Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| # Load DeepSeek-R1 model and tokenizer | |
| MODEL_NAME = "deepseek-ai/DeepSeek-R1" | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
| # Function to handle chat interactions | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| # Construct messages format | |
| messages = [{"role": "system", "content": system_message}] | |
| for user_input, bot_response in history: | |
| if user_input: | |
| messages.append({"role": "user", "content": user_input}) | |
| if bot_response: | |
| messages.append({"role": "assistant", "content": bot_response}) | |
| messages.append({"role": "user", "content": message}) | |
| # Tokenize input | |
| input_text = "\n".join([msg["content"] for msg in messages]) | |
| inputs = tokenizer(input_text, return_tensors="pt") | |
| # Generate response | |
| output = model.generate( | |
| **inputs, | |
| max_length=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| do_sample=True | |
| ) | |
| response_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
| return response_text | |
| # Gradio Chat Interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a helpful AI assistant.", label="System Message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens"), | |
| gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), | |
| ], | |
| ) | |
| # Launch the Gradio app | |
| if __name__ == "__main__": | |
| demo.launch() | |