Upload 3 files
Browse files- config.pbtxt +12 -19
- model.py +198 -73
- requirements.txt +2 -0
config.pbtxt
CHANGED
|
@@ -1,25 +1,18 @@
|
|
| 1 |
backend: "python"
|
| 2 |
-
max_batch_size: 0
|
| 3 |
|
| 4 |
input [
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
]
|
| 11 |
|
| 12 |
output [
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
]
|
| 19 |
-
|
| 20 |
-
# Optional: Specify instance_group if running on GPU
|
| 21 |
-
# instance_group [
|
| 22 |
-
# {
|
| 23 |
-
# kind: KIND_GPU
|
| 24 |
-
# }
|
| 25 |
-
# ]
|
|
|
|
| 1 |
backend: "python"
|
| 2 |
+
max_batch_size: 0
|
| 3 |
|
| 4 |
input [
|
| 5 |
+
{
|
| 6 |
+
name: "input_jp2_bytes"
|
| 7 |
+
data_type: TYPE_STRING
|
| 8 |
+
dims: [ 3 ]
|
| 9 |
+
}
|
| 10 |
]
|
| 11 |
|
| 12 |
output [
|
| 13 |
+
{
|
| 14 |
+
name: "output_mask"
|
| 15 |
+
data_type: TYPE_UINT8
|
| 16 |
+
dims: [-1, -1]
|
| 17 |
+
}
|
| 18 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.py
CHANGED
|
@@ -4,98 +4,223 @@ from omnicloudmask import predict_from_array
|
|
| 4 |
import rasterio
|
| 5 |
from rasterio.io import MemoryFile
|
| 6 |
from rasterio.enums import Resampling
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
class TritonPythonModel:
|
| 9 |
def initialize(self, args):
|
| 10 |
"""
|
| 11 |
Initialize the model. This function is called once when the model is loaded.
|
| 12 |
"""
|
| 13 |
-
|
| 14 |
-
# Ensure rasterio is installed in the Python backend environment.
|
| 15 |
-
print('Initialized Cloud Detection model with JP2 input')
|
| 16 |
|
| 17 |
-
def
|
| 18 |
"""
|
| 19 |
-
|
| 20 |
"""
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
response = pb_utils.InferenceResponse(output_tensors=[], error=error)
|
| 33 |
-
responses.append(response)
|
| 34 |
-
continue # Skip to the next request
|
| 35 |
-
|
| 36 |
-
# Assume order: Red, Green, NIR based on client logic
|
| 37 |
-
red_bytes = jp2_bytes_list[0]
|
| 38 |
-
green_bytes = jp2_bytes_list[1]
|
| 39 |
-
nir_bytes = jp2_bytes_list[2]
|
| 40 |
-
|
| 41 |
try:
|
| 42 |
-
#
|
| 43 |
-
with
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
else:
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
except Exception as e:
|
| 87 |
-
#
|
| 88 |
-
|
|
|
|
|
|
|
| 89 |
response = pb_utils.InferenceResponse(output_tensors=[], error=error)
|
|
|
|
| 90 |
|
| 91 |
-
responses.append(response)
|
| 92 |
-
|
| 93 |
-
# Return a list of responses
|
| 94 |
return responses
|
| 95 |
|
| 96 |
def finalize(self):
|
| 97 |
"""
|
| 98 |
-
|
| 99 |
"""
|
| 100 |
-
print('
|
| 101 |
-
|
|
|
|
| 4 |
import rasterio
|
| 5 |
from rasterio.io import MemoryFile
|
| 6 |
from rasterio.enums import Resampling
|
| 7 |
+
import tempfile
|
| 8 |
+
import os
|
| 9 |
+
from io import BytesIO
|
| 10 |
|
| 11 |
class TritonPythonModel:
|
| 12 |
def initialize(self, args):
|
| 13 |
"""
|
| 14 |
Initialize the model. This function is called once when the model is loaded.
|
| 15 |
"""
|
| 16 |
+
print('Initialized Cloud Detection model with JP2 input and robust GDAL handling')
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
def safe_read_jp2_bytes(self, jp2_bytes):
|
| 19 |
"""
|
| 20 |
+
Safely read JP2 bytes with multiple fallback methods
|
| 21 |
"""
|
| 22 |
+
try:
|
| 23 |
+
# Method 1: Try direct MemoryFile approach (works if GDAL drivers are properly configured)
|
| 24 |
+
with MemoryFile(jp2_bytes) as memfile:
|
| 25 |
+
with memfile.open() as src:
|
| 26 |
+
data = src.read(1).astype(np.float32)
|
| 27 |
+
height, width = src.height, src.width
|
| 28 |
+
profile = src.profile
|
| 29 |
+
return data, height, width, profile
|
| 30 |
+
|
| 31 |
+
except Exception as e1:
|
| 32 |
+
print(f"Method 1 (MemoryFile) failed: {e1}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
try:
|
| 34 |
+
# Method 2: Write to temporary file and read from disk
|
| 35 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.jp2') as tmp_file:
|
| 36 |
+
tmp_file.write(jp2_bytes)
|
| 37 |
+
tmp_file.flush()
|
| 38 |
+
|
| 39 |
+
with rasterio.open(tmp_file.name) as src:
|
| 40 |
+
data = src.read(1).astype(np.float32)
|
| 41 |
+
height, width = src.height, src.width
|
| 42 |
+
profile = src.profile
|
| 43 |
+
|
| 44 |
+
# Clean up temporary file
|
| 45 |
+
os.unlink(tmp_file.name)
|
| 46 |
+
return data, height, width, profile
|
| 47 |
+
|
| 48 |
+
except Exception as e2:
|
| 49 |
+
print(f"Method 2 (temporary file) failed: {e2}")
|
| 50 |
+
try:
|
| 51 |
+
# Method 3: Try with different suffix and basic profile
|
| 52 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.tiff') as tmp_file:
|
| 53 |
+
tmp_file.write(jp2_bytes)
|
| 54 |
+
tmp_file.flush()
|
| 55 |
+
|
| 56 |
+
with rasterio.open(tmp_file.name) as src:
|
| 57 |
+
data = src.read(1).astype(np.float32)
|
| 58 |
+
height, width = src.height, src.width
|
| 59 |
+
profile = {'driver': 'GTiff', 'height': height, 'width': width, 'count': 1, 'dtype': 'float32'}
|
| 60 |
+
|
| 61 |
+
os.unlink(tmp_file.name)
|
| 62 |
+
return data, height, width, profile
|
| 63 |
+
|
| 64 |
+
except Exception as e3:
|
| 65 |
+
print(f"Method 3 (tiff fallback) failed: {e3}")
|
| 66 |
+
# Method 4: Final fallback - try to interpret as raw numpy array
|
| 67 |
+
try:
|
| 68 |
+
# This assumes the client is sending raw numpy bytes as fallback
|
| 69 |
+
data_array = np.frombuffer(jp2_bytes, dtype=np.float32)
|
| 70 |
+
|
| 71 |
+
# Try to guess square dimensions
|
| 72 |
+
side_length = int(np.sqrt(len(data_array)))
|
| 73 |
+
if side_length * side_length == len(data_array):
|
| 74 |
+
data = data_array.reshape(side_length, side_length)
|
| 75 |
+
height, width = side_length, side_length
|
| 76 |
+
profile = {'driver': 'GTiff', 'height': height, 'width': width, 'count': 1, 'dtype': 'float32'}
|
| 77 |
+
return data, height, width, profile
|
| 78 |
else:
|
| 79 |
+
# Try common satellite image dimensions
|
| 80 |
+
common_dims = [(10980, 10980), (5490, 5490), (1024, 1024), (512, 512)]
|
| 81 |
+
for h, w in common_dims:
|
| 82 |
+
if h * w == len(data_array):
|
| 83 |
+
data = data_array.reshape(h, w)
|
| 84 |
+
height, width = h, w
|
| 85 |
+
profile = {'driver': 'GTiff', 'height': height, 'width': width, 'count': 1, 'dtype': 'float32'}
|
| 86 |
+
return data, height, width, profile
|
| 87 |
+
|
| 88 |
+
raise ValueError(f"Cannot interpret data array of length {len(data_array)} as image")
|
| 89 |
+
|
| 90 |
+
except Exception as e4:
|
| 91 |
+
raise Exception(f"All fallback methods failed: MemoryFile({e1}), TempFile({e2}), TiffFallback({e3}), RawBytes({e4})")
|
| 92 |
+
|
| 93 |
+
def safe_resample_data(self, data, current_height, current_width, target_height, target_width, profile):
|
| 94 |
+
"""
|
| 95 |
+
Safely resample data to target dimensions with fallback methods
|
| 96 |
+
"""
|
| 97 |
+
if current_height == target_height and current_width == target_width:
|
| 98 |
+
return data
|
| 99 |
+
|
| 100 |
+
try:
|
| 101 |
+
# Method 1: Use rasterio resampling
|
| 102 |
+
temp_profile = profile.copy()
|
| 103 |
+
temp_profile.update({
|
| 104 |
+
'height': current_height,
|
| 105 |
+
'width': current_width,
|
| 106 |
+
'count': 1,
|
| 107 |
+
'dtype': 'float32'
|
| 108 |
+
})
|
| 109 |
+
|
| 110 |
+
with MemoryFile() as memfile:
|
| 111 |
+
with memfile.open(**temp_profile) as temp_dataset:
|
| 112 |
+
temp_dataset.write(data, 1)
|
| 113 |
+
|
| 114 |
+
resampled = temp_dataset.read(
|
| 115 |
+
out_shape=(1, target_height, target_width),
|
| 116 |
+
resampling=Resampling.bilinear
|
| 117 |
+
)[0].astype(np.float32)
|
| 118 |
+
|
| 119 |
+
return resampled
|
| 120 |
+
|
| 121 |
+
except Exception as e1:
|
| 122 |
+
print(f"Rasterio resampling failed: {e1}")
|
| 123 |
+
try:
|
| 124 |
+
# Method 2: Use scipy if available
|
| 125 |
+
from scipy import ndimage
|
| 126 |
+
zoom_factors = (target_height / current_height, target_width / current_width)
|
| 127 |
+
resampled = ndimage.zoom(data, zoom_factors, order=1)
|
| 128 |
+
return resampled.astype(np.float32)
|
| 129 |
+
|
| 130 |
+
except ImportError:
|
| 131 |
+
print("Scipy not available for resampling")
|
| 132 |
+
# Method 3: Simple nearest-neighbor resampling
|
| 133 |
+
h_indices = np.round(np.linspace(0, current_height - 1, target_height)).astype(int)
|
| 134 |
+
w_indices = np.round(np.linspace(0, current_width - 1, target_width)).astype(int)
|
| 135 |
+
|
| 136 |
+
resampled = data[np.ix_(h_indices, w_indices)]
|
| 137 |
+
return resampled.astype(np.float32)
|
| 138 |
+
|
| 139 |
+
except Exception as e2:
|
| 140 |
+
print(f"Scipy resampling failed: {e2}")
|
| 141 |
+
# Method 3: Simple nearest-neighbor resampling
|
| 142 |
+
h_indices = np.round(np.linspace(0, current_height - 1, target_height)).astype(int)
|
| 143 |
+
w_indices = np.round(np.linspace(0, current_width - 1, target_width)).astype(int)
|
| 144 |
+
|
| 145 |
+
resampled = data[np.ix_(h_indices, w_indices)]
|
| 146 |
+
return resampled.astype(np.float32)
|
| 147 |
|
| 148 |
+
def execute(self, requests):
|
| 149 |
+
"""
|
| 150 |
+
Process inference requests with robust error handling.
|
| 151 |
+
"""
|
| 152 |
+
responses = []
|
| 153 |
|
| 154 |
+
for request in requests:
|
| 155 |
+
try:
|
| 156 |
+
input_tensor = pb_utils.get_input_tensor_by_name(request, "input_jp2_bytes")
|
| 157 |
+
jp2_bytes_list = input_tensor.as_numpy()
|
| 158 |
+
|
| 159 |
+
if len(jp2_bytes_list) != 3:
|
| 160 |
+
error_msg = f"Expected 3 JP2 byte strings, received {len(jp2_bytes_list)}"
|
| 161 |
+
error = pb_utils.TritonError(error_msg)
|
| 162 |
+
response = pb_utils.InferenceResponse(output_tensors=[], error=error)
|
| 163 |
+
responses.append(response)
|
| 164 |
+
continue
|
| 165 |
+
|
| 166 |
+
red_bytes = jp2_bytes_list[0]
|
| 167 |
+
green_bytes = jp2_bytes_list[1]
|
| 168 |
+
nir_bytes = jp2_bytes_list[2]
|
| 169 |
+
|
| 170 |
+
print(f"Processing JP2 data - sizes: Red={len(red_bytes)}, Green={len(green_bytes)}, NIR={len(nir_bytes)}")
|
| 171 |
+
|
| 172 |
+
# Read red band data (use as reference for dimensions)
|
| 173 |
+
red_data, target_height, target_width, red_profile = self.safe_read_jp2_bytes(red_bytes)
|
| 174 |
+
print(f"Red band: {red_data.shape}, target dimensions: {target_height}x{target_width}")
|
| 175 |
+
|
| 176 |
+
# Read and resample green band
|
| 177 |
+
green_data, green_height, green_width, green_profile = self.safe_read_jp2_bytes(green_bytes)
|
| 178 |
+
green_data = self.safe_resample_data(green_data, green_height, green_width, target_height, target_width, green_profile)
|
| 179 |
+
print(f"Green band after resampling: {green_data.shape}")
|
| 180 |
+
|
| 181 |
+
# Read and resample NIR band
|
| 182 |
+
nir_data, nir_height, nir_width, nir_profile = self.safe_read_jp2_bytes(nir_bytes)
|
| 183 |
+
nir_data = self.safe_resample_data(nir_data, nir_height, nir_width, target_height, target_width, nir_profile)
|
| 184 |
+
print(f"NIR band after resampling: {nir_data.shape}")
|
| 185 |
+
|
| 186 |
+
# Verify all bands have the same shape
|
| 187 |
+
if not (red_data.shape == green_data.shape == nir_data.shape):
|
| 188 |
+
shapes = [red_data.shape, green_data.shape, nir_data.shape]
|
| 189 |
+
error_msg = f"Band shape mismatch after resampling: {shapes}"
|
| 190 |
+
error = pb_utils.TritonError(error_msg)
|
| 191 |
+
response = pb_utils.InferenceResponse(output_tensors=[], error=error)
|
| 192 |
+
responses.append(response)
|
| 193 |
+
continue
|
| 194 |
+
|
| 195 |
+
# Stack bands in CHW format for prediction (channels, height, width)
|
| 196 |
+
prediction_array = np.stack([red_data, green_data, nir_data], axis=0)
|
| 197 |
+
print(f"Final prediction array shape: {prediction_array.shape}")
|
| 198 |
+
|
| 199 |
+
# Run cloud detection prediction
|
| 200 |
+
cloud_mask = predict_from_array(prediction_array)
|
| 201 |
+
print(f"Cloud mask shape: {cloud_mask.shape}")
|
| 202 |
+
|
| 203 |
+
# Flatten the mask for output
|
| 204 |
+
if cloud_mask.ndim > 1:
|
| 205 |
+
cloud_mask = cloud_mask.flatten()
|
| 206 |
+
|
| 207 |
+
# Create output tensor (config expects TYPE_UINT8)
|
| 208 |
+
output_tensor = pb_utils.Tensor("output_mask", cloud_mask.astype(np.uint8))
|
| 209 |
+
response = pb_utils.InferenceResponse(output_tensors=[output_tensor])
|
| 210 |
+
responses.append(response)
|
| 211 |
|
| 212 |
except Exception as e:
|
| 213 |
+
# Enhanced error reporting
|
| 214 |
+
error_msg = f"Error processing JP2 data: {str(e)}"
|
| 215 |
+
print(f"Model execution error: {error_msg}")
|
| 216 |
+
error = pb_utils.TritonError(error_msg)
|
| 217 |
response = pb_utils.InferenceResponse(output_tensors=[], error=error)
|
| 218 |
+
responses.append(response)
|
| 219 |
|
|
|
|
|
|
|
|
|
|
| 220 |
return responses
|
| 221 |
|
| 222 |
def finalize(self):
|
| 223 |
"""
|
| 224 |
+
Clean up when the model is unloaded.
|
| 225 |
"""
|
| 226 |
+
print('Cloud Detection model finalized')
|
|
|
requirements.txt
CHANGED
|
@@ -5,3 +5,5 @@ timm>=0.9
|
|
| 5 |
tqdm>=4.0
|
| 6 |
gdown>=5.1.0
|
| 7 |
torch>=2.2
|
|
|
|
|
|
|
|
|
| 5 |
tqdm>=4.0
|
| 6 |
gdown>=5.1.0
|
| 7 |
torch>=2.2
|
| 8 |
+
scipy>=1.9.0
|
| 9 |
+
numpy>=1.21.0
|