File size: 5,297 Bytes
05215f3 790eff3 05215f3 790eff3 bdb7d79 790eff3 bdb7d79 790eff3 bdb7d79 790eff3 bdb7d79 05215f3 790eff3 05215f3 790eff3 05215f3 790eff3 05215f3 790eff3 05215f3 790eff3 05215f3 790eff3 05215f3 790eff3 05215f3 790eff3 05215f3 790eff3 05215f3 790eff3 05215f3 790eff3 05215f3 790eff3 05215f3 790eff3 05215f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import gradio as gr
import json
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
# Global variables for model and tokenizer
model = None
tokenizer = None
def load_model():
"""Load the fine-tuned model and tokenizer."""
global model, tokenizer
if model is not None and tokenizer is not None:
return model, tokenizer
print("π Loading fine-tuned model...")
# Load base model and tokenizer
base_model_id = "HuggingFaceTB/SmolLM-360M"
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
base_model_id,
torch_dtype=torch.float32,
)
# Load fine-tuned adapter
model = PeftModel.from_pretrained(base_model, "waliaMuskaan011/calendar-event-extractor-smollm")
print("β
Model loaded successfully!")
return model, tokenizer
def extract_json_from_text(text):
"""Extract the first JSON object from text."""
try:
# Find first { and matching }
start = text.find('{')
if start == -1:
return None
depth = 0
for i in range(start, len(text)):
if text[i] == '{':
depth += 1
elif text[i] == '}':
depth -= 1
if depth == 0:
json_str = text[start:i+1]
return json.loads(json_str)
return None
except (json.JSONDecodeError, TypeError, ValueError):
return None
def predict_calendar_event(event_text):
"""Extract calendar information from event text."""
if not event_text.strip():
return "Please enter some text describing a calendar event."
try:
# Load model
model, tokenizer = load_model()
# Create prompt - same format as test_model.py
prompt = f"Extract calendar information from: {event_text}\nCalendar JSON:"
# Tokenize
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
# Generate
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=150,
do_sample=False,
pad_token_id=tokenizer.eos_token_id,
)
# Decode
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
generated_text = full_response[len(prompt):].strip()
# Extract JSON
extracted_json = extract_json_from_text(generated_text)
if extracted_json:
return json.dumps(extracted_json, indent=2, ensure_ascii=False)
else:
return f"Could not extract valid JSON. Raw output: {generated_text[:200]}..."
except Exception as e:
return f"Error processing request: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="Calendar Event Extractor", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π
Calendar Event Extractor
This AI model extracts structured calendar information from natural language text.
Powered by fine-tuned SmolLM-360M with LoRA adapters.
**Try it out**: Enter any calendar-related text and get structured JSON output!
""")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(
label="π Event Description",
placeholder="e.g., 'Meeting with John tomorrow at 2pm for 1 hour'",
lines=3
)
extract_btn = gr.Button("π Extract Event Info", variant="primary")
with gr.Column():
output_json = gr.Textbox(
label="π Extracted Information (JSON)",
lines=10,
max_lines=15
)
# Examples
gr.Markdown("### π Try these examples:")
examples = gr.Examples(
examples=[
["Quick meeting at the coworking space on 10th May 2025 starting at 11:00 am for 45 minutes"],
["Coffee chat with Sarah tomorrow at 3pm"],
["Weekly standup every Monday at 9am on Zoom"],
["Doctor appointment next Friday at 2:30 PM for 30 minutes"],
["Team lunch at the new restaurant on 15th December"],
["Call with client on 25/12/2024 at 10:00 AM, needs to discuss project timeline"],
],
inputs=[input_text],
outputs=[output_json],
fn=predict_calendar_event,
cache_examples=False
)
extract_btn.click(
fn=predict_calendar_event,
inputs=[input_text],
outputs=[output_json]
)
gr.Markdown(f"""
---
**Model Details**: Fine-tuned SmolLM-360M using LoRA β’ **Dataset**: ~2500 calendar events β’ **Training**: Custom augmentation pipeline
[π Model Card](https://huggingface.co/waliaMuskaan011/calendar-event-extractor-smollm) β’ [π» Training Code](https://github.com/muskaanwalia098/Calendar-Event-Entity-Extraction)
""")
if __name__ == "__main__":
demo.launch()
|