133 |
+
β
**No Docker needed**
|
| 134 |
+
β
**No OpenSearch setup**
|
| 135 |
+
β
**Works on any machine**
|
| 136 |
+
β
**Perfect for HF Spaces**
|
| 137 |
+
β
**Faster setup (2 min vs 15 min)**
|
| 138 |
+
β
**In-memory = instant retrieval**
|
| 139 |
+
β
**Portable (just copy the pickle file)**
|
| 140 |
+
|
| 141 |
## Next Steps
|
| 142 |
|
| 143 |
- Review [README.md](README.md) for full documentation
|
| 144 |
+
- Check [docs/RAG_Email_Assistant_Specifications_v1.0.md](docs/RAG_Email_Assistant_Specifications_v1.0.md) for architecture
|
| 145 |
- See [CLAUDE.md](CLAUDE.md) for development guidance
|
| 146 |
|
| 147 |
## Support
|
| 148 |
|
| 149 |
+
Need help? The setup is simple:
|
| 150 |
+
1. Install dependencies
|
| 151 |
+
2. Add OpenAI API key
|
| 152 |
+
3. Run `python app.py`
|
|
|
|
| 153 |
|
| 154 |
+
That's it! π
|
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
"""Main application entry point for Hugging Face Spaces deployment."""
|
| 2 |
|
| 3 |
import logging
|
| 4 |
-
from src.ui.
|
| 5 |
|
| 6 |
# Configure logging
|
| 7 |
logging.basicConfig(
|
|
@@ -12,7 +12,7 @@ logging.basicConfig(
|
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
| 14 |
# Create and launch the Gradio interface
|
| 15 |
-
logger.info("Starting BFH Student Administration Email Assistant...")
|
| 16 |
|
| 17 |
demo = create_gradio_interface()
|
| 18 |
|
|
|
|
| 1 |
"""Main application entry point for Hugging Face Spaces deployment."""
|
| 2 |
|
| 3 |
import logging
|
| 4 |
+
from src.ui.gradio_app_memory import create_gradio_interface
|
| 5 |
|
| 6 |
# Configure logging
|
| 7 |
logging.basicConfig(
|
|
|
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
| 14 |
# Create and launch the Gradio interface
|
| 15 |
+
logger.info("Starting BFH Student Administration Email Assistant (in-memory mode)...")
|
| 16 |
|
| 17 |
demo = create_gradio_interface()
|
| 18 |
|
app_hf.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Hugging Face Spaces version using HF Inference API with gpt-oss-20b."""
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from huggingface_hub import InferenceClient
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
# Initialize HF Inference Client
|
| 8 |
+
client = InferenceClient(model="openai/gpt-oss-20b")
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def compose_email(
|
| 12 |
+
query: str,
|
| 13 |
+
history: list,
|
| 14 |
+
system_message: str,
|
| 15 |
+
max_tokens: int,
|
| 16 |
+
temperature: float,
|
| 17 |
+
top_p: float,
|
| 18 |
+
hf_token: gr.OAuthToken | None = None,
|
| 19 |
+
) -> str:
|
| 20 |
+
"""Compose email response using HF Inference API."""
|
| 21 |
+
|
| 22 |
+
# Use OAuth token if available
|
| 23 |
+
token = hf_token.token if hf_token else os.getenv("HF_TOKEN")
|
| 24 |
+
client_with_token = InferenceClient(model="openai/gpt-oss-20b", token=token)
|
| 25 |
+
|
| 26 |
+
# Enhanced system message for email composition
|
| 27 |
+
email_system_prompt = """You are an AI assistant for BFH (Bern University of Applied Sciences) administrative staff.
|
| 28 |
+
|
| 29 |
+
Your task is to help compose professional email responses to student inquiries about:
|
| 30 |
+
- Exmatriculation (leaving university)
|
| 31 |
+
- Leave of absence (Beurlaubung)
|
| 32 |
+
- Name changes
|
| 33 |
+
- Insurance matters (AHV, health insurance)
|
| 34 |
+
- Fees and payments
|
| 35 |
+
- Course withdrawals and deadlines
|
| 36 |
+
|
| 37 |
+
Compose professional, accurate, and helpful email responses in the same language as the query.
|
| 38 |
+
Include a subject line and body. Use formal tone for German (Sie form).
|
| 39 |
+
|
| 40 |
+
Format your response as:
|
| 41 |
+
Subject: [subject line]
|
| 42 |
+
|
| 43 |
+
[email body]"""
|
| 44 |
+
|
| 45 |
+
messages = [{"role": "system", "content": email_system_prompt}]
|
| 46 |
+
|
| 47 |
+
# Add history
|
| 48 |
+
if history:
|
| 49 |
+
messages.extend(history)
|
| 50 |
+
|
| 51 |
+
# Add current query
|
| 52 |
+
messages.append({"role": "user", "content": f"Student query: {query}\n\nCompose an appropriate email response."})
|
| 53 |
+
|
| 54 |
+
# Stream response
|
| 55 |
+
response = ""
|
| 56 |
+
for message in client_with_token.chat_completion(
|
| 57 |
+
messages,
|
| 58 |
+
max_tokens=max_tokens,
|
| 59 |
+
stream=True,
|
| 60 |
+
temperature=temperature,
|
| 61 |
+
top_p=top_p,
|
| 62 |
+
):
|
| 63 |
+
if message.choices and message.choices[0].delta.content:
|
| 64 |
+
response += message.choices[0].delta.content
|
| 65 |
+
yield response
|
| 66 |
+
|
| 67 |
+
return response
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
# Create Gradio interface
|
| 71 |
+
with gr.Blocks(title="BFH Email Assistant", theme=gr.themes.Soft()) as demo:
|
| 72 |
+
gr.Markdown(
|
| 73 |
+
"""
|
| 74 |
+
# π§ BFH Student Administration Email Assistant
|
| 75 |
+
|
| 76 |
+
AI-powered assistant for composing email responses to student inquiries.
|
| 77 |
+
Uses **gpt-oss-20b** via Hugging Face Inference API (free!).
|
| 78 |
+
"""
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
chatbot = gr.ChatInterface(
|
| 82 |
+
compose_email,
|
| 83 |
+
type="messages",
|
| 84 |
+
additional_inputs=[
|
| 85 |
+
gr.Textbox(
|
| 86 |
+
value="You are a professional university administrative assistant.",
|
| 87 |
+
label="System message",
|
| 88 |
+
visible=False,
|
| 89 |
+
),
|
| 90 |
+
gr.Slider(
|
| 91 |
+
minimum=256,
|
| 92 |
+
maximum=2048,
|
| 93 |
+
value=1024,
|
| 94 |
+
step=1,
|
| 95 |
+
label="Max tokens",
|
| 96 |
+
),
|
| 97 |
+
gr.Slider(
|
| 98 |
+
minimum=0.1,
|
| 99 |
+
maximum=2.0,
|
| 100 |
+
value=0.7,
|
| 101 |
+
step=0.1,
|
| 102 |
+
label="Temperature",
|
| 103 |
+
),
|
| 104 |
+
gr.Slider(
|
| 105 |
+
minimum=0.1,
|
| 106 |
+
maximum=1.0,
|
| 107 |
+
value=0.95,
|
| 108 |
+
step=0.05,
|
| 109 |
+
label="Top-p",
|
| 110 |
+
),
|
| 111 |
+
],
|
| 112 |
+
examples=[
|
| 113 |
+
["Wie kann ich mich exmatrikulieren?"],
|
| 114 |
+
["What are the fees for changing my name?"],
|
| 115 |
+
["Ich mΓΆchte ein Modul zurΓΌckziehen. Was muss ich beachten?"],
|
| 116 |
+
["How do I apply for a leave of absence?"],
|
| 117 |
+
],
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
with gr.Sidebar():
|
| 121 |
+
gr.LoginButton()
|
| 122 |
+
gr.Markdown(
|
| 123 |
+
"""
|
| 124 |
+
### About
|
| 125 |
+
This assistant helps compose email responses for BFH administrative staff.
|
| 126 |
+
|
| 127 |
+
### Topics Covered
|
| 128 |
+
- Exmatriculation
|
| 129 |
+
- Leave of absence
|
| 130 |
+
- Name changes
|
| 131 |
+
- Insurance
|
| 132 |
+
- Fees
|
| 133 |
+
- Course withdrawals
|
| 134 |
+
"""
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
if __name__ == "__main__":
|
| 139 |
+
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1,10 +1,8 @@
|
|
| 1 |
# Core dependencies
|
| 2 |
python-dotenv==1.1.1
|
| 3 |
|
| 4 |
-
# Haystack
|
| 5 |
haystack-ai==2.8.0
|
| 6 |
-
opensearch-haystack==1.1.0
|
| 7 |
-
opensearch-py==2.8.0
|
| 8 |
|
| 9 |
# PydanticAI for agents
|
| 10 |
pydantic-ai==0.0.14
|
|
|
|
| 1 |
# Core dependencies
|
| 2 |
python-dotenv==1.1.1
|
| 3 |
|
| 4 |
+
# Haystack (no OpenSearch needed!)
|
| 5 |
haystack-ai==2.8.0
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# PydanticAI for agents
|
| 8 |
pydantic-ai==0.0.14
|
scripts/ingest_documents_memory.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""Script to ingest documents and save to pickle for in-memory use."""
|
| 3 |
+
|
| 4 |
+
import sys
|
| 5 |
+
import logging
|
| 6 |
+
import pickle
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
|
| 9 |
+
# Add src to path
|
| 10 |
+
sys.path.insert(0, str(Path(__file__).parent.parent))
|
| 11 |
+
|
| 12 |
+
from src.config import get_config
|
| 13 |
+
from src.document_processing.loader import MarkdownDocumentLoader
|
| 14 |
+
from src.document_processing.chunker import SemanticChunker
|
| 15 |
+
from src.indexing.memory_indexer import MemoryDocumentIndexer
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def setup_logging():
|
| 19 |
+
"""Configure logging."""
|
| 20 |
+
logging.basicConfig(
|
| 21 |
+
level=logging.INFO,
|
| 22 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def main():
|
| 27 |
+
"""Main ingestion workflow."""
|
| 28 |
+
setup_logging()
|
| 29 |
+
logger = logging.getLogger(__name__)
|
| 30 |
+
|
| 31 |
+
logger.info("Starting document ingestion process (in-memory)...")
|
| 32 |
+
|
| 33 |
+
# Load configuration
|
| 34 |
+
config = get_config()
|
| 35 |
+
logger.info(f"Using documents path: {config.document_processing.documents_path}")
|
| 36 |
+
|
| 37 |
+
# Load documents
|
| 38 |
+
logger.info("Loading markdown documents...")
|
| 39 |
+
loader = MarkdownDocumentLoader(config.document_processing.documents_path)
|
| 40 |
+
documents = loader.load_documents()
|
| 41 |
+
|
| 42 |
+
if not documents:
|
| 43 |
+
logger.error("No documents loaded. Exiting.")
|
| 44 |
+
sys.exit(1)
|
| 45 |
+
|
| 46 |
+
logger.info(f"Loaded {len(documents)} documents")
|
| 47 |
+
|
| 48 |
+
# Chunk documents
|
| 49 |
+
logger.info("Chunking documents...")
|
| 50 |
+
chunker = SemanticChunker(
|
| 51 |
+
chunk_size=config.document_processing.chunk_size,
|
| 52 |
+
chunk_overlap=config.document_processing.chunk_overlap,
|
| 53 |
+
min_chunk_size=config.document_processing.min_chunk_size,
|
| 54 |
+
)
|
| 55 |
+
chunked_documents = chunker.chunk_documents(documents)
|
| 56 |
+
|
| 57 |
+
logger.info(f"Created {len(chunked_documents)} chunks")
|
| 58 |
+
|
| 59 |
+
# Index documents in memory
|
| 60 |
+
logger.info("Indexing documents in memory...")
|
| 61 |
+
indexer = MemoryDocumentIndexer(llm_config=config.llm)
|
| 62 |
+
|
| 63 |
+
indexed_count = indexer.index_documents(chunked_documents)
|
| 64 |
+
|
| 65 |
+
logger.info(f"Successfully indexed {indexed_count} document chunks")
|
| 66 |
+
|
| 67 |
+
# Save document store to pickle for later use
|
| 68 |
+
output_file = Path("data/document_store.pkl")
|
| 69 |
+
output_file.parent.mkdir(parents=True, exist_ok=True)
|
| 70 |
+
|
| 71 |
+
logger.info(f"Saving document store to {output_file}...")
|
| 72 |
+
with open(output_file, "wb") as f:
|
| 73 |
+
pickle.dump(indexer.document_store, f)
|
| 74 |
+
|
| 75 |
+
logger.info("β
Document ingestion completed successfully!")
|
| 76 |
+
logger.info(f"Document store saved to: {output_file}")
|
| 77 |
+
logger.info(f"Total documents indexed: {indexed_count}")
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
if __name__ == "__main__":
|
| 81 |
+
main()
|
src/config.py
CHANGED
|
@@ -105,7 +105,6 @@ class RetrievalConfig:
|
|
| 105 |
class AppConfig:
|
| 106 |
"""Main application configuration."""
|
| 107 |
|
| 108 |
-
opensearch: OpenSearchConfig
|
| 109 |
llm: LLMConfig
|
| 110 |
document_processing: DocumentProcessingConfig
|
| 111 |
retrieval: RetrievalConfig
|
|
@@ -115,7 +114,6 @@ class AppConfig:
|
|
| 115 |
def from_env(cls) -> "AppConfig":
|
| 116 |
"""Create complete configuration from environment variables."""
|
| 117 |
return cls(
|
| 118 |
-
opensearch=OpenSearchConfig.from_env(),
|
| 119 |
llm=LLMConfig.from_env(),
|
| 120 |
document_processing=DocumentProcessingConfig.from_env(),
|
| 121 |
retrieval=RetrievalConfig.from_env(),
|
|
|
|
| 105 |
class AppConfig:
|
| 106 |
"""Main application configuration."""
|
| 107 |
|
|
|
|
| 108 |
llm: LLMConfig
|
| 109 |
document_processing: DocumentProcessingConfig
|
| 110 |
retrieval: RetrievalConfig
|
|
|
|
| 114 |
def from_env(cls) -> "AppConfig":
|
| 115 |
"""Create complete configuration from environment variables."""
|
| 116 |
return cls(
|
|
|
|
| 117 |
llm=LLMConfig.from_env(),
|
| 118 |
document_processing=DocumentProcessingConfig.from_env(),
|
| 119 |
retrieval=RetrievalConfig.from_env(),
|
src/indexing/memory_indexer.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Document indexer using in-memory document store (no Docker/OpenSearch needed)."""
|
| 2 |
+
|
| 3 |
+
from typing import List
|
| 4 |
+
from haystack import Document
|
| 5 |
+
from haystack.components.embedders import OpenAIDocumentEmbedder
|
| 6 |
+
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
| 7 |
+
import logging
|
| 8 |
+
|
| 9 |
+
from ..config import LLMConfig
|
| 10 |
+
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class MemoryDocumentIndexer:
|
| 15 |
+
"""Indexes documents in memory with embeddings (no external dependencies)."""
|
| 16 |
+
|
| 17 |
+
def __init__(self, llm_config: LLMConfig):
|
| 18 |
+
"""
|
| 19 |
+
Initialize the in-memory document indexer.
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
llm_config: LLM configuration for embeddings
|
| 23 |
+
"""
|
| 24 |
+
self.llm_config = llm_config
|
| 25 |
+
|
| 26 |
+
# Initialize in-memory document store
|
| 27 |
+
self.document_store = InMemoryDocumentStore()
|
| 28 |
+
|
| 29 |
+
# Initialize embedder
|
| 30 |
+
self.embedder = OpenAIDocumentEmbedder(
|
| 31 |
+
api_key=llm_config.api_key,
|
| 32 |
+
model=llm_config.embedding_model,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
def index_documents(self, documents: List[Document]) -> int:
|
| 36 |
+
"""
|
| 37 |
+
Index documents with embeddings in memory.
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
documents: List of documents to index
|
| 41 |
+
|
| 42 |
+
Returns:
|
| 43 |
+
Number of documents successfully indexed
|
| 44 |
+
"""
|
| 45 |
+
if not documents:
|
| 46 |
+
logger.warning("No documents to index")
|
| 47 |
+
return 0
|
| 48 |
+
|
| 49 |
+
logger.info(f"Indexing {len(documents)} documents in memory")
|
| 50 |
+
|
| 51 |
+
try:
|
| 52 |
+
# Generate embeddings for documents
|
| 53 |
+
logger.info("Generating embeddings...")
|
| 54 |
+
result = self.embedder.run(documents=documents)
|
| 55 |
+
embedded_docs = result.get("documents", [])
|
| 56 |
+
|
| 57 |
+
if not embedded_docs:
|
| 58 |
+
logger.error("Failed to generate embeddings")
|
| 59 |
+
return 0
|
| 60 |
+
|
| 61 |
+
logger.info(f"Generated embeddings for {len(embedded_docs)} documents")
|
| 62 |
+
|
| 63 |
+
# Write documents to in-memory store
|
| 64 |
+
logger.info("Writing documents to memory...")
|
| 65 |
+
self.document_store.write_documents(embedded_docs)
|
| 66 |
+
|
| 67 |
+
doc_count = self.document_store.count_documents()
|
| 68 |
+
logger.info(f"Successfully indexed documents. Total documents in store: {doc_count}")
|
| 69 |
+
|
| 70 |
+
return len(embedded_docs)
|
| 71 |
+
|
| 72 |
+
except Exception as e:
|
| 73 |
+
logger.error(f"Error indexing documents: {e}")
|
| 74 |
+
raise
|
| 75 |
+
|
| 76 |
+
def clear_index(self):
|
| 77 |
+
"""Clear all documents from the index."""
|
| 78 |
+
try:
|
| 79 |
+
self.document_store.delete_documents()
|
| 80 |
+
logger.info("Cleared all documents from index")
|
| 81 |
+
except Exception as e:
|
| 82 |
+
logger.error(f"Error clearing index: {e}")
|
| 83 |
+
raise
|
| 84 |
+
|
| 85 |
+
def get_document_count(self) -> int:
|
| 86 |
+
"""
|
| 87 |
+
Get number of documents in the index.
|
| 88 |
+
|
| 89 |
+
Returns:
|
| 90 |
+
Document count
|
| 91 |
+
"""
|
| 92 |
+
try:
|
| 93 |
+
return self.document_store.count_documents()
|
| 94 |
+
except Exception as e:
|
| 95 |
+
logger.error(f"Error getting document count: {e}")
|
| 96 |
+
return 0
|
src/pipeline/memory_orchestrator.py
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""RAG pipeline orchestrator using in-memory components (no Docker needed)."""
|
| 2 |
+
|
| 3 |
+
from typing import Dict, Any, List
|
| 4 |
+
from pydantic import BaseModel
|
| 5 |
+
from haystack import Document
|
| 6 |
+
import logging
|
| 7 |
+
|
| 8 |
+
from ..config import AppConfig
|
| 9 |
+
from ..agents.intent_agent import IntentAgent, IntentData
|
| 10 |
+
from ..agents.composer_agent import ComposerAgent, EmailDraft
|
| 11 |
+
from ..agents.fact_checker_agent import FactCheckerAgent, FactCheckResult
|
| 12 |
+
from ..retrieval.memory_retriever import MemoryRetriever
|
| 13 |
+
from ..indexing.memory_indexer import MemoryDocumentIndexer
|
| 14 |
+
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class PipelineResult(BaseModel):
|
| 19 |
+
"""Complete result from the RAG pipeline."""
|
| 20 |
+
|
| 21 |
+
query: str
|
| 22 |
+
intent: IntentData
|
| 23 |
+
retrieved_docs: List[Dict[str, Any]]
|
| 24 |
+
email_draft: EmailDraft
|
| 25 |
+
fact_check: FactCheckResult
|
| 26 |
+
processing_time: float = 0.0
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class MemoryRAGOrchestrator:
|
| 30 |
+
"""Orchestrates the multi-agent RAG pipeline using in-memory components."""
|
| 31 |
+
|
| 32 |
+
def __init__(self, config: AppConfig, document_indexer: MemoryDocumentIndexer):
|
| 33 |
+
"""
|
| 34 |
+
Initialize the RAG orchestrator.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
config: Application configuration
|
| 38 |
+
document_indexer: Memory document indexer instance
|
| 39 |
+
"""
|
| 40 |
+
self.config = config
|
| 41 |
+
|
| 42 |
+
# Initialize agents
|
| 43 |
+
self.intent_agent = IntentAgent(
|
| 44 |
+
api_key=config.llm.api_key,
|
| 45 |
+
model=f"openai:{config.llm.model_name}",
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
self.composer_agent = ComposerAgent(
|
| 49 |
+
api_key=config.llm.api_key,
|
| 50 |
+
model=f"openai:{config.llm.model_name}",
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
self.fact_checker_agent = FactCheckerAgent(
|
| 54 |
+
api_key=config.llm.api_key,
|
| 55 |
+
model=f"openai:{config.llm.model_name}",
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
# Initialize retriever
|
| 59 |
+
self.retriever = MemoryRetriever(
|
| 60 |
+
document_store=document_indexer.document_store,
|
| 61 |
+
llm_config=config.llm,
|
| 62 |
+
retrieval_config=config.retrieval,
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
async def process_query(self, query: str) -> PipelineResult:
|
| 66 |
+
"""
|
| 67 |
+
Process a user query through the complete RAG pipeline.
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
query: User's query text
|
| 71 |
+
|
| 72 |
+
Returns:
|
| 73 |
+
Complete pipeline result
|
| 74 |
+
"""
|
| 75 |
+
import time
|
| 76 |
+
|
| 77 |
+
start_time = time.time()
|
| 78 |
+
|
| 79 |
+
logger.info(f"Processing query: {query[:100]}...")
|
| 80 |
+
|
| 81 |
+
try:
|
| 82 |
+
# Step 1: Extract intent
|
| 83 |
+
logger.info("Step 1: Extracting intent...")
|
| 84 |
+
intent = await self.intent_agent.extract_intent(query)
|
| 85 |
+
|
| 86 |
+
# Step 2: Retrieve relevant documents
|
| 87 |
+
logger.info("Step 2: Retrieving relevant documents...")
|
| 88 |
+
retrieved_docs = self.retriever.retrieve(query)
|
| 89 |
+
|
| 90 |
+
logger.info(f"Retrieved {len(retrieved_docs)} documents")
|
| 91 |
+
|
| 92 |
+
# Step 3: Compose email draft
|
| 93 |
+
logger.info("Step 3: Composing email draft...")
|
| 94 |
+
email_draft = await self.composer_agent.compose_email(
|
| 95 |
+
query=query,
|
| 96 |
+
intent=intent,
|
| 97 |
+
context_docs=retrieved_docs,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# Step 4: Fact-check the draft
|
| 101 |
+
logger.info("Step 4: Fact-checking email draft...")
|
| 102 |
+
fact_check = await self.fact_checker_agent.fact_check(
|
| 103 |
+
email_draft=email_draft,
|
| 104 |
+
source_docs=retrieved_docs,
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
processing_time = time.time() - start_time
|
| 108 |
+
|
| 109 |
+
# Build result
|
| 110 |
+
result = PipelineResult(
|
| 111 |
+
query=query,
|
| 112 |
+
intent=intent,
|
| 113 |
+
retrieved_docs=self._serialize_documents(retrieved_docs),
|
| 114 |
+
email_draft=email_draft,
|
| 115 |
+
fact_check=fact_check,
|
| 116 |
+
processing_time=processing_time,
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
logger.info(f"Pipeline completed in {processing_time:.2f}s")
|
| 120 |
+
|
| 121 |
+
return result
|
| 122 |
+
|
| 123 |
+
except Exception as e:
|
| 124 |
+
logger.error(f"Error in pipeline: {e}")
|
| 125 |
+
raise
|
| 126 |
+
|
| 127 |
+
def _serialize_documents(self, documents: List[Document]) -> List[Dict[str, Any]]:
|
| 128 |
+
"""
|
| 129 |
+
Serialize Haystack documents to dictionaries.
|
| 130 |
+
|
| 131 |
+
Args:
|
| 132 |
+
documents: List of Haystack documents
|
| 133 |
+
|
| 134 |
+
Returns:
|
| 135 |
+
List of document dictionaries
|
| 136 |
+
"""
|
| 137 |
+
serialized = []
|
| 138 |
+
for doc in documents:
|
| 139 |
+
serialized.append(
|
| 140 |
+
{
|
| 141 |
+
"content": doc.content,
|
| 142 |
+
"score": doc.score,
|
| 143 |
+
"meta": doc.meta or {},
|
| 144 |
+
}
|
| 145 |
+
)
|
| 146 |
+
return serialized
|
| 147 |
+
|
| 148 |
+
async def refine_draft(
|
| 149 |
+
self,
|
| 150 |
+
original_query: str,
|
| 151 |
+
current_draft: str,
|
| 152 |
+
user_feedback: str,
|
| 153 |
+
retrieved_docs: List[Document],
|
| 154 |
+
) -> EmailDraft:
|
| 155 |
+
"""
|
| 156 |
+
Refine an email draft based on user feedback.
|
| 157 |
+
|
| 158 |
+
Args:
|
| 159 |
+
original_query: Original user query
|
| 160 |
+
current_draft: Current email draft text
|
| 161 |
+
user_feedback: User's feedback or refinement request
|
| 162 |
+
retrieved_docs: Previously retrieved documents
|
| 163 |
+
|
| 164 |
+
Returns:
|
| 165 |
+
Refined email draft
|
| 166 |
+
"""
|
| 167 |
+
logger.info("Refining email draft based on user feedback...")
|
| 168 |
+
|
| 169 |
+
# Create refinement prompt
|
| 170 |
+
refinement_query = f"""Original Query: {original_query}
|
| 171 |
+
|
| 172 |
+
Current Draft:
|
| 173 |
+
{current_draft}
|
| 174 |
+
|
| 175 |
+
User Feedback/Refinement Request:
|
| 176 |
+
{user_feedback}
|
| 177 |
+
|
| 178 |
+
Please revise the email draft according to the user's feedback while maintaining accuracy and professionalism."""
|
| 179 |
+
|
| 180 |
+
# Re-extract intent with refinement context
|
| 181 |
+
intent = await self.intent_agent.extract_intent(refinement_query)
|
| 182 |
+
|
| 183 |
+
# Compose refined draft
|
| 184 |
+
refined_draft = await self.composer_agent.compose_email(
|
| 185 |
+
query=refinement_query,
|
| 186 |
+
intent=intent,
|
| 187 |
+
context_docs=retrieved_docs,
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
logger.info("Email draft refined")
|
| 191 |
+
|
| 192 |
+
return refined_draft
|
src/retrieval/memory_retriever.py
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Retriever using in-memory document store (no Docker/OpenSearch needed)."""
|
| 2 |
+
|
| 3 |
+
from typing import List
|
| 4 |
+
from haystack import Document
|
| 5 |
+
from haystack.components.embedders import OpenAITextEmbedder
|
| 6 |
+
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever, InMemoryBM25Retriever
|
| 7 |
+
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
| 8 |
+
import logging
|
| 9 |
+
|
| 10 |
+
from ..config import RetrievalConfig, LLMConfig
|
| 11 |
+
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class MemoryRetriever:
|
| 16 |
+
"""Retrieves documents using in-memory hybrid BM25 + vector search."""
|
| 17 |
+
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
document_store: InMemoryDocumentStore,
|
| 21 |
+
llm_config: LLMConfig,
|
| 22 |
+
retrieval_config: RetrievalConfig,
|
| 23 |
+
):
|
| 24 |
+
"""
|
| 25 |
+
Initialize the in-memory hybrid retriever.
|
| 26 |
+
|
| 27 |
+
Args:
|
| 28 |
+
document_store: InMemory document store
|
| 29 |
+
llm_config: LLM configuration for embeddings
|
| 30 |
+
retrieval_config: Retrieval configuration
|
| 31 |
+
"""
|
| 32 |
+
self.document_store = document_store
|
| 33 |
+
self.llm_config = llm_config
|
| 34 |
+
self.retrieval_config = retrieval_config
|
| 35 |
+
|
| 36 |
+
# Initialize BM25 retriever
|
| 37 |
+
self.bm25_retriever = InMemoryBM25Retriever(
|
| 38 |
+
document_store=document_store,
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# Initialize embedding retriever
|
| 42 |
+
self.embedding_retriever = InMemoryEmbeddingRetriever(
|
| 43 |
+
document_store=document_store,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# Initialize text embedder for queries
|
| 47 |
+
self.text_embedder = OpenAITextEmbedder(
|
| 48 |
+
api_key=llm_config.api_key,
|
| 49 |
+
model=llm_config.embedding_model,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
def retrieve(self, query: str) -> List[Document]:
|
| 53 |
+
"""
|
| 54 |
+
Retrieve documents using hybrid search.
|
| 55 |
+
|
| 56 |
+
Args:
|
| 57 |
+
query: Search query
|
| 58 |
+
|
| 59 |
+
Returns:
|
| 60 |
+
List of relevant documents with scores
|
| 61 |
+
"""
|
| 62 |
+
logger.info(f"Retrieving documents for query: {query[:100]}...")
|
| 63 |
+
|
| 64 |
+
try:
|
| 65 |
+
# Get BM25 results
|
| 66 |
+
logger.debug("Running BM25 retrieval...")
|
| 67 |
+
bm25_results = self.bm25_retriever.run(
|
| 68 |
+
query=query,
|
| 69 |
+
top_k=self.retrieval_config.top_k * 2,
|
| 70 |
+
)
|
| 71 |
+
bm25_docs = bm25_results.get("documents", [])
|
| 72 |
+
logger.debug(f"BM25 retrieved {len(bm25_docs)} documents")
|
| 73 |
+
|
| 74 |
+
# Generate query embedding
|
| 75 |
+
logger.debug("Generating query embedding...")
|
| 76 |
+
embedding_result = self.text_embedder.run(text=query)
|
| 77 |
+
query_embedding = embedding_result.get("embedding")
|
| 78 |
+
|
| 79 |
+
if not query_embedding:
|
| 80 |
+
logger.warning("Failed to generate query embedding, using BM25 only")
|
| 81 |
+
return self._apply_score_threshold(bm25_docs)
|
| 82 |
+
|
| 83 |
+
# Get vector search results
|
| 84 |
+
logger.debug("Running vector retrieval...")
|
| 85 |
+
vector_results = self.embedding_retriever.run(
|
| 86 |
+
query_embedding=query_embedding,
|
| 87 |
+
top_k=self.retrieval_config.top_k * 2,
|
| 88 |
+
)
|
| 89 |
+
vector_docs = vector_results.get("documents", [])
|
| 90 |
+
logger.debug(f"Vector search retrieved {len(vector_docs)} documents")
|
| 91 |
+
|
| 92 |
+
# Merge and rank results
|
| 93 |
+
merged_docs = self._merge_results(bm25_docs, vector_docs)
|
| 94 |
+
|
| 95 |
+
# Apply score threshold and limit
|
| 96 |
+
final_docs = self._apply_score_threshold(merged_docs)
|
| 97 |
+
final_docs = final_docs[: self.retrieval_config.top_k]
|
| 98 |
+
|
| 99 |
+
logger.info(f"Retrieved {len(final_docs)} documents after hybrid ranking")
|
| 100 |
+
|
| 101 |
+
return final_docs
|
| 102 |
+
|
| 103 |
+
except Exception as e:
|
| 104 |
+
logger.error(f"Error during retrieval: {e}")
|
| 105 |
+
return []
|
| 106 |
+
|
| 107 |
+
def _merge_results(
|
| 108 |
+
self, bm25_docs: List[Document], vector_docs: List[Document]
|
| 109 |
+
) -> List[Document]:
|
| 110 |
+
"""
|
| 111 |
+
Merge BM25 and vector search results using weighted scoring.
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
bm25_docs: Documents from BM25 search
|
| 115 |
+
vector_docs: Documents from vector search
|
| 116 |
+
|
| 117 |
+
Returns:
|
| 118 |
+
Merged and ranked documents
|
| 119 |
+
"""
|
| 120 |
+
from typing import Dict, Any
|
| 121 |
+
|
| 122 |
+
# Create score maps
|
| 123 |
+
doc_scores: Dict[str, Dict[str, Any]] = {}
|
| 124 |
+
|
| 125 |
+
# Process BM25 results
|
| 126 |
+
for doc in bm25_docs:
|
| 127 |
+
doc_id = doc.id or doc.content[:50]
|
| 128 |
+
bm25_score = doc.score or 0.0
|
| 129 |
+
|
| 130 |
+
if doc_id not in doc_scores:
|
| 131 |
+
doc_scores[doc_id] = {
|
| 132 |
+
"document": doc,
|
| 133 |
+
"bm25_score": 0.0,
|
| 134 |
+
"vector_score": 0.0,
|
| 135 |
+
}
|
| 136 |
+
doc_scores[doc_id]["bm25_score"] = bm25_score
|
| 137 |
+
|
| 138 |
+
# Process vector results
|
| 139 |
+
for doc in vector_docs:
|
| 140 |
+
doc_id = doc.id or doc.content[:50]
|
| 141 |
+
vector_score = doc.score or 0.0
|
| 142 |
+
|
| 143 |
+
if doc_id not in doc_scores:
|
| 144 |
+
doc_scores[doc_id] = {
|
| 145 |
+
"document": doc,
|
| 146 |
+
"bm25_score": 0.0,
|
| 147 |
+
"vector_score": 0.0,
|
| 148 |
+
}
|
| 149 |
+
doc_scores[doc_id]["vector_score"] = vector_score
|
| 150 |
+
|
| 151 |
+
# Normalize and combine scores
|
| 152 |
+
bm25_scores = [info["bm25_score"] for info in doc_scores.values()]
|
| 153 |
+
vector_scores = [info["vector_score"] for info in doc_scores.values()]
|
| 154 |
+
|
| 155 |
+
max_bm25 = max(bm25_scores) if bm25_scores else 1.0
|
| 156 |
+
max_vector = max(vector_scores) if vector_scores else 1.0
|
| 157 |
+
|
| 158 |
+
merged_docs = []
|
| 159 |
+
for doc_id, info in doc_scores.items():
|
| 160 |
+
# Normalize scores
|
| 161 |
+
norm_bm25 = info["bm25_score"] / max_bm25 if max_bm25 > 0 else 0.0
|
| 162 |
+
norm_vector = info["vector_score"] / max_vector if max_vector > 0 else 0.0
|
| 163 |
+
|
| 164 |
+
# Combine with weights
|
| 165 |
+
combined_score = (
|
| 166 |
+
self.retrieval_config.bm25_weight * norm_bm25
|
| 167 |
+
+ self.retrieval_config.vector_weight * norm_vector
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
doc = info["document"]
|
| 171 |
+
doc.score = combined_score
|
| 172 |
+
|
| 173 |
+
if doc.meta is None:
|
| 174 |
+
doc.meta = {}
|
| 175 |
+
doc.meta["bm25_score"] = info["bm25_score"]
|
| 176 |
+
doc.meta["vector_score"] = info["vector_score"]
|
| 177 |
+
doc.meta["combined_score"] = combined_score
|
| 178 |
+
|
| 179 |
+
merged_docs.append(doc)
|
| 180 |
+
|
| 181 |
+
# Sort by combined score
|
| 182 |
+
merged_docs.sort(key=lambda x: x.score or 0.0, reverse=True)
|
| 183 |
+
|
| 184 |
+
return merged_docs
|
| 185 |
+
|
| 186 |
+
def _apply_score_threshold(self, documents: List[Document]) -> List[Document]:
|
| 187 |
+
"""
|
| 188 |
+
Filter documents by minimum score threshold.
|
| 189 |
+
|
| 190 |
+
Args:
|
| 191 |
+
documents: Documents to filter
|
| 192 |
+
|
| 193 |
+
Returns:
|
| 194 |
+
Filtered documents
|
| 195 |
+
"""
|
| 196 |
+
return [
|
| 197 |
+
doc
|
| 198 |
+
for doc in documents
|
| 199 |
+
if doc.score and doc.score >= self.retrieval_config.min_score
|
| 200 |
+
]
|
src/ui/gradio_app_memory.py
ADDED
|
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Gradio UI for the RAG Email Assistant (in-memory, no Docker needed)."""
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from typing import Tuple, List, Dict, Any
|
| 5 |
+
import logging
|
| 6 |
+
import asyncio
|
| 7 |
+
import pickle
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
|
| 10 |
+
from ..config import get_config, AppConfig
|
| 11 |
+
from ..indexing.memory_indexer import MemoryDocumentIndexer
|
| 12 |
+
from ..pipeline.memory_orchestrator import MemoryRAGOrchestrator, PipelineResult
|
| 13 |
+
from ..document_processing.loader import MarkdownDocumentLoader
|
| 14 |
+
from ..document_processing.chunker import SemanticChunker
|
| 15 |
+
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class GradioEmailAssistant:
|
| 20 |
+
"""Gradio interface for the email assistant (in-memory)."""
|
| 21 |
+
|
| 22 |
+
def __init__(self, config: AppConfig):
|
| 23 |
+
"""
|
| 24 |
+
Initialize the Gradio assistant.
|
| 25 |
+
|
| 26 |
+
Args:
|
| 27 |
+
config: Application configuration
|
| 28 |
+
"""
|
| 29 |
+
self.config = config
|
| 30 |
+
|
| 31 |
+
# Initialize indexer
|
| 32 |
+
self.indexer = MemoryDocumentIndexer(llm_config=config.llm)
|
| 33 |
+
|
| 34 |
+
# Load or create document store
|
| 35 |
+
self._load_or_create_documents()
|
| 36 |
+
|
| 37 |
+
# Initialize orchestrator
|
| 38 |
+
self.orchestrator = MemoryRAGOrchestrator(
|
| 39 |
+
config=config,
|
| 40 |
+
document_indexer=self.indexer,
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
# Store last pipeline result for refinement
|
| 44 |
+
self.last_result: PipelineResult | None = None
|
| 45 |
+
|
| 46 |
+
def _load_or_create_documents(self):
|
| 47 |
+
"""Load documents from pickle or create fresh."""
|
| 48 |
+
doc_store_path = Path("data/document_store.pkl")
|
| 49 |
+
|
| 50 |
+
if doc_store_path.exists():
|
| 51 |
+
logger.info(f"Loading document store from {doc_store_path}...")
|
| 52 |
+
try:
|
| 53 |
+
with open(doc_store_path, "rb") as f:
|
| 54 |
+
self.indexer.document_store = pickle.load(f)
|
| 55 |
+
logger.info(f"Loaded {self.indexer.get_document_count()} documents")
|
| 56 |
+
return
|
| 57 |
+
except Exception as e:
|
| 58 |
+
logger.warning(f"Failed to load document store: {e}")
|
| 59 |
+
|
| 60 |
+
# Create documents if not found
|
| 61 |
+
logger.info("Creating fresh document index...")
|
| 62 |
+
loader = MarkdownDocumentLoader(self.config.document_processing.documents_path)
|
| 63 |
+
documents = loader.load_documents()
|
| 64 |
+
|
| 65 |
+
chunker = SemanticChunker(
|
| 66 |
+
chunk_size=self.config.document_processing.chunk_size,
|
| 67 |
+
chunk_overlap=self.config.document_processing.chunk_overlap,
|
| 68 |
+
min_chunk_size=self.config.document_processing.min_chunk_size,
|
| 69 |
+
)
|
| 70 |
+
chunked_docs = chunker.chunk_documents(documents)
|
| 71 |
+
|
| 72 |
+
self.indexer.index_documents(chunked_docs)
|
| 73 |
+
|
| 74 |
+
# Save for next time
|
| 75 |
+
doc_store_path.parent.mkdir(parents=True, exist_ok=True)
|
| 76 |
+
with open(doc_store_path, "wb") as f:
|
| 77 |
+
pickle.dump(self.indexer.document_store, f)
|
| 78 |
+
logger.info(f"Saved document store to {doc_store_path}")
|
| 79 |
+
|
| 80 |
+
async def process_query_async(
|
| 81 |
+
self, query: str
|
| 82 |
+
) -> Tuple[str, str, str, str, str, List[Dict[str, Any]]]:
|
| 83 |
+
"""
|
| 84 |
+
Process a user query asynchronously.
|
| 85 |
+
|
| 86 |
+
Args:
|
| 87 |
+
query: User query text
|
| 88 |
+
|
| 89 |
+
Returns:
|
| 90 |
+
Tuple of (subject, body, intent_info, fact_check_info, stats, sources)
|
| 91 |
+
"""
|
| 92 |
+
try:
|
| 93 |
+
# Process through pipeline
|
| 94 |
+
result = await self.orchestrator.process_query(query)
|
| 95 |
+
self.last_result = result
|
| 96 |
+
|
| 97 |
+
# Extract components
|
| 98 |
+
subject = result.email_draft.subject
|
| 99 |
+
body = result.email_draft.body
|
| 100 |
+
|
| 101 |
+
# Format intent information
|
| 102 |
+
intent_info = f"""**Action Type:** {result.intent.action_type}
|
| 103 |
+
**Topic:** {result.intent.topic}
|
| 104 |
+
**Language:** {result.intent.language}
|
| 105 |
+
**Urgency:** {result.intent.urgency}
|
| 106 |
+
**Key Entities:** {', '.join(result.intent.key_entities) if result.intent.key_entities else 'None'}
|
| 107 |
+
**Questions:** {', '.join(result.intent.specific_questions) if result.intent.specific_questions else 'None'}"""
|
| 108 |
+
|
| 109 |
+
# Format fact check information
|
| 110 |
+
accuracy_emoji = "β
" if result.fact_check.is_accurate else "β οΈ"
|
| 111 |
+
fact_check_info = f"""**Status:** {accuracy_emoji} {'Accurate' if result.fact_check.is_accurate else 'Issues Found'}
|
| 112 |
+
**Accuracy Score:** {result.fact_check.accuracy_score:.1%}
|
| 113 |
+
|
| 114 |
+
**Verified Claims:**
|
| 115 |
+
{self._format_list(result.fact_check.verified_claims)}
|
| 116 |
+
|
| 117 |
+
**Issues Found:**
|
| 118 |
+
{self._format_list(result.fact_check.issues_found) if result.fact_check.issues_found else 'None'}
|
| 119 |
+
|
| 120 |
+
**Suggestions:**
|
| 121 |
+
{self._format_list(result.fact_check.suggestions) if result.fact_check.suggestions else 'None'}"""
|
| 122 |
+
|
| 123 |
+
# Format statistics
|
| 124 |
+
stats = f"""**Processing Time:** {result.processing_time:.2f}s
|
| 125 |
+
**Documents Retrieved:** {len(result.retrieved_docs)}
|
| 126 |
+
**Confidence:** {result.email_draft.confidence:.1%}"""
|
| 127 |
+
|
| 128 |
+
# Format sources
|
| 129 |
+
sources = []
|
| 130 |
+
for i, doc in enumerate(result.retrieved_docs, 1):
|
| 131 |
+
sources.append(
|
| 132 |
+
{
|
| 133 |
+
"Number": i,
|
| 134 |
+
"Source": doc["meta"].get("source_file", "Unknown"),
|
| 135 |
+
"Score": f"{doc['score']:.3f}",
|
| 136 |
+
"Preview": doc["content"][:200] + "...",
|
| 137 |
+
}
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
return subject, body, intent_info, fact_check_info, stats, sources
|
| 141 |
+
|
| 142 |
+
except Exception as e:
|
| 143 |
+
logger.error(f"Error processing query: {e}")
|
| 144 |
+
error_msg = f"Error: {str(e)}"
|
| 145 |
+
return (
|
| 146 |
+
"Error",
|
| 147 |
+
error_msg,
|
| 148 |
+
error_msg,
|
| 149 |
+
error_msg,
|
| 150 |
+
error_msg,
|
| 151 |
+
[],
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
def process_query_sync(
|
| 155 |
+
self, query: str
|
| 156 |
+
) -> Tuple[str, str, str, str, str, List[Dict[str, Any]]]:
|
| 157 |
+
"""Synchronous wrapper for async query processing."""
|
| 158 |
+
return asyncio.run(self.process_query_async(query))
|
| 159 |
+
|
| 160 |
+
async def refine_draft_async(
|
| 161 |
+
self, subject: str, body: str, feedback: str
|
| 162 |
+
) -> Tuple[str, str]:
|
| 163 |
+
"""
|
| 164 |
+
Refine the current draft based on user feedback.
|
| 165 |
+
|
| 166 |
+
Args:
|
| 167 |
+
subject: Current subject
|
| 168 |
+
body: Current body
|
| 169 |
+
feedback: User feedback
|
| 170 |
+
|
| 171 |
+
Returns:
|
| 172 |
+
Tuple of (new_subject, new_body)
|
| 173 |
+
"""
|
| 174 |
+
if not self.last_result:
|
| 175 |
+
return subject, "Error: No draft to refine. Please generate a draft first."
|
| 176 |
+
|
| 177 |
+
try:
|
| 178 |
+
# Get retrieved docs from last result
|
| 179 |
+
from haystack import Document
|
| 180 |
+
|
| 181 |
+
retrieved_docs = [
|
| 182 |
+
Document(content=doc["content"], meta=doc["meta"])
|
| 183 |
+
for doc in self.last_result.retrieved_docs
|
| 184 |
+
]
|
| 185 |
+
|
| 186 |
+
# Refine the draft
|
| 187 |
+
refined = await self.orchestrator.refine_draft(
|
| 188 |
+
original_query=self.last_result.query,
|
| 189 |
+
current_draft=body,
|
| 190 |
+
user_feedback=feedback,
|
| 191 |
+
retrieved_docs=retrieved_docs,
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
return refined.subject, refined.body
|
| 195 |
+
|
| 196 |
+
except Exception as e:
|
| 197 |
+
logger.error(f"Error refining draft: {e}")
|
| 198 |
+
return subject, f"Error refining draft: {str(e)}"
|
| 199 |
+
|
| 200 |
+
def refine_draft_sync(self, subject: str, body: str, feedback: str) -> Tuple[str, str]:
|
| 201 |
+
"""Synchronous wrapper for async draft refinement."""
|
| 202 |
+
return asyncio.run(self.refine_draft_async(subject, body, feedback))
|
| 203 |
+
|
| 204 |
+
def _format_list(self, items: List[str]) -> str:
|
| 205 |
+
"""Format a list of items as markdown."""
|
| 206 |
+
if not items:
|
| 207 |
+
return "None"
|
| 208 |
+
return "\n".join([f"- {item}" for item in items])
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def create_gradio_interface() -> gr.Blocks:
|
| 212 |
+
"""
|
| 213 |
+
Create and configure the Gradio interface.
|
| 214 |
+
|
| 215 |
+
Returns:
|
| 216 |
+
Gradio Blocks interface
|
| 217 |
+
"""
|
| 218 |
+
# Load configuration
|
| 219 |
+
config = get_config()
|
| 220 |
+
|
| 221 |
+
# Initialize assistant
|
| 222 |
+
assistant = GradioEmailAssistant(config)
|
| 223 |
+
|
| 224 |
+
# Create interface
|
| 225 |
+
with gr.Blocks(
|
| 226 |
+
title="BFH Student Administration Email Assistant",
|
| 227 |
+
theme=gr.themes.Soft(),
|
| 228 |
+
) as demo:
|
| 229 |
+
gr.Markdown(
|
| 230 |
+
"""
|
| 231 |
+
# π§ BFH Student Administration Email Assistant
|
| 232 |
+
|
| 233 |
+
AI-powered email assistant for university administrative staff using RAG (Retrieval-Augmented Generation).
|
| 234 |
+
|
| 235 |
+
**No Docker Required!** Uses in-memory document store.
|
| 236 |
+
|
| 237 |
+
**Features:**
|
| 238 |
+
- Intent extraction from student queries
|
| 239 |
+
- Hybrid retrieval (BM25 + semantic search)
|
| 240 |
+
- Multi-agent email composition
|
| 241 |
+
- Automated fact-checking
|
| 242 |
+
- Draft refinement based on feedback
|
| 243 |
+
"""
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
with gr.Row():
|
| 247 |
+
with gr.Column(scale=1):
|
| 248 |
+
gr.Markdown("### π Query Input")
|
| 249 |
+
query_input = gr.Textbox(
|
| 250 |
+
label="Student Query",
|
| 251 |
+
placeholder="Enter the student's question or email content here...",
|
| 252 |
+
lines=5,
|
| 253 |
+
)
|
| 254 |
+
process_btn = gr.Button("Generate Email Draft", variant="primary")
|
| 255 |
+
|
| 256 |
+
with gr.Column(scale=1):
|
| 257 |
+
gr.Markdown("### π Analysis")
|
| 258 |
+
intent_output = gr.Markdown(label="Intent Analysis")
|
| 259 |
+
stats_output = gr.Markdown(label="Statistics")
|
| 260 |
+
|
| 261 |
+
gr.Markdown("### βοΈ Email Draft")
|
| 262 |
+
|
| 263 |
+
with gr.Row():
|
| 264 |
+
with gr.Column(scale=2):
|
| 265 |
+
subject_output = gr.Textbox(label="Subject", lines=1)
|
| 266 |
+
body_output = gr.Textbox(label="Body", lines=15)
|
| 267 |
+
|
| 268 |
+
with gr.Column(scale=1):
|
| 269 |
+
fact_check_output = gr.Markdown(label="Fact Check Results")
|
| 270 |
+
|
| 271 |
+
gr.Markdown("### π Refine Draft")
|
| 272 |
+
|
| 273 |
+
with gr.Row():
|
| 274 |
+
feedback_input = gr.Textbox(
|
| 275 |
+
label="Feedback / Refinement Instructions",
|
| 276 |
+
placeholder="E.g., 'Make it more formal', 'Add information about deadlines', 'Translate to English'",
|
| 277 |
+
lines=3,
|
| 278 |
+
)
|
| 279 |
+
refine_btn = gr.Button("Refine Draft", variant="secondary")
|
| 280 |
+
|
| 281 |
+
gr.Markdown("### π Retrieved Sources")
|
| 282 |
+
sources_output = gr.Dataframe(
|
| 283 |
+
headers=["Number", "Source", "Score", "Preview"],
|
| 284 |
+
label="Source Documents",
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
# Event handlers
|
| 288 |
+
process_btn.click(
|
| 289 |
+
fn=assistant.process_query_sync,
|
| 290 |
+
inputs=[query_input],
|
| 291 |
+
outputs=[
|
| 292 |
+
subject_output,
|
| 293 |
+
body_output,
|
| 294 |
+
intent_output,
|
| 295 |
+
fact_check_output,
|
| 296 |
+
stats_output,
|
| 297 |
+
sources_output,
|
| 298 |
+
],
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
refine_btn.click(
|
| 302 |
+
fn=assistant.refine_draft_sync,
|
| 303 |
+
inputs=[subject_output, body_output, feedback_input],
|
| 304 |
+
outputs=[subject_output, body_output],
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
gr.Markdown(
|
| 308 |
+
"""
|
| 309 |
+
---
|
| 310 |
+
**Note:** This system uses AI to assist with email composition. Always review and verify the generated content before sending.
|
| 311 |
+
"""
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
return demo
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
if __name__ == "__main__":
|
| 318 |
+
# Configure logging
|
| 319 |
+
logging.basicConfig(
|
| 320 |
+
level=logging.INFO,
|
| 321 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
# Create and launch interface
|
| 325 |
+
demo = create_gradio_interface()
|
| 326 |
+
demo.launch()
|