ik_llama.cpp imatrix Quantizations of MiniMaxAI/MiniMax-M2.5

NOTE ik_llama.cpp can also run your existing GGUFs from bartowski, unsloth, mradermacher, etc if you want to try it out before downloading my quants.

Some of ik's new quants are supported with Nexesenex/croco.cpp fork of KoboldCPP with Windows builds for CUDA 12.9. Also check for Windows builds by Thireus here. which have been CUDA 12.8.

These quants provide best in class perplexity for the given memory footprint.

Big Thanks

Shout out to Wendell and the Level1Techs crew, the community Forums, YouTube Channel! BIG thanks for providing BIG hardware expertise and access to run these experiments and make these great quants available to the community!!!

Also thanks to all the folks in the quanting and inferencing community on BeaverAI Club Discord and on r/LocalLLaMA for tips and tricks helping each other run, test, and benchmark all the fun new models! Thanks to huggingface for hosting all these big quants!

Finally, I really appreciate the support from aifoundry.org so check out their open source RISC-V based solutions!

Quant Collection

Perplexity computed against wiki.test.raw. (lower is "better")

Perplexity Chart

These two are just a test quants for baseline perplexity comparison and not available for download here:

  • BF16 426.060 GiB (16.003 BPW)
    • PPL over 552 chunks for n_ctx=512 = 8.3386 +/- 0.06651
  • Q8_0 226.431 GiB (8.505 BPW)
    • PPL over 552 chunks for n_ctx=512 = 8.3590 +/- 0.06673

NOTE: The first split file is much smaller on purpose to only contain metadata, its fine!

IQ5_K 157.771 GiB (5.926 BPW)

PPL over 552 chunks for n_ctx=512 = 8.4860 +/- 0.06815

πŸ‘ˆ Secret Recipe
custom="
# 61 Repeating Layers [0-61]

# Attention [0-61] GPU
blk\..*\.attn_q.*=q8_0
blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0
blk\..*\.attn_output.*=q8_0

# Routed Experts Layers [0-61] CPU
blk\..*\.ffn_down_exps\.weight=iq6_k
blk\..*\.ffn_(gate|up)_exps\.weight=iq5_k

# Non-Repeating Layers
token_embd\.weight=q8_0
output\.weight=q8_0
"

custom=$(
  echo "$custom" | grep -v '^#' | \
  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)

numactl -N ${SOCKET} -m ${SOCKET} \
./build/bin/llama-quantize \
    --custom-q "$custom" \
    --imatrix /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/imatrix-MiniMax-M2.5-BF16.dat \
    /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/MiniMax-M2.5-256x4.9B-BF16-00001-of-00010.gguf \
    /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/MiniMax-M2.5-IQ5_K.gguf \
    IQ5_K \
    128

IQ4_NL 121.386 GiB (4.559 BPW)

PPL over 552 chunks for n_ctx=512 = 8.4419 +/- 0.06757

This one is not mainline compat because it uses:

  • token_embd@iq4_k (instead of mainline q4_K)
  • output@iq6_k (instead of mainline q6_K`

It gives a nice little boost in perplexity at basically the same size so I opted to use the newer types. It is technically a smol-IQ4_NL but its fine.

πŸ‘ˆ Secret Recipe
#!/usr/bin/env bash

custom="
# 61 Repeating Layers [0-61]

# Attention [0-61] GPU
blk\..*\.attn_q.*=q8_0
blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0
blk\..*\.attn_output.*=q8_0

# Routed Experts Layers [0-61] CPU
blk\..*\.ffn_down_exps\.weight=iq4_nl
blk\..*\.ffn_(gate|up)_exps\.weight=iq4_nl

# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"

custom=$(
  echo "$custom" | grep -v '^#' | \
  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)

numactl -N ${SOCKET} -m ${SOCKET} \
./build/bin/llama-quantize \
    --custom-q "$custom" \
    --imatrix /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/imatrix-MiniMax-M2.5-BF16.dat \
    /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/MiniMax-M2.5-256x4.9B-BF16-00001-of-00010.gguf \
    /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/MiniMax-M2.5-IQ4_NL.gguf \
    IQ4_NL \
    128

mainline-IQ4_NL 121.234 GiB (4.554 BPW)

PPL over 552 chunks for n_ctx=512 = 8.4528 +/- 0.06759

This one is mainline compat because it uses:

  • token_embd@q4_K
  • output@q6_K

This is the one to use for Vulkan, probably Mac, but might need more than 128GB hrm...

πŸ‘ˆ Secret Recipe
#!/usr/bin/env bash

custom="
# 61 Repeating Layers [0-61]

# Attention [0-61] GPU
blk\..*\.attn_q.*=q8_0
blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0
blk\..*\.attn_output.*=q8_0

# Routed Experts Layers [0-61] CPU
blk\..*\.ffn_down_exps\.weight=iq4_nl
blk\..*\.ffn_(gate|up)_exps\.weight=iq4_nl

# Non-Repeating Layers
token_embd\.weight=q4_K
output\.weight=q4_K
"

custom=$(
  echo "$custom" | grep -v '^#' | \
  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)

numactl -N ${SOCKET} -m ${SOCKET} \
./build/bin/llama-quantize \
    --custom-q "$custom" \
    --imatrix /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/imatrix-MiniMax-M2.5-BF16.dat \
    /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/MiniMax-M2.5-256x4.9B-BF16-00001-of-00010.gguf \
    /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/MiniMax-M2.5-mainline-IQ4_NL.gguf \
    IQ4_NL \
    128

IQ4_XS 114.842 GiB (4.314 BPW)

PPL over 552 chunks for n_ctx=512 = 8.5702 +/- 0.06901

This is the only quant in this collection that is compatible with mainline llama.cpp. ik_llama.cpp can run all of them. Its technically a smol-IQ4_XS but its fine.

πŸ‘ˆ Secret Recipe
#!/usr/bin/env bash

custom="
# 61 Repeating Layers [0-61]

# Attention [0-61] GPU
blk\..*\.attn_q.*=q8_0
blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0
blk\..*\.attn_output.*=q8_0

# Routed Experts Layers [0-61] CPU
blk\..*\.ffn_down_exps\.weight=iq4_xs
blk\..*\.ffn_(gate|up)_exps\.weight=iq4_xs

# Non-Repeating Layers
token_embd\.weight=q4_K
output\.weight=q6_K
"

custom=$(
  echo "$custom" | grep -v '^#' | \
  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)

numactl -N ${SOCKET} -m ${SOCKET} \
./build/bin/llama-quantize \
    --custom-q "$custom" \
    --imatrix /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/imatrix-MiniMax-M2.5-BF16.dat \
    /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/MiniMax-M2.5-256x4.9B-BF16-00001-of-00010.gguf \
    /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/MiniMax-M2.5-IQ4_XS.gguf \
    IQ4_XS \
    128

smol-IQ4_KSS 108.671 GiB (4.082 BPW)

PPL over 552 chunks for n_ctx=512 = 8.5815 +/- 0.06888

πŸ‘ˆ Secret Recipe
#!/usr/bin/env bash

custom="
# 61 Repeating Layers [0-61]

# Attention [0-61] GPU
blk\..*\.attn_q.*=q8_0
blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0
blk\..*\.attn_output.*=q8_0

# Routed Experts Layers [0-61] CPU
blk\..*\.ffn_down_exps\.weight=iq4_kss
blk\..*\.ffn_(gate|up)_exps\.weight=iq4_kss

# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"

custom=$(
  echo "$custom" | grep -v '^#' | \
  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)

numactl -N ${SOCKET} -m ${SOCKET} \
./build/bin/llama-quantize \
    --custom-q "$custom" \
    --imatrix /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/imatrix-MiniMax-M2.5-BF16.dat \
    /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/MiniMax-M2.5-256x4.9B-BF16-00001-of-00010.gguf \
    /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/MiniMax-M2.5-smol-IQ4_KSS.gguf \
    IQ4_KSS \
    128

smol-IQ3_KS 87.237 GiB (3.277 BPW)

PPL over 552 chunks for n_ctx=512 = 8.7539 +/- 0.07075

πŸ‘ˆ Secret Recipe
#!/usr/bin/env bash

custom="
# 61 Repeating Layers [0-61]

# Attention [0-61] GPU
blk\..*\.attn_q.*=q8_0
blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0
blk\..*\.attn_output.*=q8_0

# Routed Experts Layers [0-61] CPU
blk\..*\.ffn_down_exps\.weight=iq3_ks
blk\..*\.ffn_(gate|up)_exps\.weight=iq3_ks

# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"

custom=$(
  echo "$custom" | grep -v '^#' | \
  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)

numactl -N ${SOCKET} -m ${SOCKET} \
./build/bin/llama-quantize \
    --custom-q "$custom" \
    --imatrix /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/imatrix-MiniMax-M2.5-BF16.dat \
    /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/MiniMax-M2.5-256x4.9B-BF16-00001-of-00010.gguf \
    /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/MiniMax-M2.5-smol-IQ3_KS.gguf \
    IQ3_KS \
    128

IQ2_KS 69.800 GiB (2.622 BPW)

PPL over 552 chunks for n_ctx=512 = 9.6827 +/- 0.07972

πŸ‘ˆ Secret Recipe
#!/usr/bin/env bash

custom="
# 61 Repeating Layers [0-61]

# Attention [0-61] GPU
blk\..*\.attn_q.*=q8_0
blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0
blk\..*\.attn_output.*=q8_0

# Routed Experts Layers [0-61] CPU
blk\..*\.ffn_down_exps\.weight=iq3_ks
blk\..*\.ffn_(gate|up)_exps\.weight=iq2_ks

# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"

custom=$(
  echo "$custom" | grep -v '^#' | \
  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)

numactl -N ${SOCKET} -m ${SOCKET} \
./build/bin/llama-quantize \
    --custom-q "$custom" \
    --imatrix /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/imatrix-MiniMax-M2.5-BF16.dat \
    /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/MiniMax-M2.5-256x4.9B-BF16-00001-of-00010.gguf \
    /mnt/data/models/ubergarm/MiniMax-M2.5-GGUF/MiniMax-M2.5-IQ2_KS.gguf \
    IQ2_KS \
    128

Quick Start

# Clone and checkout
$ git clone https://github.com/ikawrakow/ik_llama.cpp
$ cd ik_llama.cpp

# Build for hybrid CPU+CUDA
$ cmake -B build -DCMAKE_BUILD_TYPE=Release -DGGML_CUDA=ON
$ cmake --build build --config Release -j $(nproc)

# Download Desired Quant
$ pip install huggingface_hub
$ hf download --local-dir ./MiniMax-M2.5-GGUF/ --include=smol-IQ3_KS/*.gguf ubergarm/MiniMax-M2.5-GGUF

# Hybrid CPU and Single GPU
echo TODO or look at my Step-3.5-Flash for rough example for now using --cpu-moe or --n-cpu-moe XX etc

# Multi GPU Full Offload 128k context 96GB VRAM!!!
model=MiniMax-M2.5-IQ2_KS-00001-of-00003.gguf
_GLIBCXX_REGEX_STATE_LIMIT=1000000 \
CUDA_VISIBLE_DEVICES="0,1" \
./build/bin/llama-sweep-bench \
    --model "$model" \
    --alias ubergarm/MiniMax-M2.5 \
    -khad -ctk q6_0 -ctv q8_0 \
    -c 131072 \
    -ger \
    -sm graph \
    -ngl 99 \
    -ub 4096 -b 4096 \
    -ts 47,48 \
    --threads 1 \
    --host 127.0.0.1 \
    --port 8080 \
    --no-mmap \
    --jinja

# CPU-Only
numactl -N "$SOCKET" -m "$SOCKET" \
./build/bin/llama-server \
    --model "$model"\
    --alias ubergarm/MiniMax-M2.5 \
    --ctx-size 65536 \
    -ger \
    --merge-qkv \
    -ctk q8_0 -ctv q8_0 \
    -ub 4096 -b 4096 \
    --parallel 1 \
    --threads 96 \
    --threads-batch 128 \
    --numa numactl \
    --host 127.0.0.1 \
    --port 8080 \
    --no-mmap \
    --jinja

My own early testing with opencode suggests that even the smol-IQ3_KS is working okay with tool calling etc!

For tool use you can always bring your own template with --chat-template-file myTemplate.jinja and might need --special etc.

References

Downloads last month
11,544
GGUF
Model size
229B params
Architecture
minimax-m2
Hardware compatibility
Log In to add your hardware

2-bit

4-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for ubergarm/MiniMax-M2.5-GGUF

Quantized
(36)
this model