Qwen3-Coder-30B-A3B-DFlash
DFlash is a novel speculative decoding method that utilizes a lightweight block diffusion model for drafting. It enables efficient, high-quality parallel drafting that pushes the limits of inference speed.
This model is the drafter component. It must be used in conjunction with the target model Qwen/Qwen3-Coder-30B-A3B-Instruct.
π Training Data & Efficiency
Qwen3-Coder-30B-A3B-DFlash is trained on 289K samples, composed of:
- Code split from
nvidia/Nemotron-Post-Training-Dataset-v2 theblackcat102/evol-codealpaca-v1- Approximately 2.8K Cline execution traces collected by ourselves
Despite being trained on significantly less data, DFlash already outperforms EAGLE-3 in inference acceleration. In comparison, lmsys/SGLang-EAGLE3-Qwen3-Coder-30B-A3B-Instruct-SpecForge is trained on the open-perfect-blend dataset with 1.4M samples, nearly 5Γ more data than DFlash.
This result highlights the training efficiency and scalability of DFlash, and suggests that further scaling the training data can unlock even greater acceleration gains.
π Quick Start
SGLang
DFlash is now supported on SGLang. And vLLM integration is currently in progress.
Installation
uv pip install "git+https://github.com/sgl-project/sglang.git@refs/pull/16818/head#subdirectory=python"
Inference
python -m sglang.launch_server \
--model-path Qwen/Qwen3-Coder-30B-A3B-Instruct \
--speculative-algorithm DFLASH \
--speculative-draft-model-path z-lab/Qwen3-Coder-30B-A3B-DFlash \
--tp-size 1 \
--dtype bfloat16 \
--attention-backend fa3 \
--mem-fraction-static 0.75 \
--trust-remote-code
Transformers
Installation
pip install transformers==4.57.3 torch==2.9.0 accelerate
Inference
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
model = AutoModel.from_pretrained(
"z-lab/Qwen3-Coder-30B-A3B-DFlash",
trust_remote_code=True,
dtype="auto",
device_map="cuda:0"
).eval()
target = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen3-Coder-30B-A3B-Instruct",
dtype="auto",
device_map="cuda:0"
).eval()
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Coder-30B-A3B-Instruct")
prompt = "Please provide a Python implementation of the Bubble Sort algorithm."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generate_ids = model.spec_generate(
input_ids=model_inputs["input_ids"],
max_new_tokens=2048,
temperature=0.0,
target=target,
stop_token_ids=[tokenizer.eos_token_id]
)
print(tokenizer.decode(generate_ids[0], skip_special_tokens=True))
Evaluation
DFlash consistently achieves high acceptance lengths and speedups across different concurrency levels. DFlash achieves similar acceptance length for both the bfloat16 target model and its FP8 variant Qwen3-Coder-30B-A3B-Instruct-FP8. All experiments are conducted using SGLang on a single B200 GPU.
We use a block size of 16 during speculation. You can specify different block size during inference by passing --speculative-num-draft-tokens arguments when launch the server.
HumanEval
| Batch Size | Method | Output Throughput (tokens/s) | Acceptance Length | Speedup vs. AR |
|---|---|---|---|---|
| 1 | Autoregressive | 229 | 1.00 | 1.00Γ |
| 1 | DFlash | 802 | 8.09 | 3.5Γ |
| 4 | Autoregressive | 686 | 1.00 | 1.00Γ |
| 4 | DFlash | 2078 | 8.09 | 3.0Γ |
| 8 | Autoregressive | 1068 | 1.00 | 1.00Γ |
| 8 | DFlash | 3442 | 8.09 | 3.2Γ |
| 16 | Autoregressive | 1681 | 1.00 | 1.00Γ |
| 16 | DFlash | 5429 | 8.09 | 3.2Γ |
| 32 | Autoregressive | 2713 | 1.00 | 1.00Γ |
| 32 | DFlash | 8314 | 8.09 | 3.1Γ |
MBPP
| Batch Size | Method | Output Throughput (tokens/s) | Acceptance Length | Speedup vs. AR |
|---|---|---|---|---|
| 1 | Autoregressive | 228 | 1.00 | 1.00Γ |
| 1 | DFlash | 720 | 7.23 | 3.2Γ |
| 4 | Autoregressive | 682 | 1.00 | 1.00Γ |
| 4 | DFlash | 2052 | 7.23 | 3.0Γ |
| 8 | Autoregressive | 1057 | 1.00 | 1.00Γ |
| 8 | DFlash | 3360 | 7.23 | 3.2Γ |
| 16 | Autoregressive | 1697 | 1.00 | 1.00Γ |
| 16 | DFlash | 5522 | 7.23 | 3.3Γ |
| 32 | Autoregressive | 2735 | 1.00 | 1.00Γ |
| 32 | DFlash | 8538 | 7.23 | 3.1Γ |
LiveCodeBench
| Batch Size | Method | Output Throughput (tokens/s) | Acceptance Length | Speedup vs. AR |
|---|---|---|---|---|
| 1 | Autoregressive | 220 | 1.00 | 1.00Γ |
| 1 | DFlash | 569 | 6.42 | 2.6Γ |
| 4 | Autoregressive | 681 | 1.00 | 1.00Γ |
| 4 | DFlash | 1621 | 6.42 | 2.4Γ |
| 8 | Autoregressive | 1112 | 1.00 | 1.00Γ |
| 8 | DFlash | 2554 | 6.42 | 2.3Γ |
| 16 | Autoregressive | 1733 | 1.00 | 1.00Γ |
| 16 | DFlash | 4160 | 6.42 | 2.4Γ |
| 32 | Autoregressive | 2823 | 1.00 | 1.00Γ |
| 32 | DFlash | 6401 | 6.42 | 2.3Γ |
Acknowledgement
We are grateful to Yotta Labs for their compute support in training this draft model.
Citation
If you find DFlash useful for your research or applications, please cite our project.
@misc{chen2026dflash,
title = {DFlash: Block Diffusion for Flash Speculative Decoding},
author = {Chen, Jian and Liang, Yesheng and Liu, Zhijian},
year = {2026},
eprint = {2602.06036},
archivePrefix = {arXiv},
primaryClass = {cs.CL},
url = {https://arxiv.org/abs/2602.06036}
}
- Downloads last month
- 1,085