| import numpy as np | |
| import pickle as pkl | |
| import tensorflow as tf | |
| from tensorflow.keras.applications.resnet50 import ResNet50,preprocess_input | |
| from tensorflow.keras.preprocessing import image | |
| from tensorflow.keras.layers import GlobalMaxPool2D | |
| from sklearn.neighbors import NearestNeighbors | |
| import os | |
| from numpy.linalg import norm | |
| import streamlit as st | |
| st.header('Fashion Recommendation System') | |
| Image_features = pkl.load(open('featurevector.pkl','rb')) | |
| filenames = pkl.load(open('filename.pkl','rb')) | |
| def extract_features_from_images(image_path, model): | |
| img = image.load_img(image_path, target_size=(224,224)) | |
| img_array = image.img_to_array(img) | |
| img_expand_dim = np.expand_dims(img_array, axis=0) | |
| img_preprocess = preprocess_input(img_expand_dim) | |
| result = model.predict(img_preprocess).flatten() | |
| norm_result = result/norm(result) | |
| return norm_result | |
| model = ResNet50(weights='imagenet', include_top=False, input_shape=(224,224,3)) | |
| model.trainable = False | |
| model = tf.keras.models.Sequential([model, | |
| GlobalMaxPool2D() | |
| ]) | |
| neighbors = NearestNeighbors(n_neighbors=6, algorithm='brute', metric='euclidean') | |
| neighbors.fit(Image_features) | |
| upload_file = st.file_uploader("Upload Image") | |
| if upload_file is not None: | |
| with open(os.path.join('upload', upload_file.name), 'wb') as f: | |
| f.write(upload_file.getbuffer()) | |
| st.subheader('Uploaded Image') | |
| st.image(upload_file) | |
| input_img_features = extract_features_from_images(upload_file, model) | |
| distance,indices = neighbors.kneighbors([input_img_features]) | |
| st.subheader('Recommended Images') | |
| col1,col2,col3,col4,col5 = st.columns(5) | |
| with col1: | |
| st.image(filenames[indices[0][1]]) | |
| with col2: | |
| st.image(filenames[indices[0][2]]) | |
| with col3: | |
| st.image(filenames[indices[0][3]]) | |
| with col4: | |
| st.image(filenames[indices[0][4]]) | |
| with col5: | |
| st.image(filenames[indices[0][5]]) |