scrape_bot / app.py
yogesh69's picture
Update app.py
8187f33 verified
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load DeepSeek-R1 model and tokenizer
MODEL_NAME = "deepseek-ai/DeepSeek-R1"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True)
# Function to handle chat interactions
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# Construct messages format
messages = [{"role": "system", "content": system_message}]
for user_input, bot_response in history:
if user_input:
messages.append({"role": "user", "content": user_input})
if bot_response:
messages.append({"role": "assistant", "content": bot_response})
messages.append({"role": "user", "content": message})
# Tokenize input
input_text = "\n".join([msg["content"] for msg in messages])
inputs = tokenizer(input_text, return_tensors="pt")
# Generate response
output = model.generate(
**inputs,
max_length=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True
)
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
return response_text
# Gradio Chat Interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a helpful AI assistant.", label="System Message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
],
)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch()