Spaces:
Build error
Build error
File size: 14,277 Bytes
a25d0f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
"""
SMI Volatility Forecast - Hugging Face Gradio App
LΓ€uft direkt auf Hugging Face Spaces
"""
import gradio as gr
import yfinance as yf
import pandas as pd
import numpy as np
from datetime import datetime
import warnings
warnings.filterwarnings('ignore')
# FΓΌr Plots
import matplotlib.pyplot as plt
import io
from PIL import Image
class VolatilityForecaster:
def __init__(self, ticker, interval='5m', period='60d'):
self.ticker = ticker
self.interval = interval
self.period = period
self.data = None
self.returns = None
self.volatility = None
def fetch_data(self):
"""Fetch data from Yahoo Finance"""
stock = yf.Ticker(self.ticker)
self.data = stock.history(period=self.period, interval=self.interval)
if self.data.empty:
raise ValueError(f"No data found for {self.ticker}")
return self.data
def calculate_volatility(self, window=20):
"""Calculate rolling volatility from returns"""
self.returns = np.log(self.data['Close'] / self.data['Close'].shift(1))
periods_per_day = 78
periods_per_year = periods_per_day * 252
self.volatility = self.returns.rolling(window=window).std() * np.sqrt(periods_per_year)
self.volatility = self.volatility.dropna()
return self.volatility
def prepare_forecast_data(self, forecast_horizon=12):
"""Prepare data for forecasting"""
train_size = int(len(self.volatility) * 0.8)
train_data = self.volatility.iloc[:train_size].values
test_data = self.volatility.iloc[train_size:train_size+forecast_horizon].values
test_dates = self.volatility.index[train_size:train_size+forecast_horizon]
return train_data, test_data, test_dates
class ModelComparison:
def __init__(self, train_data, test_data, test_dates, forecast_horizon=12):
self.train_data = train_data
self.test_data = test_data
self.test_dates = test_dates
self.forecast_horizon = forecast_horizon
self.results = {}
def forecast_chronos(self):
"""Chronos-Modell von Amazon"""
try:
from chronos import ChronosPipeline
import torch
pipeline = ChronosPipeline.from_pretrained(
"amazon/chronos-t5-small",
device_map="cpu",
torch_dtype=torch.bfloat16,
)
context = torch.tensor(self.train_data[-100:])
forecast = pipeline.predict(
context=context,
prediction_length=self.forecast_horizon,
num_samples=20
)
forecast_median = np.median(forecast[0].numpy(), axis=0)
self.results['Chronos'] = {
'forecast': forecast_median,
'actual': self.test_data,
'dates': self.test_dates
}
return True
except Exception as e:
print(f"Chronos failed: {str(e)}")
return False
def forecast_moirai(self):
"""Moirai-Modell"""
try:
from uni2ts.model.moirai import MoiraiForecast
model = MoiraiForecast.load_from_checkpoint(
checkpoint_path="Salesforce/moirai-1.0-R-small",
map_location="cpu"
)
forecast = model.forecast(
past_data=self.train_data[-512:],
prediction_length=self.forecast_horizon
)
self.results['Moirai'] = {
'forecast': forecast.mean().numpy(),
'actual': self.test_data,
'dates': self.test_dates
}
return True
except Exception as e:
print(f"Moirai failed: {str(e)}")
return False
def forecast_moment(self):
"""MOMENT-Modell"""
try:
from momentfm import MOMENTPipeline
model = MOMENTPipeline.from_pretrained(
"AutonLab/MOMENT-1-large",
model_kwargs={'task_name': 'forecasting'}
)
context = self.train_data[-512:].reshape(1, -1)
forecast = model(context, output_length=self.forecast_horizon)
self.results['MOMENT'] = {
'forecast': forecast[0],
'actual': self.test_data,
'dates': self.test_dates
}
return True
except Exception as e:
print(f"MOMENT failed: {str(e)}")
return False
def forecast_timesfm(self):
"""TimesFM-Modell"""
try:
import timesfm
tfm = timesfm.TimesFm(
context_len=512,
horizon_len=self.forecast_horizon,
input_patch_len=32,
output_patch_len=128,
)
tfm.load_from_checkpoint()
forecast = tfm.forecast(
inputs=[self.train_data[-512:]],
freq=[0]
)
self.results['TimesFM'] = {
'forecast': forecast[0],
'actual': self.test_data,
'dates': self.test_dates
}
return True
except Exception as e:
print(f"TimesFM failed: {str(e)}")
return False
def calculate_metrics(self):
"""Calculate comprehensive performance metrics"""
metrics_df = []
for model_name, result in self.results.items():
if result is None:
continue
forecast = result['forecast']
actual = result['actual']
mae = np.mean(np.abs(forecast - actual))
rmse = np.sqrt(np.mean((forecast - actual)**2))
mape = np.mean(np.abs((actual - forecast) / (actual + 1e-10))) * 100
if len(actual) > 1:
actual_direction = np.sign(np.diff(actual))
forecast_direction = np.sign(np.diff(forecast))
directional_accuracy = np.mean(actual_direction == forecast_direction) * 100
else:
directional_accuracy = 0
ss_res = np.sum((actual - forecast)**2)
ss_tot = np.sum((actual - np.mean(actual))**2)
r2 = 1 - (ss_res / (ss_tot + 1e-10))
metrics_df.append({
'Model': model_name,
'MAE': mae,
'RMSE': rmse,
'MAPE (%)': mape,
'RΒ²': r2,
'Dir. Acc. (%)': directional_accuracy
})
return pd.DataFrame(metrics_df)
def run_all_forecasts(self):
"""Run all model forecasts"""
success_count = 0
if self.forecast_chronos():
success_count += 1
if self.forecast_moirai():
success_count += 1
if self.forecast_moment():
success_count += 1
if self.forecast_timesfm():
success_count += 1
return self.calculate_metrics(), success_count
def create_plot(comparison, stock_name):
"""Create visualization"""
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
colors = {'Chronos': 'red', 'Moirai': 'blue', 'MOMENT': 'green', 'TimesFM': 'orange'}
# Plot 1: Forecasts
for model_name, result in comparison.results.items():
if result is not None:
ax1.plot(result['dates'], result['actual'], 'k-',
linewidth=2.5, label='Actual', marker='o')
break
for model_name, result in comparison.results.items():
if result is not None:
ax1.plot(result['dates'], result['forecast'],
color=colors.get(model_name, 'gray'),
linestyle='--', linewidth=2,
label=f'{model_name}', marker='x')
ax1.set_xlabel('Time')
ax1.set_ylabel('Volatility (annualized)')
ax1.set_title(f'{stock_name} - Volatility Forecast')
ax1.legend()
ax1.grid(True, alpha=0.3)
ax1.tick_params(axis='x', rotation=45)
# Plot 2: Metrics
metrics_df = comparison.calculate_metrics()
if not metrics_df.empty:
models = metrics_df['Model'].tolist()
mae_values = metrics_df['MAE'].tolist()
rmse_values = metrics_df['RMSE'].tolist()
x = np.arange(len(models))
width = 0.35
ax2.bar(x - width/2, mae_values, width, label='MAE', alpha=0.8)
ax2.bar(x + width/2, rmse_values, width, label='RMSE', alpha=0.8)
ax2.set_xlabel('Model')
ax2.set_ylabel('Error')
ax2.set_title(f'{stock_name} - MAE & RMSE Comparison')
ax2.set_xticks(x)
ax2.set_xticklabels(models, rotation=45)
ax2.legend()
ax2.grid(True, alpha=0.3, axis='y')
plt.tight_layout()
# Convert to image
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
buf.seek(0)
img = Image.open(buf)
plt.close()
return img
def run_forecast(stock_ticker, forecast_minutes):
"""Main function for Gradio interface"""
try:
forecast_horizon = forecast_minutes // 5 # Convert to 5-min periods
status = f"π Starting forecast for {stock_ticker}...\n\n"
# Fetch data
status += "π₯ Fetching data from Yahoo Finance...\n"
forecaster = VolatilityForecaster(ticker=stock_ticker, interval='5m', period='60d')
forecaster.fetch_data()
status += f"β
Downloaded {len(forecaster.data)} data points\n"
status += f"π
Date range: {forecaster.data.index[0]} to {forecaster.data.index[-1]}\n\n"
# Calculate volatility
status += "π Calculating volatility...\n"
forecaster.calculate_volatility(window=20)
train_data, test_data, test_dates = forecaster.prepare_forecast_data(
forecast_horizon=forecast_horizon
)
status += f"π Training data points: {len(train_data)}\n"
status += f"π Test data points: {len(test_data)}\n"
status += f"π
Test period: {test_dates[0]} to {test_dates[-1]}\n\n"
# Run forecasts
status += "π€ Running model forecasts...\n\n"
comparison = ModelComparison(train_data, test_data, test_dates, forecast_horizon)
metrics_df, success_count = comparison.run_all_forecasts()
status += f"β
Successfully ran {success_count}/4 models\n\n"
# Create plot
plot_img = create_plot(comparison, stock_ticker)
# Format results
if not metrics_df.empty:
metrics_str = metrics_df.to_string(index=False)
best_rmse = metrics_df.loc[metrics_df['RMSE'].idxmin(), 'Model']
best_r2 = metrics_df.loc[metrics_df['RΒ²'].idxmax(), 'Model']
status += "="*60 + "\n"
status += "π RESULTS\n"
status += "="*60 + "\n\n"
status += metrics_str + "\n\n"
status += f"π Best Model (RMSE): {best_rmse}\n"
status += f"π Best Model (RΒ²): {best_r2}\n"
else:
status += "β No models completed successfully\n"
plot_img = None
return status, plot_img, metrics_df
except Exception as e:
return f"β Error: {str(e)}", None, None
# Gradio Interface
with gr.Blocks(title="SMI Volatility Forecast") as demo:
gr.Markdown("""
# π SMI Volatility Forecast - Model Comparison
Compare **Chronos, Moirai, MOMENT, and TimesFM** foundation models for volatility forecasting.
This app uses 5-minute data from Yahoo Finance (max 60 days) to predict volatility.
""")
with gr.Row():
with gr.Column(scale=1):
stock_input = gr.Dropdown(
choices=['NESN.SW', 'NOVN.SW', 'ROG.SW', 'UBSG.SW', 'ABBN.SW'],
value='NESN.SW',
label="π Select SMI Stock"
)
forecast_input = gr.Slider(
minimum=30,
maximum=120,
value=60,
step=30,
label="β±οΈ Forecast Horizon (minutes)"
)
run_button = gr.Button("π Run Forecast", variant="primary")
with gr.Column(scale=2):
status_output = gr.Textbox(
label="π Status & Results",
lines=20,
max_lines=30
)
with gr.Row():
plot_output = gr.Image(label="π Visualization")
with gr.Row():
metrics_output = gr.Dataframe(
label="π Detailed Metrics",
headers=["Model", "MAE", "RMSE", "MAPE (%)", "RΒ²", "Dir. Acc. (%)"]
)
run_button.click(
fn=run_forecast,
inputs=[stock_input, forecast_input],
outputs=[status_output, plot_output, metrics_output]
)
gr.Markdown("""
## π How it works
1. **Data Collection**: Fetches 5-minute historical data (60 days max from Yahoo Finance)
2. **Volatility Calculation**: Computes rolling volatility from log returns
3. **Train/Test Split**: 80% training, 20% testing (out-of-sample validation)
4. **Model Forecasting**: Runs 4 foundation models in parallel
5. **Evaluation**: Compares models using MAE, RMSE, MAPE, RΒ², and Directional Accuracy
### π Metrics Explained
- **MAE/RMSE**: Error measures (lower is better)
- **MAPE**: Percentage error (lower is better)
- **RΒ²**: Explained variance 0-1 (higher is better, >0.5 is good)
- **Directional Accuracy**: Trend prediction accuracy (>50% beats random)
""")
if __name__ == "__main__":
demo.launch() |